Fertigation Nutrient Sources and Application Considerations for Citrus1

Total Page:16

File Type:pdf, Size:1020Kb

Fertigation Nutrient Sources and Application Considerations for Citrus1 Circular 1410 Fertigation Nutrient Sources and Application Considerations for Citrus1 Brian Boman and Tom Obreza2 Introduction Nitrogen Fertigation is the application of liquid fertilizer Nitrogen (N) is the plant nutrient most often through an irrigation system. Microirrigation and injected as fertilizer into microirrigation systems. fertigation offer the potential for precise control of One of the major benefits of small, frequent nitrogen nutrients and water, which are the main applications is a potential reduction in leaching of grower-controlled inputs to plant growth. A major nitrate into the groundwater. Only small amounts of N benefit of fertigation is that it provides greater are applied at any one time, therefore excess nitrate is flexibility and control of applied nutrients than not present to be leached in the event of heavy conventional broadcast applications. Fertilizers are rainfall. Nitrogen can be applied using a number of applied when needed and in small doses, so different compounds, but urea and ammonium nitrate water-soluble nutrients are less subject to leaching by are the most desirable sources because they have a excess rainfall or over-irrigation. low plugging risk. Anhydrous or aqua ammonia are not recommended for use in micro irrigation systems Care must be exercised to avoid emitter plugging because they will increase the pH of the irrigation problems resulting from reactions of the fertilizer water. Consequently, calcium, magnesium, and with the irrigation water. The fertilizer source must phosphorus may precipitate in the line and increase be water-soluble. Chemical reactions between the plugging potential. Ammonium sulfate and fertilizer materials can result in the formation of calcium nitrate can be dissolved in water, but they precipitates, which can plug the irrigation system. may also cause plugging problems. If calcium or The uniformity of the fertilizer application depends magnesium levels are high in the irrigation water, on the uniformity of the water application. ammonium phosphate may cause precipitates to Therefore, high water application uniformity is very form, which can plug emitters. Nitrogen can important for fertigation. contribute to microbial growth if it is applied 1. This document is Circular 1410, one of a series of the Agricultural and Biological Engineering Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date April 2002. Reviewed October 2008. Visit the EDIS Web Site at http://edis.ifas.ufl.edu. 2. B. J. Boman, Associate Professor, Department of Agricultural and Biological Engineering, Indian River REC-Ft. Pierce and T. A. Obreza, Professor, Soil and Water Science Department, Sourhwest Florida REC-Immokalee. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. U.S. Department of Agriculture, Cooperative Extension Service, University of Florida, IFAS, Florida A. & M. University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Larry Arrington, Dean Fertigation Nutrient Sources and Application Considerations for Citrus 2 continuously and remains in the irrigation line after N = 0.226 x 10 x 14 = 32 lbs N/ac the system has been shut off. Nitrogen Cycle Nitrogen movement in the soil depends on the type of nitrogen fertilizer. The ammonium cation is Compounds containing nitrogen are of great less mobile in the soil than nitrate. The depth of importance in the life processes of all plants and movement depends on the cation exchange capacity animals. The chemistry of nitrogen is complex due to (CEC) of the soil, and the rate of fertilizer the numerous oxidation states that it can assume, and application. Application of ammonium fertilizer to by the fact that changes in the oxidation state can be the soil surface may result in loss to the atmosphere brought about by living organisms. by ammonium volatilization, especially if soil pH is Because of environmental concerns, nitrate greater than 7. Most ammonium will be transformed (NO -) is of particular interest. It is very mobile and biologically to nitrate within 2 to 3 weeks at soil 3 easily transported by water. In surface water temperatures in the 75° to 90° F range. Nitrate will systems, NO - is a nutrient source and can contribute move with the irrigation water to the wetted front. 3 to the over-production of algae or other aquatic life, Thus, with subsequent irrigations, nitrate may be resulting in eutrophication of surface water bodies. leached beyond the root zone or may be pushed to the Nitrate in ground water is of even greater concern periphery of the wetted soil volume and only part of since groundwater is the principal domestic water the root zone will have access to it. Urea is very source in many areas. The EPA has established a soluble in irrigation water, and it is not adsorbed by drinking water maximum concentration level (MCL) soil. Thus, it will move deeper below the soil surface of 10 mg/L as NO -N or 45 mg/L NO -. than ammonium, but will not leach as easily as 3 3 nitrate. A balance between ammonium and nitrate in Nitrogen is a very complex nutrient and it exists the nitrogen fertilizer is usually recommended. in the environment in many forms. It is continually transformed due to biological and chemical Some water sources (such as recycled influences. Nitrogen can be divided into two wastewater) may contain a significant amount of categories: nitrate. This nitrogen should be take into account when determining tree fertilizer requirements. The 1. Organic N contains carbon in the compound and nitrogen added to the crop due to nitrate in the exists in plant residues, animal waste, sewage irrigation source water can be determined by: sludge, septic effluent, and food processing waste. N = C x I x D ----- Eq. 1 n n i 2. Inorganic N contains no carbon in the compound Where: and exists as ammonium (NH +), nitrite (NO -), 4 2 nitrate (NO -), and nitrogen gas (N ). N = nitrogen (lbs/ac), 3 2 C = a constant for unit conversion Understanding the behavior of N in the soil is n (0.226) essential for good fertilizer management. Many N sources are available for use in supplying N to crops. I = NO -N concentration in the In addition to inorganic (commercial) fertilizer N, n 3 irrigation water (mg/L) organic N from animal manures and waste products are also a significant source of N. Nitrogen fixation D = depth of irrigation water applied i by legume crops can also supply significant amounts (inches). of N. Example Sources of NO - are both man-made and natural. 3 The principal man-made sources of nitrate are Determine the nitrogen supplied by the irrigation commercial fertilizer, and septic and sewage systems. water if 14 inches of water are applied annually and The ultimate source of N used by plants is N gas, the NO -N concentration is 10 mg/L. 2 3 Fertigation Nutrient Sources and Application Considerations for Citrus 3 which constitutes 78% of the earth's atmosphere. derived from the atmosphere through electric, Nitrogen gas is converted to plant-available N by one combustion, and industrial processes is added to the of the following methods: soil. N in these residues is mobilized as ammonium (NH +) by soil organisms as an end product of 4 • Fixation by microorganisms that live decomposition. Plant roots absorb a portion of the symbiotically on the roots of legumes (also NH +, but much of the NH + is converted to nitrate 4 4 certain non-legumes). (NO - ) by nitrifying bacteria, in a process called 3 nitrification. The NO - is taken up by plant roots and • Fixation by free-living or non-symbiotic soil 3 is used to produce the protein in crops that are eaten microorganisms. by humans and fed to livestock. NO - is lost to 3 • Fixation as oxides of N by atmospheric groundwater or surface water as a result of downward movement of percolated water through the soil. NO - electrical discharges. 3 is also converted by denitrifying bacteria into N and 2 • Fixation by the manufacture of synthetic N nitrogen oxides that escape into the atmosphere.The fertilizer (Haber-Bosch process). major processes of the nitrogen cycle (Fig. 1) are: N-mineralization, nitrification, NO - mobility, The virtually unlimited supply of nitrogen in the 3 de-nitrification, and volitilization. atmosphere is in dynamic equilibrium with the various fixed forms in the soil-plant-water system. N-mineralization The N cycle can be divided into N inputs and outputs The conversion of organic N to NH + is called (Fig. 1). Understanding this process can influence 4 how nitrogen is managed to minimize its negative mineralization. Mineralization occurs through the effects on the environment, while maximizing the activity of heterotrophic microorganisms, which are beneficial value of N for plant growth. organisms that require organic carbon compounds (organic matter) for their energy source. The NH +produced by mineralization is subject to several 4 fates: • Converted to NO - and then to NO - by the 2 3 process of nitrification. • Absorbed directly by higher plants. • Utilized by heterotrophic organisms to further decompose organic residues. • Fixed in a biologically unavailable form in the lattices of certain clay minerals. • Released to the atmosphere as N . 2 The quantity of N mineralized during the growing season can be estimated. Soil organic matter contains about 5% N by weight; during a single growing season, 1 to 4% of the organic N is Figure 1. The citrus nitrogen cycle. mineralized to inorganic N. Animals and higher plants are incapable of Example utilizing nitrogen directly from the atmosphere.
Recommended publications
  • Mechanosynthesis of Magnesium and Calcium Salt?Urea Ionic Cocrystal
    Letter pubs.acs.org/journal/ascecg Mechanosynthesis of Magnesium and Calcium Salt−Urea Ionic Cocrystal Fertilizer Materials for Improved Nitrogen Management Kenneth Honer, Eren Kalfaoglu, Carlos Pico, Jane McCann, and Jonas Baltrusaitis* Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States *S Supporting Information ABSTRACT: Only 47% of the total fertilizer nitrogen applied to the environment is taken up by the plants whereas approximately 40% of the total fertilizer nitrogen lost to the environment reverts back into unreactive atmospheric dinitrogen that greatly affects the global nitrogen cycle including increased energy consumption for NH3 synthesis, as well as accumulation of nitrates in drinking water. In this letter, we provide a mechanochemical method of inorganic magnesium and calcium salt−urea ionic cocrystal synthesis to obtain enhanced stability nitrogen fertilizers. The solvent-free mechanochemical synthesis presented can result in a greater manufacturing process sustainability by reducing or eliminating the need for solution handling and evaporation. NH3 emission testing suggests that urea ionic cocrystals are capable of decreasing NH3 emissions to the environment when compared to pure urea, thus providing implications for a sustainable global solution to the management of the nitrogen cycle. KEYWORDS: Fertilizers, Nitrogen, urea, Mechanochemistry, Cocrystal, pXRD, NH3 Emissions, Stability ■ INTRODUCTION ammonia as opposed to up to 61.1% of soil treated with urea 7,8 fi only, which suggests that major improvements to the global Atmospheric dinitrogen, N2, xation to synthesize ammonia, 9,10 ’ 1 nitrogen cycle are achievable. Additionally, urea molecular NH3, consumes more than 1% of the world s primary energy.
    [Show full text]
  • Naturally Chelated Foliar Blends
    Fertigation for citrus trees By Mongi Zekri, Brian Boman and Tom Obreza icroirrigation is an important with overhead sprinkler irrigation. component of citrus produc- Research has also shown the impor- Mtion systems in Florida. For tant advantage of microsprinklers for citrus trees, microirrigation (Figure 1) freeze protection of citrus. is more desirable than other irrigation Microirrigation combined with methods for several reasons: water properly managed, water savings with fertigation (Figure 2) — applying conservation, fertilizer manage- microirrigation systems can amount to small amounts of soluble fertilizer ment efficiency and freeze protec- as much as 80 percent compared with through irrigation systems directly tion. Research has shown that when subirrigation and 50 percent compared to the root zone — provides precise Figure 1. Microsprinkler irrigation of citrus trees. Figure 2. Fertigation system for citrus trees. Naturally Chelated ORDER Foliar Blends ONLINE Clear natural chelates for higher analysis, better results and affordable prices. www.moreoranges.com (866) 375-2487 14 CITRUS INDUSTRY • March 2014 Figure 3. Fertigation system including backflow prevention devices. timing and application of water and ces are in place and working properly. solution should be mixed with irriga- fertilizer nutrients in citrus production. The time required for water to tion water in a jar (at the same dilu- Fertilizer can be prescription-applied travel from the injection point to the tion rate that is used in the irrigation in small doses and at particular times farthest emitter is generally 20 to 30 system) to determine if any precipitate when those nutrients are needed. This minutes for most microirrigation sys- or milkiness occurs within one to two capability helps growers increase tems.
    [Show full text]
  • Commercial Fertilizer and Soil Amendments
    Commercial Fertilizer And Soil Amendments Tedrick transmigrated dourly? Free Townsend supercharges acquisitively and impolitely, she mensed her gripsack escalate lithographically. Ahmed suppresses her pedlaries slantly, she warm-ups it eagerly. For designing a commercial-scale exchange of equipment or production line. They need fertilizer and soil amendment differences between the fertilizing materials, dredged materials make an adequate supply of natural organic and send in. Use chemical components in soils to obtain samples shall entitle a timely fashion. Organic contaminants from which result from fertilizer and root level. On clayey soils soil amendments improve certain soil aggregation increase porosity. Is thick a gift? Are derived from plants and animals. Plant growth or to children any physical microbial or chemical change are the soil. 21201 This work consists of application of fertilizer soil amendments. There may be to the product heavy metals calculator found, and commercial fertilizer soil amendments is sometimes used. Many soils and fertilizers and regulations requires special handling. Prior to seeding and shall consist of early soil conditioner commercial. The plant roots and fertilizer and commercial soil amendments by reduced powdery mildew on croptype, they function of potato cropping systems for low level. The commercial compost may fail to store and nitric acid method of material will break down the economics of. Commercial fertilizer or soil conditioner rules and regulations violation notice hearing. The first generally used by larger commercial farms gives the nutrients. The soil and fatty acids, avoid poisoning your banana peels in. Contain animal plant nutrients, when applied in combination to crops, it is timely of print but she can find upcoming on Amazon or spoil your block library.
    [Show full text]
  • Assessment of Multifunctional Biofertilizers on Tomato Plants Cultivated Under a Fertigation System ABSTRACT Malaysian Nuclear A
    Assessment of multifunctional biofertilizers on tomato plants cultivated under a fertigation system Phua, C.K.H., Abdul Wahid, A.N. and Abdul Rahim, K. Malaysian Nuclear Agency (Nuclear Malaysia) Ministry of Science, Technology and Innovation, Malaysia (MOSTI) E-mail: [email protected] ABSTRACT Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bioorganic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG & PA and MF- BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N2-fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional biofertilizers on tomato plants grown under a fertigation system. Multifunctional biofertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional biofertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. ABSTRAK Agensi Nuklear Malaysia (Nuklear Malaysia) telah membangunkan satu siri baja bioorganic pelbagai fungsi, iaitu MULTIFUNCTIONAL BIOFERT PG & PA and MF-BIOPELLET, dalam usaha mengurangkan pergantungan terhadap baja kimia dalam penghasilan tanaman. Produk ini mengandungi mikroorganisma setempat yang menpunyai ciri yang dikehendaki seperti penggalak pertumbuhan, pengurai fosfat, antagonis terhadap penyakit layu bakteria dan menggalak aktiviti pengikat N2. Produk ini difomulasi dalam bentuk cecair dan diperkenalkan ke dalam sistem fertigasi untuk mengurangkan penggunaan baja kimia.
    [Show full text]
  • Growwithpeters.Com © 2020 ICL Fertilizers, Worldwide Rights Reserved
    PRODUCT ANALYSIS AND RATES IDEAL FOR WATER TYPES 1 to 2 1 2 3 4 0 60 150 200 240+ All-Purpose Low High 15-2-20 PPM CALCIUM CARBONATE Formulation Alkalinity Alkalinity PANSY, SALVIA & VINCA SKU# E99130, G99130 Formulated for compact growth and bright blossoms on WEIGHT (IN OUNCES) OF PRODUCT NEEDED TO MIX pansy, salvia, vinca, etc . with high Nitrate, low Phosphate ONE GALLON OF CONCENTRATE and extra Boron . Target Fertilizer Common Injector Ratios EC (mmhos/cm) • A (All-Purpose) formulation for constant, balanced Concentration of Target Feed nutrition (N/ppm) After 1:15 1:100 1:128 1:200 1:300 Rate After • Most effective with Water Types 1 and 2 Dilution Dilution • Contains Calcium, Magnesium and other minor 25 0 .3 2 .3 2 .9 4 .5 6 .8 0 .21 elements 50 0 .7 4 .5 5 .8 9 .0 13 .5 0 .42 GUARANTEED ANALYSIS 15-2-20 75 1 .0 6 .8 8 .6 13 .5 20 .3 0 .62 Total Nitrogen (N) . .. 15% 100 1 .4 9 .0 11 .5 18 .0 27 .0 0 .83 1 .4% Ammoniacal Nitrogen 12 .8% Nitrate Nitrogen 125 1 .7 11 .3 14 .4 22 .5 33 .8 1 .04 0 .8% Urea Nitrogen 150 2 .0 13 .5 17 .3 27 .0 40 .5 1 .25 Available Phosphate (P2O5) . 2% 175 2 .4 15 .8 20 .2 31 .5 47 .3 1 .45 Soluble Potash (K2O) . 20% Calcium (Ca) . 3 .75% 200 2 .7 18 .0 23 .0 36 .0 54 .0 1 .66 Magnesium (Mg) .
    [Show full text]
  • Ammonium Thiosulfate, Solution ((NH4)2S2O3) Safety Data Sheet According to Federal Register / Vol
    Ammonium Thiosulfate, Solution ((NH4)2S2O3) Safety Data Sheet According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations And According To The Hazardous Products Regulation (February 11, 2015). Revision Date: 04/03/2019 Date of Issue: 01/22/2014 Supersedes Date: 03/08/2017 Version: 2.1 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Mixture Product Name: Ammonium Thiosulfate, Solution ((NH4)2S2O3) Synonyms: Ammonium Hyposulfite, Solution 1.2. Intended Use of the Product No use is specified. 1.3. Name, Address, and Telephone of the Responsible Party Company Manufacturer Poole Chemical Co., Inc. Poole Chemical Co., Inc. P.O. Box 10 P.O. Box 10 100 N. 1st Street 100 N. 1st Street Texline, TX 79087 - United States Texline, TX 79087 - United States T 806-362-4261 T 806-362-4261 1.4. Emergency Telephone Number Emergency Number : 1-800-424-9300 (CHEMTREC) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the Substance or Mixture GHS-US/CA Classification Not classified 2.2. Label Elements GHS-US/CA Labeling No labeling applicable 2.3. Other Hazards Exposure may aggravate pre-existing eye, skin, or respiratory conditions. 2.4. Unknown Acute Toxicity (GHS-US/CA) No data available SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.1. Substance Not applicable 3.2. Mixture Name Synonyms Product Identifier % * GHS Ingredient Classification Ammonium thiosulfate Ammonium thiosulphate / Thiosulfuric acid, (CAS-No.) 7783-18-8 60 Not classified diammonium salt / Thiosulfuric acid (H2S2O3), diammonium salt / Thiosulfuric acid (H2S2O3), ammonium salt (1:2) / Diammonium thiosulfate Water AQUA / Aqua (CAS-No.) 7732-18-5 40 Not classified *Percentages are listed in weight by weight percentage (w/w%) for liquid and solid ingredients.
    [Show full text]
  • Improved Solubility Compound Fertilizer
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 569 513 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: C05B 17/02, C05C 5/04, of the grant of the patent: C05D 9/02, C05G 1/00 12.11.1997 Bulletin 1997/46 (86) International application number: (21) Application number: 92905776.8 PCT/US92/00850 Date of 31.01.1992 (22) filing: (87) International publication number: WO 92/13813 (20.08.1992 Gazette 1992/22) (54) IMPROVED SOLUBILITY COMPOUND FERTILIZER COMPOSITIONS Losliche Dungemittelzusammenstellungen COMPOSITIONS POUR ENGRAIS SOUS FORME DE COMPOSES SOLIDES A SOLUBILITE ACCRUE (84) Designated Contracting States: (74) Representative: De Hoop, Eric et al AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE Octrooibureau Vriesendorp & Gaade P.O. Box 266 (30) Priority: 31.01.1991 US 648644 2501 AW Den Haag (NL) (43) Date of publication of application: (56) References cited: 18.11.1993 Bulletin 1993/46 GB-A- 2 072 644 (60) Divisional application: 97200001.2 • Chemical Abstracts, volume 93, no. 11,15 September 1980, (Columbus, Ohio, US) see page (73) Proprietor: OMS INVESTMENTS, Inc. 622, abstract 113193d, & PI 7908335 Wilmington, Delaware 19801 (US) (ULTRAFERTIL S.A.) 04-03-1980 (72) Inventors: Remarks: • VETANOVETZ, Richard, P. •Divisional application 97200001 .2 filed on Emmaus, PA 18049 (US) 03/01/97. • PETERS, Robert •The file contains technical information submitted Allentown, PA 18104 (US) after the application was filed and not included in this specification DO CO lo O) CO LO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted.
    [Show full text]
  • The Effect of Municipal Solid Food Waste Compost Amendment and Fertigation Adjustment on Yield and Fruit Quality in Strawberry Plasticulture
    The effect of municipal solid food waste compost amendment and fertigation adjustment on yield and fruit quality in strawberry plasticulture Ben W. Thomas1 Final Report RRFB Nova Scotia 1School for Resource and Environmental Studies, Dalhousie University December 23, 2011 1 Abstract Municipal solid food waste (MSFW) compost is becoming increasingly available throughout Nova Scotia. However, little is understood about how to incorporate MSFW compost into food production systems. The objective of this experiment was to identify how MSFW compost amendment rate and fertigation adjustment affected yield and fruit quality parameters in a strawberry plasticulture. A strip plot randomized experimental design with three replications for each combination of treatment factors was used to measure the affect of MSFW compost amendment (0, 2.5, 5.0 and 10 Mg Fresh Weight [FW] ha-1; Dry Matter [DM]: 48.3%) and fertigation rate (25, 50, 75 and 100% of the recommended rate). There were no statistically significant interactions between MSFW compost and fertigation rate on strawberry yield parameters. MSFW compost application led to a significant linear response in late season marketable yield (lin P < 0.05). Marketable yield had a significant linear response to fertigation rate in the late season (lin P < 0.05). Sugar content and berry mass were not significantly affected by any treatment factors. Total antioxidant capacity was significantly affected by an interaction between MSFW compost amendment and the low fertigation rate (lin P < 0.01). It is recommended that MSFW compost amendment is applied at 10 Mg FW ha-1. Fertigation should be 25% of the recommended rate until September 1st or the fifth fruit harvest then increased to 100% of the recommended rate for the remainder of the season based on first season results.
    [Show full text]
  • Effects of Fertigation Regime on Blossom End Rot of Vegetable Fruits
    Effects of Fertigation Regime on Blossom End Rot of Vegetable Fruits Asher Bar-Tal, and Benny Aloni Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel. E-mail: [email protected]. Abstract The relationships between blossom end rot (BER) of vegetable fruits and fertigation regimes are reviewed. Many fruit disorders are affected by nutrient deficiencies or unbalanced nutrition: BER, gold specks, green back, blotchy ripening, color spots, malformation, hollowness, and fruit cracking. Numerous studies have shown that BER is a mineral disorder and that its occurrence could be reduced by improving the supply of specific nutrients. The sensitivity of vegetable fruits to BER varies greatly among cultivars, environmental conditions and fertigation regimes. Some interactions between environmental conditions and fertigation regime are presented. The relation between BER and Ca nutrition is described and discussed in detail. The possibility that Mn may also play a role in the development of BER is discussed. Keywords: blossom end rot, calcium, magnesium, manganese, oxidative stress, potassium. Introduction The aim of the present mini-review is to describe the relationships between blossom end rot (BER) of vegetable fruits and the fertigation regime. Blossom end rot is one of the main mineral disorders affecting tomato and pepper fruits; it reduces marketable yield, especially during hot and dry seasons, by up to 50% (Roorda van Eysinga and van der Meijs, 1981; Winsor and Adams, 1987). More than 50 papers that deal with this disorder have been published in the last 5 years in scientific journals cited by the ISI.
    [Show full text]
  • Fertility Management of Drip-Irrigated Vegetables
    University of California VEGETABLE Research & Information Center Fertility Management of Drip-Irrigated Vegetables T.K. Hartz Department of Vegetable Crops University of California, Davis, CA 95616 G.J. Hochmuth Horticultural Sciences Department University of Florida, Gainesville, FL 32611 Additional index words: trickle irrigation, nutrients, fertigation Summary Drip irrigation provides an efficient method of fertilizer delivery virtually free of cultural constraints that characterize other production systems. Achieving maximum fertigation efficiency requires knowledge of crop nutrient requirements, soil nutrient supply, fertilizer injection technology, irrigation scheduling, and crop and soil monitoring techniques. If properly managed, fertigation through drip irrigation lines can reduce overall fertilizer application rates and minimize adverse environmental impact of vegetable production. Drip irrigation allows precise timing and uniform distribution of fertilizer nutrients. Improved efficiency results from small, controlled fertilizer applications throughout the season, in contrast to large preplant or early-season sidedress applications. Fertilizer application through drip irrigation (fertigation) can reduce fertilizer usage and minimize groundwater pollution due to fertilizer leaching from rain or excessive irrigation. Significant technical skill and management are required to achieve optimum performance. The following discussion highlights the main elements of formulating and evaluating a fertigation plan. Soil nutrient supply
    [Show full text]
  • Ammonium Thiosulfate 12-0-0, 26% Sulfur
    Secondary Nutrients Ammonium Thiosulfate 12-0-0, 26% Sulfur Guaranteed Analysis Directions for Use: Greens, Tees and Fine Turf: Apply 3.0 - 12.0 oz. of Ammonium Thiosulfate with 1.5 -2 gallons of Total Nitrogen (N) ................................... 12.00% water per 1,000 sq. ft. (1.0 - 4.1 gallons of Ammonium Thiosulfate with 66 - 88 gallons of water per 12% Ammoniacal Nitrogen Sulfur (S) ................................................. 26.00% Acre) every 14 days throughout the growing season. Irrigate after application. This application shall provide 0.03 - 0.12 lb. of actual Nitrogen per 1,000 sq. ft. Derived from Ammonium Thiosulfate Fairways, Roughs, Sports Turf and Lawns: Apply 3.1 - 4.1 gallons of Ammonium Thiosulfate Ammonium Thiosulfate is an excellent source with 44 - 88 gallons of water per Acre (9.0 - 12.0 oz. of Ammonium Thiosulfate with 1 - 2 gallons of of ammoniacal nitrogen that is quickly absorbed water per 1,000 sq. ft.) every 14 days throughout the growing season. This application shall provide by the plant. This results in greener turf, even at 0.09 - 0.12 lb. of actual nitrogen per 1,000 sq. ft. low soil temperatures. Use when a liquid type of ammoniacal nitrogen source and sulfur are Fertigation: Apply 1.0 - 5.0 gallons per Acre (3 - 15 oz. per 1,000 sq. ft.) of Ammonium Thiosulfate required. with the irrigation water every 7 to 14 throughout the growing season. Ammonium Thiosulfate is a neutral to slightly Application Precautions: basic (7 - 8 pH), clear liquid solution, containing 12% nitrogen and 26% sulfur. Ammonium Do not apply Ammonium Thiosulfate directly on or below germinating seeds such as in a “pop Thiosulfate is compatible with most liquid up” fertilizer.
    [Show full text]
  • Fertigation Facts
    December 2019 AG/Fertigation/2019-01pr Fertigation Facts Kyle Egbert, Matt Yost, Bryce Sorensen, Grant Cardon, Niel Allen, and Ryan Larsen Introduction fertilizers have a high solubility, which makes them Fertigation is the application of fertilizer through an relatively easy and effective to apply with an irrigation system (Fig 1). It can be implemented in irrigation system. Because of its high solubility, N surface, sprinkler, and drip systems. In the 2013 is also extremely susceptible to leaching. agriculture census, nearly 135,000 acres of irrigated cropland in Utah utilized fertigation (USDA-NASS, There are several different forms of N that can be 2014). Utah growers most commonly fertigate corn used for fertigation. One of the most commonly (33-41% of the total irrigated corn acres) and used in Utah is UAN (32-0-0). The nitrogen in orchards (37% of total irrigated acres), but it is also UAN is in three forms - 50% urea, 25% ammonium, used to a lesser degree on small grains, alfalfa, and and 25% nitrate (Fernandez, 2016). Anhydrous other hay (9-23% of the total irrigated of these Ammonia (NH3, 82% N) is commonly used in crops). surface irrigation systems because it can be bubbled into the irrigation water (Fig 2). Anhydrous In most cases, fertilizer used for fertigation is Ammonia is less expensive than soluble liquid available in liquid solutions or in a soluble form. nitrogen per unit of N, and is a common option for Liquid fertilizer such as Urea Ammonium Nitrate surface irrigators. Be aware that anhydrous (UAN), Ammonium Thiosulfate (ATS), ammonia typically increases the pH of the water Ammonium Polyphosphate (APP), and Anhydrous around the application site, and that N losses from Ammonia (NH3) are most commonly used due to volatilization can be as high as about 30-50% of the their convenience, and are currently the primary forms sold by fertilizer companies for fertigation in Utah.
    [Show full text]