Oak Woodland Vegetation Dynamics: a State and Transition Approach1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Grassland & Shrubland Vegetation
Grassland & Shrubland Vegetation Missoula Draft Resource Management Plan Handout May 2019 Key Points Approximately 3% of BLM-managed lands in the planning area are non-forested (less than 10% canopy cover); the other 97% are dominated by a forested canopy with limited mountain meadows, shrublands, and grasslands. See table 1 on the following page for a break-down of BLM-managed grassland and shrubland in the planning area classified under the National Vegetation Classification System (NVCS). The overall management goal of grassland and shrubland resources is to maintain diverse upland ecological conditions while providing for a variety of multiple uses that are economically and biologically feasible. Alternatives Alternative A (1986 Garnet RMP, as Amended) Maintain, or where practical enhance, site productivity on all public land available for livestock grazing: (a) maintain current vegetative condition in “maintain” and “custodial” category allotments; (b) improve unsatisfactory vegetative conditions by one condition class in certain “improvement” category allotments; (c) prevent noxious weeds from invading new areas; and, (d) limit utilization levels to provide for plant maintenance. Alternatives B & C (common to all) Proposed objectives: Manage uplands to meet health standards and meet or exceed proper functioning condition within site or ecological capability. Where appropriate, fire would be used as a management agent to achieve/maintain disturbance regimes supporting healthy functioning vegetative conditions. Manage surface-disturbing activities in a manner to minimize degradation to rangelands and soil quality. Mange areas to conserve BLM special status species plants. Ensure consistency with achieving or maintaining Standards of Rangeland Health and Guidelines for Livestock Grazing Management for Montana, North Dakota, and South Dakota. -
Appendix L: Oak Savanna Definition
Appendix L: Oak Savanna Definition Appendix L: Oak Savanna Definition Working Definition of “Savanna” for shaded environments under trees, shifting as the tree canopy becomes more open or closed. Herba- Restoration Efforts at Crane Meadows ceous species typical of prairie and forest co-occur; NWR in addition to a set of very specific savanna species (see lists below) that have high fidelity to this com- General Definition of Southern Dry Savanna: munity type (Texler Personal commun., Drobney Personal commun. (Buchanan 1996). This spatial Savanna habitat at Crane Meadows NWR, like variation within the understory is a function of the savanna across its range, is a fire-dependent, varying degrees of species tolerance to shade and dynamic community characterized by scattered sun. Forbs are an essential component of the under trees or groves of trees, mostly comprised of oaks - story. Another important component of savanna (Quercus sp.) with a canopy cover ranging from 10– 70%, but more typically between 25-50%; and a understory is the shrub layer. The understory of basal area (BA) of 5-50 sq ft / acre. A wide range is savanna on the Anoka Sandplain, including those at Crane Meadows NWR, can be present with or with- used because canopy cover is not the most impor- tant characteristic that defines savanna and also out shrubs. The extent of shrub density is depen- because savanna ecosystems are dynamic and are dent on the subtype savanna classification and the frequency of fire (Law et al. 1994, Swanson 2008, associated with a natural range of variation through space and time. -
Understanding the Causes of Bush Encroachment in Africa: the Key to Effective Management of Savanna Grasslands
Tropical Grasslands – Forrajes Tropicales (2013) Volume 1, 215−219 Understanding the causes of bush encroachment in Africa: The key to effective management of savanna grasslands OLAOTSWE E. KGOSIKOMA1 AND KABO MOGOTSI2 1Department of Agricultural Research, Ministry of Agriculture, Gaborone, Botswana. www.moa.gov.bw 2Department of Agricultural Research, Ministry of Agriculture, Francistown, Botswana. www.moa.gov.bw Keywords: Rangeland degradation, fire, indigenous ecological knowledge, livestock grazing, rainfall variability. Abstract The increase in biomass and abundance of woody plant species, often thorny or unpalatable, coupled with the suppres- sion of herbaceous plant cover, is a widely recognized form of rangeland degradation. Bush encroachment therefore has the potential to compromise rural livelihoods in Africa, as many depend on the natural resource base. The causes of bush encroachment are not without debate, but fire, herbivory, nutrient availability and rainfall patterns have been shown to be the key determinants of savanna vegetation structure and composition. In this paper, these determinants are discussed, with particular reference to arid and semi-arid environments of Africa. To improve our current under- standing of causes of bush encroachment, an integrated approach, involving ecological and indigenous knowledge systems, is proposed. Only through our knowledge of causes of bush encroachment, both direct and indirect, can better livelihood adjustments be made, or control measures and restoration of savanna ecosystem functioning be realized. Resumen Una forma ampliamente reconocida de degradación de pasturas es el incremento de la abundancia de especies de plan- tas leñosas, a menudo espinosas y no palatables, y de su biomasa, conjuntamente con la pérdida de plantas herbáceas. En África, la invasión por arbustos puede comprometer el sistema de vida rural ya que muchas personas dependen de los recursos naturales básicos. -
Carbon Sequestration in Managed Temperate Coniferous Forests Under Climate Change
Biogeosciences, 13, 1933–1947, 2016 www.biogeosciences.net/13/1933/2016/ doi:10.5194/bg-13-1933-2016 © Author(s) 2016. CC Attribution 3.0 License. Carbon sequestration in managed temperate coniferous forests under climate change Caren C. Dymond1, Sarah Beukema2, Craig R. Nitschke3, K. David Coates1, and Robert M. Scheller4 1Ministry of Forests, Lands and Natural Resource Operations, Government of British Columbia, Victoria, Canada 2ESSA Technologies Ltd., Vancouver, Canada 3School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Australia 4Department of Environmental Science and Management, Portland State University, Portland, USA Correspondence to: Caren C. Dymond ([email protected]) Received: 16 November 2015 – Published in Biogeosciences Discuss.: 21 December 2015 Revised: 11 March 2016 – Accepted: 16 March 2016 – Published: 30 March 2016 Abstract. Management of temperate forests has the poten- 1 Introduction tial to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by nega- tive climate change impacts. We therefore need a better un- As a global society, we depend on forests and land to take −1 derstanding of climate change alterations to temperate for- up about 2.5 C 1.3 PgC yr , about one-third of our fossil est carbon dynamics before developing mitigation strategies. emissions (Ciais et al., 2013). A reduction in the size of The purpose of this project was to investigate the interac- these sinks could accelerate global change by further increas- tions of species composition, fire, management, and climate ing the accumulation rate of greenhouse gases in the atmo- change in the Copper–Pine Creek valley, a temperate conifer- sphere. -
Shrubl Maritime Juniper Woodland/Shrubland
Maritime Juniper Woodland/ShrublWoodland/Shrublandand State Rank: S1 – Critically Imperiled The Maritime Juniper Woodland/ substrate stability; even Shrubland is a predominantly evergreen in stable situations community within the coastal salt spray community edges may zone; The trees tend to be short (less not be clear. Different than 15 feet) and scattered, with the types of communities tops sculpted by winds and salt spray; grade into and interdigitate with each forests, in areas of continuous changes of other. Very small patches levels of salt spray and substrate types. of any type within The dominant species is eastern red cedar another community (also called juniper), though the should be considered to Maritime Juniper Woodland/Shrubland above a abundance of red cedar is highly variable. be part of the variation of salt marsh. Photo: Patricia Swain, NHESP. It grows in association with scattered trees the main community. Description: Maritime Juniper and shrubs typical of the surrounding Maritime Pitch Pine Woodland/Shrublands occur on and vegetation such as pitch pine, various Woodlands on Dunes are between sand dunes, on the upper edges oaks, black cherry, red maple, blueberries, dominated by pitch pine. Maritime provide habitat for shrubland nesting birds of salt marshes and on cliffs and rocky huckleberries, sumac, and very often, Shrubland communities are dominated by and are important as feeding and resting/ headlands: all areas receiving salt spray poison ivy. Green briar can be abundant in a dense mixture of primarily deciduous roosting areas for migrating birds. from high winds. The maritime juniper more established woodlands, particularly shrubs, but may include red cedar. -
Black Oak Savanna Nature Centres 5 Summer Camp Sign-Up 6 by Kevin Tupman Oak Savanna
THE GRAND STRATEGY NEWSLETTER Volume 15, Number 3 - May-June 2010 Grand River The Grand: Conservation A Canadian Authority Heritage River Feature Fire restores a rare savanna forest 1 Milestones Byng island’s 50th 2 Look Who’s Taking Action Caring for bluebirds 3 Swallow habitat 4 Rotary forest 5 Fire restores a rare forest: What’s happening New programs at black oak savanna nature centres 5 Summer camp sign-up 6 By Kevin Tupman oak savanna. Older oaks now existing within the SWP update 6 Natural Heritage Specialist area are a testament to the vision, progressive for Grand River a grand its time, expressed in the master plan. place to paddle 7 ost people know that some plants and ani- Fire is necessary because this rare ecosystem Water festival photo 7 Mmals are at risk, such as the bald eagle and is sustained by fire. Historically, fire resulted American ginseng, but not many people realize from either lightning or aboriginal inhabitants. Now Available that communities such as forests, can also be at Fire ensures that savanna areas do not turn into Grand new risk. dense forests. Only trees with a high tolerance fishing book 7 It is true that sugar maple woodlots and pine for fire, such as the black oak, are able to sur- plantations are commonplace. However, the vive. European settlers cleared much of the savanna Calendar 8 GRCA is restoring one of the rarest of forests — for agriculture. They also suppressed the fires. a black oak savanna close to Apps’ Mill in Brant This meant that surviving pockets of savanna Cover photo County. -
Global Ecological Forest Classification and Forest Protected Area Gap Analysis
United Nations Environment Programme World Conservation Monitoring Centre Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) 2nd revised edition, January 2009 Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) Report prepared by: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) World Wide Fund for Nature (WWF) Network World Resources Institute (WRI) Institute of Forest and Environmental Policy (IFP) University of Freiburg Freiburg University Press 2nd revised edition, January 2009 The United Nations Environment Programme World Conservation Monitoring Centre (UNEP- WCMC) is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organization. The Centre has been in operation since 1989, combining scientific research with practical policy advice. UNEP-WCMC provides objective, scientifically rigorous products and services to help decision makers recognize the value of biodiversity and apply this knowledge to all that they do. Its core business is managing data about ecosystems and biodiversity, interpreting and analysing that data to provide assessments and policy analysis, and making the results -
El Dorado County Oak Woodland Management Plan
El Dorado County Oak Woodland Management Plan April 2008 Planning Commission Recommended Version El Dorado County Development Services Department – Planning Services 2850 Fairlane Court, Placerville, CA 95667 OAK WOODLAND MANAGEMENT PLAN Table of Contents 1. Introduction.....................................................................................................................1 A. Purpose ....................................................................................................................1 B. Goals and Objectives of Plan...................................................................................2 C. Oak Woodland Habitat in El Dorado County..........................................................3 D. Economic Activity, Land, and Ecosystem Values of Oak Woodlands ...................4 E. California Oak Woodlands Conservation Act .........................................................4 2. Policy 7.4.4.4.................................................................................................................5 A. Applicability and Exemptions.................................................................................5 B. Replacement Objectives ..........................................................................................7 C. Mitigation Option A ................................................................................................7 D. On-Site Mitigation...................................................................................................8 E. Mitigation Option B.................................................................................................9 -
Stuart, Trees & Shrubs
Excerpted from ©2001 by the Regents of the University of California. All rights reserved. May not be copied or reused without express written permission of the publisher. click here to BUY THIS BOOK INTRODUCTION HOW THE BOOK IS ORGANIZED Conifers and broadleaved trees and shrubs are treated separately in this book. Each group has its own set of keys to genera and species, as well as plant descriptions. Plant descriptions are or- ganized alphabetically by genus and then by species. In a few cases, we have included separate subspecies or varieties. Gen- era in which we include more than one species have short generic descriptions and species keys. Detailed species descrip- tions follow the generic descriptions. A species description in- cludes growth habit, distinctive characteristics, habitat, range (including a map), and remarks. Most species descriptions have an illustration showing leaves and either cones, flowers, or fruits. Illustrations were drawn from fresh specimens with the intent of showing diagnostic characteristics. Plant rarity is based on rankings derived from the California Native Plant Society and federal and state lists (Skinner and Pavlik 1994). Two lists are presented in the appendixes. The first is a list of species grouped by distinctive morphological features. The second is a checklist of trees and shrubs indexed alphabetically by family, genus, species, and common name. CLASSIFICATION To classify is a natural human trait. It is our nature to place ob- jects into similar groups and to place those groups into a hier- 1 TABLE 1 CLASSIFICATION HIERARCHY OF A CONIFER AND A BROADLEAVED TREE Taxonomic rank Conifer Broadleaved tree Kingdom Plantae Plantae Division Pinophyta Magnoliophyta Class Pinopsida Magnoliopsida Order Pinales Sapindales Family Pinaceae Aceraceae Genus Abies Acer Species epithet magnifica glabrum Variety shastensis torreyi Common name Shasta red fir mountain maple archy. -
Robert Grau Memorial Oak Savanna Trail Guide
Robert Grau Robert Grau was a forester and a true conservationist. He was a charter member of Robert Grau the Clayton County Conservation Board from 1958-1978, and he was one of the first to Memorial Oak reconstruct a prairie in Clayton County in the late 1970's . The reconstruction of Savanna Trail this Oak Savanna is dedicated to his memory. Guide 29862 Osborne Road Elkader, IA 52043 Clayton County (563)-245-1516 Robert Grau with his son and grandsons Conservation Board Welcome! Prairie Reconstruction Oak Savanna Welcome to the Robert Grau Memorial Oak As you make your way up the first hill, you’ll notice a At the top of the hill, you have a good view of the oak Savanna and Trail! Use this brochure to help large open prairie off to the right. Prairie was once savanna. Savannas are open landscapes of widely guide you along the trail. We hope you enjoy common in NE Iowa. The original spaced, broad-crowned trees and a diverse mix of your visit! prairie around the village of Motor shrubs, grasses, and wildflowers. Once common in was turned into farmland when the NE Iowa’s hills and river valleys, savannas are now Limestone Kiln Klink family bought Motor Mill and rare, due to land use change for farming and building. At the beginning of the trail next to the road, just past surrounding buildings in 1903. the Cooperage, is where a lime kiln was once located. Clayton County Conservation Limestone Quarry acquired the site in 1983 and has The kiln would have been used during the late 1860’s Once at the top of the hill, you will notice a large since restored this area to prairie when Motor Mill was being constructed. -
Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections. -
Community Abstract Oak Openings
Oak Openings CommunityOak Openings,Abstract Page 1 Historical Range Prevalent or likely prevalent Infrequent or likely infrequent Photo by Michael A. Kost Absent or likely absent Overview: Oak openings is a fire-dependent, savanna climatic tension zone. In the 1800s, oak openings were type dominated by oaks, having between 10 and located in the south-central Lower Peninsula of Michigan 60% canopy, with or without a shrub layer. The on sandy glacial outwash and coarse-textured moraines predominantly graminoid ground layer is composed (Wing 1937, Comer et al. 1995, NatureServe 2004). Oak of species associated with both prairie and forest openings occurred within the range of bur oak plains communities. Oak openings are found on dry-mesic and oak barrens, with oak openings dominating more on loams and occur typically on level to rolling topography dry-mesic to mesic soils, bur oak plains occupying more of outwash and coarse-textured end moraines. Oak mesic, flat sites in the southwestern part of the Lower openings have been nearly extirpated from Michigan; Peninsula, and oak barrens thriving on droughty sites. only two small examples have been documented. These similar oak savanna types often graded into each other. Oak openings were historically documented in Global and State Rank: G1/S1 the following counties: Allegan, Barry, Berrien, Branch, Calhoun, Cass, Clinton, Eaton, Genesee, Hillsdale, Range: Oak savanna1 and prairie communities reached Ingham, Ionia, Jackson, Kalamazoo, Kent, Lapeer, their maximum coverage in Michigan approximately Lenawee, Livingston, Macomb, Montcalm, Monroe, 4,000-6,000 years ago, when post-glacial climatic Newaygo, Oakland, Ottawa, Shiawassee, St. Joseph, Van conditions were comparatively warm and dry.