Regulation of 2'-5'-Oligoadenylate Synthetase 1 (OAS1) by Dsrna

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of 2'-5'-Oligoadenylate Synthetase 1 (OAS1) by Dsrna PI: Schwartz, Samantha Lynne Title: Regulation of 2'-5'-oligoadenylate synthetase 1 (OAS1) by dsRNA Received: 12/08/2016 FOA: PA16-309 Council: 05/2017 Competition ID: FORMS-D FOA Title: RUTH L. KIRSCHSTEIN NATIONAL RESEARCH SERVICE AWARD (NRSA) INDIVIDUAL PREDOCTORAL FELLOWSHIP (PARENT F31) 1 F31 AI133950-01 Dual: Accession Number: 4001165 IPF: 2384501 Organization: EMORY UNIVERSITY Former Number: Department: GRS: GDBBS BCDB IRG/SRG: ZRG1 F13-C (20)L AIDS: N Expedited: N Subtotal Direct Costs Animals: N New Investigator: N (excludes consortium F&A) Humans: N Early Stage Investigator: N Clinical Trial: N Current HS Code: 10 HESC: N Senior/Key Personnel: Organization: Role Category: Samantha Schwartz Emory University PD/PI Graeme Conn Emory University Other (Specify)-Sponsor Anice Lowen Emory University Other (Specify)-Co-sponsor Always follow your funding opportunity's instructions for application format. Although this application demonstrates good grantsmanship, time has passed since the grantee applied. The sample may not reflect the latest format or rules. NIAID posts new samples periodically: https://www.niaid.nih.gov/grants-contracts/sample-applications The text of the application is copyrighted. You may use it only for nonprofit educational purposes provided the document remains unchanged and the PI, the grantee organization, and NIAID are credited. Note on Section 508 conformance and accessibility: We have reformatted these samples to improve accessibility for people with disabilities and users of assistive technology. If you have trouble accessing the content, please contact the NIAID Office of Knowledge and Educational Resources at [email protected]. OMB Number: 4040-0001 Expiration Date: 06/30/2016 APPLICATION FOR FEDERAL ASSISTANCE 3. DATE RECEIVED BY STATE State Application Identifier SF 424 (R&R) 1. TYPE OF SUBMISSION* 4.a. Federal Identifier ❍ Pre-application ●Application ❍Changed/Corrected b. Agency Routing Number Application 2. DATE SUBMITTED Application Identifier c. Previous Grants.gov Tracking Number 2016-12-08 5. APPLICANT INFORMATION Organizational DUNS*: Legal Name*: Emory University Department: Office of Sponsored Programs Division: Street1*: Street2: City*: County: State*: Province: Country*: ZIP / Postal Code*: Person to be contacted on matters involving this application Prefix: Ms. First Name*: Holly Middle Name: Last Name*: Sommers Suffix: Position/Title: Director, Pre-award Grants Adm Street1*: Street2: City*: County: State*: Province: Country*: ZIP / Postal Code*: Phone Number*: Fax Number: Email: 6. EMPLOYER IDENTIFICATION NUMBER (EIN) or (TIN)* 7. TYPE OF APPLICANT* O: Private Institution of Higher Education Other (Specify): Small Business Organization Type ❍Women Owned ❍Socially and Economically Disadvantaged 8. TYPE OF APPLICATION* If Revision, mark appropriate box(es). ● New ❍Resubmission ❍ A. Increase Award ❍ B. Decrease Award ❍C. Increase Duration ❍ ❍ E. Other (specify) : ❍ Renewal ❍Continuation ❍Revision D. Decrease Duration Is this application being submitted to other agencies?* ❍Yes ●No What other Agencies? 9. NAME OF FEDERAL AGENCY* 10. CATALOG OF FEDERAL DOMESTIC ASSISTANCE NUMBER National Institutes of Health TITLE: 11. DESCRIPTIVE TITLE OF APPLICANT'S PROJECT* Regulation of 2'-5'-oligoadenylate synthetase 1 (OAS1) by dsRNA 12. PROPOSED PROJECT 13. CONGRESSIONAL DISTRICTS OF APPLICANT Start Date* Ending Date* GA-005 07/01/2017 06/30/2020 Tracking Number: GRANT12302947 Funding Opportunity Number: PA-16-309 . Received Date: Page 1 2016-12-08T16:40:52.000-05:00 Contact PD/PI: Schwartz, Samantha SF 424 (R&R) APPLICATION FOR FEDERAL ASSISTANCE Page 2 14. PROJECT DIRECTOR/PRINCIPAL INVESTIGATOR CONTACT INFORMATION Prefix: First Name*: Samantha Middle Name: Last Name*: Schwartz Suffix: Position/Title: Research Fellow/Trainee Organization Name*: Emory University Department: Division: Street1*: Street2: City*: County: State*: Province: Country*: ZIP / Postal Code*: Phone Number*: Fax Number: Email*: 15. ESTIMATED PROJECT FUNDING 16.IS APPLICATION SUBJECT TO REVIEW BY STATE EXECUTIVE ORDER 12372 PROCESS?* a. YES ❍ THIS PREAPPLICATION/APPLICATION WAS MADE a. Total Federal Funds Requested* AVAILABLE TO THE STATE EXECUTIVE ORDER 12372 b. Total Non-Federal Funds* PROCESS FOR REVIEW ON: c. Total Federal & Non-Federal Funds* DATE: d. Estimated Program Income* b. NO ● PROGRAM IS NOT COVERED BY E.O. 12372; OR ❍ PROGRAM HAS NOT BEEN SELECTED BY STATE FOR REVIEW 17. By signing this application, I certify (1) to the statements contained in the list of certifications* and (2) that the statements herein are true, complete and accurate to the best of my knowledge. I also provide the required assurances * and agree to comply with any resulting terms if I accept an award. I am aware that any false, fictitious, or fraudulent statements or claims may subject me to criminal, civil, or administrative penalties. (U.S. Code, Title 18, Section 1001) ● I agree* * The list of certifications and assurances, or an Internet site where you may obtain this list, is contained in the announcement or agency specific instructions. 18. SFLLL or OTHER EXPLANATORY DOCUMENTATION File Name: 19. AUTHORIZED REPRESENTATIVE Prefix: First Name*: Maggie Middle Name: Last Name*: Hassan Suffix: Position/Title*: Associate Director Organization Name*: Emory University Department: Office of Sponsored Programs Division: Street1*: Street2: City*: County: State*: Province: Country*: ZIP / Postal Code*: Phone Number*: Fax Number: Email*: Signature of Authorized Representative* Date Signed* 20. PRE-APPLICATION File Name: 21. COVER LETTER ATTACHMENT File Name:Cover_Letter_Schwartz1032089591.pdf Tracking Number: GRANT12302947 Funding Opportunity Number: PA-16-309 . Received Date: Page 2 2016-12-08T16:40:52.000-05:00 Contact PD/PI: Schwartz, Samantha 424 R&R and PHS-398 Specific Table Of Contents SF 424 R&R Cover Page. ............................................................................................................... 1 Table of Contents ................................................................................................................. 3 Performance Sites. ......................................................................................................................... 4 Research & Related Other Project Information ........................................................................... 5 Project Summary/Abstract(Description). ........................................................................... 6 Project Narrative ................................................................................................................... 7 Bibliography & References Cited........................................................................................ 8 Facilities & Other Resources. .......................................................................................... 11 Equipment. ......................................................................................................................... 13 Research & Related Senior/Key Person .................................................................................... 15 PHS Fellowship Supplemental ................................................................................................... 31 Applicant's Background and Goals for Fellowship Training .........................................35 Specific Aims ..................................................................................................................... 39 Research Strategy ............................................................................................................. 40 Respective Contributions ................................................................................................. 46 Selection of Sponsor and Institution ............................................................................... 47 Training in the Responsible Conduct of Research .........................................................48 Sponsor and Co-Sponsor Statements ............................................................................ 49 Letters of Support from Collaborators, Contributors, and Consultants .......................55 Description of Institutional Environment and Commitment to Training .......................58 Resource Sharing Plan ..................................................................................................... 60 Table of Contents Page 3 Contact PD/PI: Schwartz, Samantha OMB Number: 4040-0010 Expiration Date: 06/30/2016 Project/Performance Site Location(s) Project/Performance Site Primary Location ❍I am submitting an application as an individual, and not on behalf of a company, state, local or tribal government, academia, or other type of organization. Organization Name: Emory University Duns Number: Street1*: Street2: City*: County: State*: Province: Country*: Zip / Postal Code*: Project/Performance Site Congressional District*: GA-005 Additional Location(s) File Name: Page 4 Tracking Number: GRANT12302947 Funding Opportunity Number: PA-16-309. Received Date: 2016-12-08T16:40:52.000-05:00 Contact PD/PI: Schwartz, Samantha OMB Number: 4040-0001 Expiration Date: 06/30/2016 RESEARCH & RELATED Other ProjectInformation 1. Are Human Subjects Involved?* ❍ Yes ● No 1.a. If YES to Human Subjects Is the Project Exempt from Federal regulations? ❍ Yes ❍ No If YES, check appropriate exemption number: 1 2 3 4 5 6 If NO, is the IRB review Pending? ❍ Yes ❍ No IRB Approval Date: Human Subject Assurance Number 2. Are Vertebrate Animals Used?* ❍
Recommended publications
  • A Genetic Variant Protective Against Severe COVID-19 Is Inherited from Neandertals
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.327197; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A genetic variant protective against severe COVID-19 is inherited from Neandertals Authors Hugo Zeberg1,2* and Svante Pääbo1,3* Affiliations 1 Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany. 2 Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden. 3 Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan. *Corresponding authors: [email protected], [email protected] Abstract It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by SARS-CoV-2 is inherited from Neandertals. Thanks to new genetic association studies additional risk factors are now being discovered. Using data from a recent genome- wide associations from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region associated with requiring intensive care is inherited from Neandertals. It encodes proteins that activate enzymes that are important during infections with RNA viruses. As compared to the previously described Neandertal risk haplotype, this Neandertal haplotype is protective against severe COVID-19, is of more moderate effect, and is found at substantial frequencies in all regions of the world outside Africa. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.327197; this version posted October 9, 2020.
    [Show full text]
  • Non-Coding Rnas: Strategy for Viruses' Offensive
    non-coding RNA Review Non-Coding RNAs: Strategy for Viruses’ Offensive Alessia Gallo 1,*, Matteo Bulati 1, Vitale Miceli 1 , Nicola Amodio 2 and Pier Giulio Conaldi 1,3 1 Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; [email protected] (M.B.); [email protected] (V.M.); [email protected] (P.G.C.) 2 Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; [email protected] 3 UPMC Italy (University of Pittsburgh Medical Center Italy), Discesa dei Giudici 4, 90133 Palermo, Italy * Correspondence: [email protected]; Tel.: +39-91-21-92-649 Received: 7 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: The awareness of viruses as a constant threat for human public health is a matter of fact and in this resides the need of understanding the mechanisms they use to trick the host. Viral non-coding RNAs are gaining much value and interest for the potential impact played in host gene regulation, acting as fine tuners of host cellular defense mechanisms. The implicit importance of v-ncRNAs resides first in the limited genomes size of viruses carrying only strictly necessary genomic sequences. The other crucial and appealing characteristic of v-ncRNAs is the non-immunogenicity, making them the perfect expedient to be used in the never-ending virus-host war. In this review, we wish to examine how DNA and RNA viruses have evolved a common strategy and which the crucial host pathways are targeted through v-ncRNAs in order to grant and facilitate their life cycle.
    [Show full text]
  • Genetic Content and Evolution of Adenoviruses Andrew J
    Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
    [Show full text]
  • TITLE: Biotinidase Deficiency PRESENTER: Anna Scott Slide 1
    TITLE: Biotinidase Deficiency PRESENTER: Anna Scott Slide 1: Hello, my name is Anna Scott. I am a biochemical genetics laboratory director at Seattle Children’s Hospital. Welcome to this Pearl of Laboratory Medicine on “Biotinidase Deficiency.” Slide 2: Lecture Overview For today’s Pearl, I will start with background information about biotinidase including its role in metabolism and clinical features. Then we will discuss different clinical assays that can detect and diagnose the enzyme deficiency. Finally, I will touch on biotinidase as it relates to newborn screening. Slide 3: Background Biotinidase deficiency is an inborn error of metabolism, specifically affecting biotin metabolism. Biotin is also known as vitamin B7. Most free biotin is absorbed through the gut from food. This vitamin is an essential cofactor for four carboxylase enzymes. Biotin metabolism primarily consists of two steps- 1) loading the free biotin into an apocarboxylase to form the active form of the enzyme, called holocarboylases and 2) recycling biocytin back to lysine and free biotin after protein degradation. The enzyme responsible for loading free biotin into new enzymes is holocarboxylase synthetase. Loss of function of this enzyme can cause clinical features similar to biotinidase deficiency, typically with an earlier age of onset and greater severity. Biotinidase deficiency results in failure to recycle biocytin back to free biotin for re-incorporation into a new apoenzyme. Slide 4: Clinical Symptoms and Therapy © 2016 Clinical Chemistry Pearls of Laboratory Medicine Title Classical clinical symptoms associated with biotinidase deficiency include: alopecia, eczema, hearing and/or vision loss, and acidosis. During acute illness, hyperammonemia, seizures, and coma can also manifest.
    [Show full text]
  • 1A Multiple Sclerosis Treatment
    The Pharmacogenomics Journal (2012) 12, 134–146 & 2012 Macmillan Publishers Limited. All rights reserved 1470-269X/12 www.nature.com/tpj ORIGINAL ARTICLE Network analysis of transcriptional regulation in response to intramuscular interferon-b-1a multiple sclerosis treatment M Hecker1,2, RH Goertsches2,3, Interferon-b (IFN-b) is one of the major drugs for multiple sclerosis (MS) 3 2 treatment. The purpose of this study was to characterize the transcriptional C Fatum , D Koczan , effects induced by intramuscular IFN-b-1a therapy in patients with relapsing– 2 1 H-J Thiesen , R Guthke remitting form of MS. By using Affymetrix DNA microarrays, we obtained and UK Zettl3 genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-b administration. We identified 1Leibniz Institute for Natural Product Research 121 genes that were significantly up- or downregulated compared with and Infection Biology—Hans-Knoell-Institute, baseline, with stronger changed expression at 1 week after start of therapy. Jena, Germany; 2University of Rostock, Institute of Immunology, Rostock, Germany and Eleven transcription factor-binding sites (TFBS) are overrepresented in the 3University of Rostock, Department of Neurology, regulatory regions of these genes, including those of IFN regulatory factors Rostock, Germany and NF-kB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene Correspondence: M Hecker, Leibniz Institute for Natural Product expression data and TFBS information, to reconstruct the underlying network Research and Infection Biology—Hans-Knoell- of molecular interactions. An NF-kB-centered sub-network of genes was Institute, Beutenbergstr.
    [Show full text]
  • BTD Gene Biotinidase
    BTD gene biotinidase Normal Function The BTD gene provides instructions for making an enzyme called biotinidase. This enzyme recycles biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Biotinidase removes biotin that is bound to proteins in food, leaving the vitamin in its free (unbound) state. The body needs free biotin to activate enzymes called biotin- dependent carboxylases. These carboxylases are involved in many critical cellular functions, including the breakdown of proteins, fats, and carbohydrates. In addition to processing biotin obtained from the diet, biotinidase recycles biotin within the body. As biotin-dependent carboxylases are broken down, they release a molecule called biocytin. Biocytin is a complex made of up biotin and a protein building block ( amino acid) called lysine. Biotinidase splits this complex, making free biotin available for reuse by other carboxylase enzymes. Researchers suspect that biotinidase may have several additional functions. This enzyme may transport free biotin through the bloodstream. It might also have the ability to attach biotin to certain proteins through a process called biotinylation. Within the nucleus, biotinylation of DNA-associated proteins called histones may help determine whether certain genes are turned on or off. It is unclear, however, whether biotinidase plays a role in regulating gene activity. Health Conditions Related to Genetic Changes Biotinidase deficiency More than 150 mutations in the BTD gene have been identified in people with biotinidase deficiency. This disorder, if untreated, can affect many parts of the body and cause delayed development. Most of the mutations that cause biotinidase deficiency change single amino acids in the biotinidase enzyme.
    [Show full text]
  • Structural Basis for Cytosolic Double-Stranded RNA Surveillance by Human Oligoadenylate Synthetase 1
    Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1 Jesse Donovan, Matthew Dufner, and Alexei Korennykh1 Department of Molecular Biology, Princeton University, Princeton, NJ 08540 Edited by Jennifer A. Doudna, University of California, Berkeley, CA, and approved December 19, 2012 (received for review October 23, 2012) The human sensor of double-stranded RNA (dsRNA) oligoadenylate Results and Discussion synthetase 1 (hOAS1) polymerizes ATP into 2′,5′-linked iso-RNA (2- Overview of the hOAS1•dsRNA•dATP Ternary Complex. To un- 5A) involved in innate immunity, cell cycle, and differentiation. We derstand how OAS1 recognizes dsRNA, we conducted cocrys- report the crystal structure of hOAS1 in complex with dsRNA and tallization screening with hOAS1 and dsRNA sequences derived 2′-deoxy ATP at 2.7 Å resolution, which reveals the mechanism of from RNA constructs known to activate the sensor (2). Single cytoplasmic dsRNA recognition and activation of oligoadenylate cocrystals were obtained only with dsRNA having 18 bp and a ser- synthetases. Human OAS1 recognizes dsRNA using a previously endipitously constructed sequence GGCUUUUGACCUUUAU- uncharacterized protein/RNA interface that forms via a conforma- GC. The structure of the ternary complex was determined at 2.7 Å tional change induced by binding of dsRNA. The protein/RNA in- resolution (Table S1). In the cocrystal structure, hOAS1 is bound to fi terface involves two minor grooves and has no sequence-speci c one face of the RNA double-helix (Fig. 1A and Figs. S1 and S2)and contacts, with the exception of a single hydrogen bond between the dsRNA termini are unobstructed by the protein (Table S2).
    [Show full text]
  • The Evolution of the Viral RNA Sensor OAS1 in Old World Monkeys and Cetartiodactyls
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2016 The Evolution of the Viral RNA Sensor OAS1 in Old World Monkeys and Cetartiodactyls Ian Fish Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/759 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] The Evolution of the Viral RNA Sensor OAS1 in Old World Monkeys and Cetartiodactyls by Ian Fish The City University of New York 2016 i Copyright 2016 by Fish, Ian All rights reserved ii This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. ______________ ______________________________ Date Chair of Examining Committee Dr. Stéphane Boissinot ______________ ______________________________ Date Executive Officer Dr. Laurel Eckhardt Supervising Committee Members: ____________________________ Dr. Cathy Savage-Dunn, Queens College ____________________________ Dr. Susan Rotenberg, Queens College ____________________________ Dr. Shaneen Singh, Brooklyn College ____________________________ Dr. Margaret MacDonald, The Rockefeller University iii Abstract The Evolution of the Viral RNA Sensor OAS1 in Old World Monkeys and Cetartiodactyls author: Ian Fish advisor: Dr. Stéphane Boissinot Animals produce an array of sensors patrolling the intracellular environment poised to detect and respond to viral infection. The oligoadenylate synthetase family of enzymes comprises a crucial part of this innate immune response, directly signaling endonuclease activity responsible for inhibiting viral replication.
    [Show full text]
  • Control Region for Adenovirus VA RNA Transcription
    Proc. Natl Acad. Sci. USA Vol. 78, No. 6, pp. 3378-3382, June 1981 Biochemistry Control region for adenovirus VA RNA transcription (deletion mapping/in vitro transcription/RNA polymerase HI) RICHARD GUILFOYLE AND ROBERTO WEINMANN The Wistar Institute ofAnatomy and Biology, 36th Street at Spruce, Philadelphia, Pennsylvania 19104 Communicated by Hilary Koprowski, February 19, 1981 ABSTRACT Plasmids containing the VA RNA genes of ad- The adenovirus VA gene region contains at least two different enovirus are faithfully transcribed by a crude cytoplasmic extract VA genes, with different nucleotide sequences (13-16), called containing DNA-dependent RNApolymerase II [Wu, G.-J. (1978) VA, and VA,,. In the VA, region (where RNA is produced in Proc. NatI. Acad. Sci. USA 75, 2175-2179]. By subjecting these largest amounts) there are two initiation sites, the major G start DNA templates to in vitro site-directed mutagenesis with a novel (17, 18) and a minor A start three nucleotides upstream (18-20). enzyme of Pseudomonas and recloning in pBR322, we have con- The VA, RNAs arising from these start sites are 156 (VAIG) and structed an ordered series of deletions which affect the in vitro 159 (VAIA) nucleotides in length, respectively. In addition, a transcription ofthe major RNA polymerase III viral product, VA, class of longer molecules (VA200), resulting from read-through RNA. Three regions that are required for specific synthesis ofVA, RNA termination site, can be detected in vitro RNA can be defined. One, inside the gene at nucleotides + 10 to at the first VA, +76, affects the transcription in an all-or-none fashion.
    [Show full text]
  • Purification and Activation of the Double-Stranded RNA-Dependent Eif-2 Kinase DAI MATTHEW Kosturat and MICHAEL B
    MOLECULAR AND CELLULAR BIOLOGY, Apr. 1989, p. 1576-1586 Vol. 9, No. 4 0270-7306/89/041576-11$02.00/0 Copyright C) 1989, American Society for Microbiology Purification and Activation of the Double-Stranded RNA-Dependent eIF-2 Kinase DAI MATTHEW KOSTURAt AND MICHAEL B. MATHEWS* Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, New York 11724 Received 14 September 1988/Accepted 3 January 1989 The double-stranded RNA (dsRNA)-dependent protein kinase DAI (also termed dsl and P1) possesses two kinase activities; one is an autophosphorylation activity, and the other phosphorylates initiation factor eIF-2. We purified the enzyme, in a latent form, to near homogeneity from interferon-treated human 293 cells. The purified enzyme consisted of a single polypeptide subunit of -70,000 daltons, retained its dependence on dsRNA for activation, and was sensitive to inhibition by adenovirus VA RNA,. Autophosphorylation required a suitable concentration of dsRNA and was second order with respect to DAI concentration, which suggests an intermolecular mechanism in which one DAI molecule phosphorylates a neighboring molecule. Once autophosphorylated, the enzyme could phosphorylate eIF-2 but seemed unable to phosphorylate other DAI molecules, which implies a change in substrate specificity upon activation. VA RNA, blocked autophosphory- lation and activation but permitted the activated enzyme to phosphorylate eIF-2. VA RNA, also blocked the binding of dsRNA to the enzyme. The data are consistent with a model in which activation requires the interaction of two molecules of DAI with dsRNA, followed by intermolecular autophosphorylation of the latent enzyme. VA RNA, would block activation by preventing the interaction between DAI and dsIINA.
    [Show full text]
  • The Complete Nucleotide Sequence, Genome Organization, and Origin of Human Adenovirus Type 11 Daniel Stone,A,B Anne Furthmann,C Volker Sandig,C and Andre´ Liebera,B,*
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com R Virology 309 (2003) 152–165 www.elsevier.com/locate/yviro The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11 Daniel Stone,a,b Anne Furthmann,c Volker Sandig,c and Andre´ Liebera,b,* a Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA b Avior Therapeutics Inc, 562 First Ave. S, Seattle, WA 98104, USA c ProBiogen AG, Goethestr 50-54, 13086 Berlin, Germany Received 22 August 2002; returned to author for revision 11 October 2002; accepted 3 November 2002 Abstract The complete DNA sequence and transcription map of human adenovirus type 11 are reported here. This is the first published sequence for a subgenera B human adenovirus and demonstrates a genome organization highly similar to those of other human adenoviruses. All of the genes from the early, intermediate, and late regions are present in the expected locations of the genome for a human adenovirus. The genome size is 34,794 bp in length and has a GC content of 48.9%. Sequence alignment with genomes of groups A (Ad12), C (Ad5), D (Ad17), E (Simian adenovirus 25), and F (Ad40) revealed homologies of 64, 54, 68, 75, and 52%, respectively. Detailed genomic analysis demonstrated that Ads 11 and 35 are highly conserved in all areas except the hexon hypervariable regions and fiber. Similarly, comparison of Ad11 with subgroup E SAV25 revealed poor homology between fibers but high homology in proteins encoded by all other areas of the genome.
    [Show full text]
  • A Neanderthal OAS1 Isoform Protects Against COVID-19 Susceptibility
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.13.20212092; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 A Neanderthal OAS1 isoform Protects Against COVID-19 Susceptibility and 2 Severity: Results from Mendelian Randomization and Case-Control Studies 3 4 5 Sirui Zhou1,2,* Guillaume Butler-Laporte1,2,* Tomoko Nakanishi1,3,4,5,* David Morrison1, Jonathan Afilalo1, 6 Marc Afilalo1, Laetitia Laurent1, Maik Pietzner6, Nicola Kerrison6, Kaiqiong Zhao1,2, Elsa Brunet- 7 Ratnasingham7, Danielle Henry1, Nofar Kimchi1, Zaman Afrasiabi1, Nardin Rezk1, Meriem Bouab1, Louis 8 Petitjean,1 Charlotte Guzman1, Xiaoqing Xue1, Chris Tselios,1 Branka Vulesevic1, Olumide Adeleye1, Tala 9 Abdullah1, Noor Almamlouk1, Yiheng Chen1, Michaël Chassé7, Madeleine Durand7, Michael Pollak1, Clare 10 Paterson8, Hugo Zeberg9, Johan Normark10, Robert Frithiof11, Miklós Lipcsey12,13, Michael Hultström11,13, 11 Celia M T Greenwood1,2, Claudia Langenberg6,14, Elin Thysell15, Vincent Mooser3, Vincenzo Forgetta1, 12 Daniel E. Kaufmann7,16, J Brent Richards1,2,3,17 13 14 Affiliations: 15 1) Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, 16 Canada 17 2) Department of Epidemiology, Biostatistics and Occupational Health, McGill 18 University, Montréal, Québec, Canada 19 3) Department of Human Genetics,
    [Show full text]