Femtosecond Laser Pulses.. Principles and Experiments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carrier-Envelope Phase Stabilization and Control Using a Transmission Grating Compressor and an AOPDF
May 1, 2009 / Vol. 34, No. 9 / OPTICS LETTERS 1333 Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF Lorenzo Canova,1 Xiaowei Chen,1 Alexandre Trisorio,1 Aurélie Jullien,1,* Andreas Assion,2 Gabriel Tempea,2 Nicolas Forget,3 Thomas Oksenhendler,3 and Rodrigo Lopez-Martens1 1Laboratoire d’Optique Appliquée, Ecole Nationale Supérieure des Techniques Avancées, ParisTech, CNRS, Ecole Polytechnique, 91761 Palaiseau Cedex, France 2Femtolasers Produktions GmbH, Fernkongasse 10, 1100 Vienna, Austria 3Fastlite, Centre Scientifique d’Orsay, Bâtiment 503, Plateau du Moulon–B.P. 45, 91401 Orsay, France *Corresponding author: [email protected] Received February 4, 2009; accepted March 17, 2009; posted March 26, 2009 (Doc. ID 107145); published April 20, 2009 Carrier-envelope phase (CEP) stabilization of a femtosecond chirped-pulse amplification system featuring a compact transmission grating compressor is demonstrated. The system includes two amplification stages and routinely generates phase-stable (ϳ250 mrad rms) 2 mJ, 25 fs pulses at 1 kHz. Minimizing the optical pathway in the compressor enables phase stabilization without feedback control of the grating separation or beam pointing. We also demonstrate for the first time to the best of our knowledge, out-of-loop control of the CEP using an acousto-optic programmable dispersive filter inside the laser chain. © 2009 Optical Society of America OCIS codes: 140.7090, 320.7090, 140.3280, 320.7160. In the past few years, one major breakthrough in ul- control of the grating position in the compressor is trafast laser science has been the ability to measure necessary for CEP stabilization. We also demonstrate and stabilize the carrier-envelope phase (CEP) drift arbitrary control of the relative CEP value using of amplified femtosecond laser pulses. -
Chirped Pulse Oscillators: Generating Microjoule Femtosecond Pulses at Megahertz Repetition Rate
MAX-PLANCK-INSTITUT FUR¨ QUANTENOPTIK Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate Alma del Carmen Fernandez´ Gonzalez´ MPQ 310 Juni 2007 Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate Alma Fernandez´ Gonzalez´ Munchen¨ 2007 Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate Alma Fernandez´ Gonzalez´ Dissertation an der Fakultat¨ fur¨ Physik der Ludwig–Maximilians–Universitat¨ Munchen¨ vorgelegt von Alma Fernandez´ Gonzalez´ aus Penonome,´ Cocle,´ Panama´ Munchen,¨ den 27. Februar 2007 Erstgutachter: Prof. Dr. Ferenc Krausz Zweitgutachter: Prof. Dr. Harald Weinfurter Tag der mundlichen¨ Prufung:¨ 31. Mai 2007 vii to my mother and my father viii Abstract The maximum energy achievable directly from conventional Ti:sapphire oscillators has been limited by the onset of instabilities such as cw-generation and pulse splitting because of the high intensity in the laser medium. Generation of microjoule pulses at megahertz repetition rates are of special interest in many areas of science and technology. The main subject of this thesis is the development of high energy Ti:sapphire oscillators at megahertz repetition rate. The main concept that was applied to overcome the difficulties pointed out above was to operate the laser in the positive dispersion regime. By operating the laser in this regime, intracavity picosecond pulses are generated that can be externally compressed down to femtosecond pulse durations. The long pulse duration inside the laser offers an elegant way to reduce pulse instabilities by decreasing the intracavity intensity via pulse stretching. Drawing on this concept, Ti:sapphire chirped-pulse oscillators delivering sub-50-fs pulses of 0.5 µJ and 60 nJ energy are demonstrated at average power levels of 1 and 4 W (repetition rate: 2 MHz and 70 MHz), respectively. -
All-Fiber Passively Mode-Locked Thulium/Holmium Laser with Two Center Wavelengths
All-fiber passively mode-locked thulium/holmium laser with two center wavelengths Rajesh Kadel and Brian R. Washburn* 116 Cardwell Hall, Kansas State University, Department of Physics, Manhattan, Kansas 66506, USA *Corresponding author: [email protected] Received 18 June 2012; revised 17 August 2012; accepted 17 August 2012; posted 20 August 2012 (Doc. ID 170797); published 11 September 2012 We have demonstrated a self-starting, passively mode-locked Tm/Ho codoped fiber laser that lases at one of two center wavelengths. An amplified 1.56 μm distributed feedback laser pumps a ring laser cavity which contains 1 m of Tm/Ho codoped silica fiber. Mode locking is obtained via nonlinear polarization rotation using a c-band polarization sensitive isolator with two polarization controllers. The laser is able to pulse separately at either 1.97 or 2.04 μm by altering the intracavity polarization during the initiation of mode locking. The codoped fiber permits pulsing at one of two wavelengths, where the shorter is due to the Tm3 emission and the longer due to the Ho3 emission. The laser produces a stable pulse train at 28.4 MHz with 25 mW average power, and a pulse duration of 966 fs with 9 nm bandwidth. © 2012 Optical Society of America OCIS codes: 060.2320, 140.3070, 190.4370. 1. Introduction power pulses. The frequency combs from these lasers Continuous and pulsed laser sources in the mid- can be extended to wavelengths outside their gain infrared region (3–10 μm) have long been sought after bandwidth using fiber nonlinearities. for many important applications such as medical di- Unfortunately there are few lasers that can produce agnostics [1], molecular identification [2], or gas mon- mid-IR frequency combs directly. -
Dispersion and How to Control It
Dispersion and how to control it Group velocity versus phase velocity Angular dispersion Prism sequences Grating pairs Chirped mirrors Intracavity and extra-cavity examples 1 Pulse propagation and broadening After propagating a distance z, an (initially) unchirped Gaussian of initial duration tG becomes: 2 tz/Vgp Etz(, ) exp tikz2 2" G 2 2"k exp 1 iz tz2 122 t 2 G G pulse duration increases with z chirp parameter 3 2 pulse duration t (z)/t G G 1 0 0 123 2 propagation distance z Chirped vs. transform-limited A transform-limited pulse: •satisfies the ‘equal’sign in the relation C •is as short as it could possibly be, given the spectral bandwidth • has an envelope function which is REAL (phase = 0) • has an electric field that can be computed directly from S • exhibits zero chirp: A chirped pulse: the same period • satisfies the ‘greater than’ sign in the relation C • is longer than it needs to be, given the spectral bandwidth • has an envelope function which is COMPLEX (phase 0) •requires knowledge of more than just S in order to determine E(t) • exhibits non-zero chirp: 3 not the same period Propagation of Gaussian pulses 2 1 t z / Vg p E(t, z) E0 expi p t z / V p t z t z G G where: t 2 pulse width increases with propagation G z tG 2ik"z p Vp phase velocity kp 1 d V group velocity - g 0 speed of pulse envelope k' p dk p dk2 d 1 k Group velocity dispersion (GVD) ddV 2 g (different for each material) If (and only if) GVD = 0, then V = Vg. -
Hyperbolic Secant Squared Pulse Shape
Dispersion and Ultrashort Pulses Angular dispersion and group-velocity dispersion Phase and group velocities Group-delay dispersion Negative group- delay dispersion Pulse compression Chirped mirrors Refractive index dispersion Sellmeiera formula e.g. SF 10 glass from Schott 2 2 2 2 B1 B2 B3 n 1 2 2 2 C1 C2 C3 B1 = 1,61625977 B2 = 0,259229334 B3 = 1,07762317 C1 = 0,0127534559 C2 = 0,0581983954 C3 = 116,607680 n(0,532 mm) = 1,73673 Dispersion in Optics The dependence of the refractive index on wavelength has two effects on a pulse, one in space and the other in time. Dispersion disperses a pulse in space (angle): angular dispersion dn/d out ()blue otu ()red Dispersion also disperses a pulse in time: temporal dispersion d2n/d2 vgr(blue) < vgr(red) Both of these effects play major roles in ultrafast optics. Movies! Group velocity v0 vv vs. g phase velocity vvg vvg Calculating the group velocity vg dw /dk Now, w is the same in or out of the medium, but k = k0 n, where k0 is the k-vector in vacuum, and n is what depends on the medium. So it's easier to think of w as the independent variable: 1 v/g dk dw Using k = w n(w) / c0, calculate: dk /dw = (n + w dn/dw) / c0 vg c0 / n w dn/dw) = (c0 /n) / (1 + w /n dn/dw ) Finally: w dn vg v phase / 1 ndw So the group velocity equals the phase velocity when dn/dw = 0, such as in vacuum. But n usually increases with w, so dn/dw > 0, and: vg < vphase. -
Large Compensation Range, Single-Prism Femtosecond Pulse Compressor
A high throughput (>90%), large compensation range, single-prism femtosecond pulse compressor Lingjie Kong, Meng Cui* Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA * [email protected] Abstract: We demonstrate a high throughput, large compensation range, single-prism femtosecond pulse compressor, using a single prism and two roof mirrors. The compressor has zero angular dispersion, zero spatial dispersion, zero pulse-front tilt, and unity magnification. The high efficiency is achieved by adopting two roof mirrors as the retroreflectors. We experimentally achieved ~ -14500 fs2 group delay dispersion (GDD) with 30 cm of prism tip-roof mirror prism separation, and ~90.7% system throughput with the current implementation. With better components, the throughput can be even higher. 1. Introduction Femtosecond pulses with high peak-power have found broad applications in micromachining, biomedical imaging, and spectroscopy[1, 2]. However, femtosecond pulses are susceptible to GDD when they propagate through optical elements, resulting in longer pulse duration and lower peak power. Generally, pulse compressors are used to compensate the material dispersion. In multi-photon microscopy, femtosecond pulses with high peak-power are expected to achieve high excitation efficiency[2]. The excitation pulses should be prechirped by pulse compressors before entering the microscope, such that the negative GDD introduced by the compressor cancels the positive GDD of the microscope components. Components with angle dispersion, such as gratings and prisms, are commonly used to introduce negative GDD. So far, various schemes of femtosecond pulse compressor (with either gratings, prisms, or phase compensation based on SLM or deformable mirrors) have been demonstrated [3-6]. -
CALENDAR 2011 Sydney.Edu.Au/Calendar Calendar 2011 Calendar 2011
CALENDAR 2011 sydney.edu.au/calendar Calendar 2011 Calendar 2011 The Arms of the University Sidere mens eadem mutato Though the constellations change, the mind is universal The Arms Numbering of resolutions The following is an extract from the document granting Arms to the Renumbering of resolutions is for convenience only and does not University, dated May 1857: affect the interpretation of the resolutions, unless the context otherwise requires. Argent on a Cross Azure an open book proper, clasps Gold, between four Stars of eight points Or, on a chief Gules a Lion passant guardant Production also Or, together with this motto "Sidere mens eadem mutato" ... to Web and Print Production, Marketing and Communications be borne and used forever hereafter by the said University of Sydney Website: sydney.edu.au/web_print on their Common Seal, Shields, or otherwise according to the Law of Arms. The University of Sydney NSW 2006 Australia The motto, which was devised by FLS Merewether, Second Vice- Phone: +61 2 9351 2222 Provost of the University, conveys the feeling that in this hemisphere Website: sydney.edu.au all feelings and attitudes to scholarship are the same as those of our CRICOS Provider Code: 00026A predecessors in the northern hemisphere. Disclaimer ISSN: 0313-4466 This publication is copyright and remains the property of the University ISBN: 978-1-74210-173-6 of Sydney. This information is valid at the time of publication and the University reserves the right to alter information contained in the Calendar. Calendar 2010 ii Contents -
Κ Is Not Satisfied
A Coherent Technical Note August 29, 2018 Propagation, Dispersion and Measurement of sub-10 fs Pulses Table of Contents 1. Theory 2. Pulse propagation through various materials o Calculating the index of refraction . Glass materials . Air . Index of refraction in the 600 -1100 nm range . Example: Broadening of a 7 fs pulse through different materials o Group delay, group velocity and group velocity dispersion . Group velocity . Group velocity dispersion . Group Delay for various materials . Example: Output pulse duration as a function of GDD o Pulse broadening and distortion due to TOD . Example: output pulse duration as a function of TOD . Example: Output pulse shape for SF10 . TOD dispersion curve for various materials o Pulse broadening and distortion due to FOD and higher o Summary of pulse broadening effects in various materials 3. Choosing the proper optics o Some practical tips 4. Appendix A: Pulse duration measurement 5. Appendix B: Refractive index for various materials referenced in this work Any ultrafast laser pulse is fully defined by its intensity Depending on their exact nature, phase distortions may and phase, either in time or frequency domain. broaden the pulse and modify its shape such that the Propagation in any media, inclusive of air, results in pulse is not “transform- limited” anymore. distortions of phase or amplitude. Large distortions in phase can be introduced by propagation of the beam This means that the time-bandwidth relationship even through optical elements with very low absorption ∆t∆ν ≤ κ is not satisfied. Here κ depends on the such as lenses or prisms. This effect is frequently shape of the spectrum (κ =0.441 for a Gaussian pulse, called temporal chirp and is due to chromatic (i.e. -
Ultrafast Electron Dynamics and the Role of Screening
Ultrafast electron dynamics and the role of screening Im Fachbereich Physik der Freien Universit¨at Berlin eingereichte Dissertation Daniel Wegkamp November 2014 This work was performed between October 2009 and November 2014 in the Department of Physical Chemistry (Professor Martin Wolf) at the Fritz Haber Institute of the Max Planck Society. Berlin, November 2014 Erstgutachter: Prof. Dr. Martin Wolf Zweitgutachter: Prof. Dr. Martin Weinelt Drittgutachter: Dr. Robert A. Kaindl Datum der Disputation: 11.05.2015 Abstract This thesis focuses on the ultrafast dynamics of electronic excitations in solids and how they are influenced by the screening of the Coulomb interaction between charged particles. The impact of screening on electron dynamics is manifold, ranging from modifications of electron-electron scattering rates over trapping of excess charges to massive renormalisation of electronic band structures. The timescales of these dynam- ical processes are directly accessible by femtosecond time-resolved photoemission and optical spectroscopy. Three exemplary systems are investigated to shed light onto these fundamental processes: Vanadiumdioxide undergoes a phase transition from a monoclinic insulator to a rutile metal. Apart from temperature, doping and other influences, the insulator- to-metal transition can also be driven by photoexcitation. This, in the past, gave rise to a controversy about the timescales of structural and electronic transition and raised the question which of them constitutes the driving mechanism. Using time- resolved photoelectron spectroscopy, it is shown that the electronic band gap of the insulator collapses instantaneously with photoexcitation and without any structural involvement. The reason is a change of screening due to the generation of photoholes. At the same time, the symmetry of the lattice potential changes, as seen by coherent phonon spectroscopy. -
Generation of Ultrashort UV Pulses and R2PI Measurements of Deflected Molecules
Department Physik Generation of ultrashort UV pulses and R2PI measurements of deflected molecules (Erzeugung von ultrakurzen UV Pulsen und R2PI Messungen von räumlich abgelenkten Molekülen) vorgelegt von Lena Worbs geboren am 21. April 1993 in Bad Oldesloe Bachelorarbeit im Studiengang Physik Universität Hamburg Center for Free-Electron Laser Science (CFEL) 2015 1. Gutachter: Prof. Dr. Jochen Küpper 2. Gutachter: Dr. Daniel Horke hallo Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbstständig verfasst wurde und ich keine anderen als die angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internetquellen – verwendet habe und die Arbeit von mir nicht vorher in einem anderen Prüfungsverfahren eingereicht wurde. Die eingereichte schriftliche Form entspricht der auf dem elektronischem Speicher- medium. Ich bin damit einverstanden, dass die Bachelorarbeit veröffentlicht wird. Hamburg, den 14. September 2015 iii "Zwei mal drei macht vier." - Pippi Langstrumpf v Abstract This thesis is about the generation and characterization of ultrashort ultraviolet (UV) laser pulses, resonance-enhanced two photon ionization (R2PI) measurements of indole and the electrostatic deflection of indole. UV pulses are generated from a 39 fs Ti:Sapphire Laser with a central wavelength of 800 nm and a bandwidth of 60 nm. To generate UV pulses, the nonlinear process of harmonic generation in a beta-barium-borate (BBO)-crystal is used. A prism compressor ensures group velocity dispersion (GVD) compensation and a cross cor- relation is used to measure the pulse duration of the generated UV pulses. An energy conversion efficiency of up to 6 % of the fundamental energy is achieved to produce UV pulses and the generated pulses have a theoretical minimum pulse duration of 35 fs due to the spectrum. -
Genome Stability and Human Diseases (Subcellular Biochemistry)
Genome Stability and Human Diseases SUBCELLULAR BIOCHEMISTRY SERIES EDITOR J. ROBIN HARRIS, University of Mainz, Mainz, Germany ASSISTANT EDITORS P.J. QUINN, King’s College London, London, U.K. Recent Volumes in this Series Vo l u m e 3 3 Bacterial Invasion into Eukaryotic Cells Tobias A. Oelschlaeger and Jorg Hacker Vo l u m e 3 4 Fusion of Biological Membranes and Related Problems Edited by Herwig Hilderson and Stefan Fuller Vo l u m e 3 5 Enzyme-Catalyzed Electron and Radical Transfer Andreas Holzenburg and Nigel S. Scrutton Vo l u m e 3 6 Phospholipid Metabolism in Apoptosis Edited by Peter J. Quinn and Valerian E. Kagan Vo l u m e 3 7 Membrane Dynamics and Domains Edited by P.J. Quinn Vo l u m e 3 8 Alzheimer’s Disease: Cellular and Molecular Aspects of Amyloid beta Edited by R. Harris and F. Fahrenholz Vo l u m e 3 9 Biology of Inositols and Phosphoinositides Edited by A. Lahiri Majumder and B.B. Biswas Vo l u m e 4 0 Reviews and Protocols in DT40 Research Edited by Jean-Marie Buerstedde and Shunichi Takeda Vo l u m e 4 1 Chromatin and Disease Edited by Tapas K. Kundu and Dipak Dasgupta Vo l u m e 4 2 Inflammation in the Pathogenesis of Chronic Diseases Edited by Randall E. Harris Vo l u m e 4 3 Subcellular Proteomics Edited by Eric Bertrand and Michel Faupel Vo l u m e 4 4 Peroxiredoxin Systems Edited by Leopold Flohd J. -
Mass Spectrometry-Based Proteomics Reveals Distinct Mechanisms of Astrocyte Protein Secretion
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Summer 2009 Mass Spectrometry-Based Proteomics Reveals Distinct Mechanisms of Astrocyte Protein Secretion Todd M. Greco University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, and the Molecular and Cellular Neuroscience Commons Recommended Citation Greco, Todd M., "Mass Spectrometry-Based Proteomics Reveals Distinct Mechanisms of Astrocyte Protein Secretion" (2009). Publicly Accessible Penn Dissertations. 22. https://repository.upenn.edu/edissertations/22 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/22 For more information, please contact [email protected]. Mass Spectrometry-Based Proteomics Reveals Distinct Mechanisms of Astrocyte Protein Secretion Abstract The ability of astrocytes to secrete proteins subserves many of its known function, such as synapse formation during development and extracellular matrix remodeling after cellular injury. Protein secretion may also play an important, but less clear, role in the propagation of inflammatory responses and neurodegenerative disease pathogenesis. While potential astrocyte-secreted proteins may number in the thousands, known astrocyte-secreted proteins are less than 100. To address this fundamental deficiency, mass spectrometry-based proteomics and bioinformatic tools were utilized for global discovery, comparison, and quantification of astrocyte-secreted proteins. A primary mouse astrocyte cell culture model was used to generate a collection of astrocyte-secreted proteins termed the astrocyte secretome. A multidimensional protein and peptide separation approach paired with mass spectrometric analysis interrogated the astrocyte secretome under control and cytokine-exposed conditions, identifying cytokine- induced secreted proteins, while extending the depth of known astrocyte-secreted proteins to 169.