Update on the Distribution and Evolution of the Aldehyde

Total Page:16

File Type:pdf, Size:1020Kb

Update on the Distribution and Evolution of the Aldehyde UPDATE ON THE DISTRIBUTION AND EVOLUTION OF THE ALDEHYDE DEHYDROGENASE SUPERFAMILY IN VERTEBRATES AND BIOCHEMICAL AND POLYMORPHIC CHARACTERIZATION OF HUMAN ALDH1B1 by BRIAN CHRISTOPHER JACKSON B.S., University of California, Riverside 2004 M.S., University of Texas at Tyler, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Toxicology Program 2015 This thesis for the Doctor of Philosophy degree by Brian Christopher Jackson has been approved for the Toxicology Program by Dennis Petersen, Chair Vasilis Vasiliou, Advisor David Bain David Orlicky David Thompson Date 5/07/2015 ii Jackson, Brian Christopher (Ph.D., Toxicology) Update on the Distribution and Evolution of the Aldehyde Dehydrogenase Superfamily in Vertebrates and Biochemical and Polymorphic Characterization of Human ALDH1B1 Thesis directed by Professor Vasilis Vasiliou ABSTRACT The aldehyde dehydrogenase (ALDH) superfamily is a group of enzymes that catalyze the NAD(P)+-dependent oxidation of a wide variety of endogenous and exogenous aldehydes to their corresponding carboxylic acids. This family is present in all taxonomic lineages studied, including archaea, bacteria, and eukaryotes. As a torrent of new genomic data has become available over the past decade, there is now a need to organize and examine the evolution of this critical superfamily. To create a reference of the distribution and number of ALDHs in vertebrates, 11 representative species with completed genomes were examined and the full number of ALDHs was manually studied (Chapter II). One recently investigated gene, ALDH1B1 appeared to have a limited distribution and high similarity to ALDH2. This gene has received increased attention recently as a mediator of alcohol metabolism, growth and development, and as a biomarker and possibly key mediator of colon cancer. The complete known distribution of ALDH1B1 was investigated, as well as its evolutionary origins as a retrotransposition of ALDH2. In addition, it was shown that although ALDH1B1 has a unique pattern of expression and substrate specificity from ALDH2, they retain enough similarity that heterotetramerization (and possibly cross-regulation) may be feasible (Chapter III). From iii determining the distribution of ALDH1B1 and ALDH16A1 across phylogenies, in both cases frogs appeared to have unusual patterns of ALDH distributions. Since there was no frog representative in previous work, the full number of frog ALDHs was determined and full gene trees were created to examine the phylogenetic distribution of frog ALDHs. This also allowed deeper examination of the distribution and evolution of ALDHs. From this analysis it was determined rather than frogs being unusual, ALDH1B1 likely arose in the early vertebrate lineage and was subsequently lost in species other than frogs and mammals, and that a unique non-catalytic version of ALDH16A1 likely arose in fish, and was transferred to an early amniote ancestor (Chapter IV). This and other examples of evolution of ‘dead-enzymes’ within enzyme families led to the search for additional examples of non-catalytic ALDHs. 182 examples were found across all three kingdoms, which were divided into 19 groups based on protein sequence, with a large number of newly discovered records coming from bacteria and fungi (Chapter IV). Finally, the substrate specificity and effect of human polymorphisms of ALDH1B1 were investigated in depth, and it was found that ALDH1B1 likely plays a role in growth and development via retinaldehyde metabolism, and that this function may be disrupted by mutations prevalent in human populations, especially via the ALDH1B1*2 (A86V) mutation (Chapter V). This work together enhances our understanding of the distribution and evolutionary origins of the ALDH superfamily as a whole, and increases the understanding of the mechanisms of action of ALDH1B1 in particular. The form and content of this abstract are approved. I recommend its publication. Approved: Vasilis Vasiliou iv ACKNOWLEDGEMENTS I would like to thank the current and former members of the Vasiliou lab for their help and support over the years. First I appreciate the efforts of Elizabeth Donald and Bettina Miller for keeping the lab organized, stocked and compliant. In addition, many lab members helped, advised, or worked with me during the past years including Ying Chen, Chad Brocker, Guarav Mehta, Surendra Singh, Vindhya Koppaka, Akiko Matsumoto, Monica Sandoval, and Claire Heit. I would also like to thank the labs that I did research / training rotations in including the lab of Richard Radcliffe and David Ross, especially the training from Chao Yan, David Siegel, and J. ‘Gigi’ Kepa. In addition, I would like to acknowledge the guidance and assistance from my advisor, Vasilis Vasiliou and my committee, Dennis Petersen, David Thompson, David Orlicky, and David Bain. Many thanks go out to my first mentor Blake Bextine and the people I worked with both at UC Riverside and UT Tyler, for all of the work and guidance that they gave to get me to where I am today. I appreciate the support and love of my family including my Mom and Dad, brothers and sister, in-laws, nephews, nieces, and all of the extended group that I consider home. I appreciate the patience and support of my wife Natalie Vitovsky, and my ever-constant companions Rupert and Stella. I would also like to acknowledge NRSA fellowship support from the NIAAA (F31 AA020728). v TABLE OF CONTENTS CHAPTER I. INTRODUCTION………………………………………………………………...1 The ALDH Superfamily…………………………………………………..1 Distribution of ALDH Genes in Vertebrates…………………………….10 Frog ALDHs and Phylogenies of Vertebrate ALDHs…………………...12 Evolution and Structural Similarities between ALDH1B1 and ALDH2...14 ALDH ‘Dead Enzymes’………………………………………………….17 Substrate Specificity and Human Mutations of ALDH1B1……………..26 II. UPDATE ON THE ALDEHYDE DEHYDROGENASE GENE (ALDH) SUPERFAMILY IN VERTEBRATES………………………………………….31 Summary…………………………………………………………………31 Introduction………………………………………………………………32 Methods………………………………………………………………..…35 Results…………………………………………………………………....37 Discussion………………………………………………………………..58 III. UPDATE ON THE ALDEHYDE DEHYDROGENASE GENE (ALDH) SUPERFAMILY IN FROG (XENOPUS TROPICALIS) – AN EXAMPLE OF POSSIBLE HORIZONTAL GENE TRANSFER……………………………….64 Summary………………………………………………………………....64 Introduction……………………………………………………………....65 Methods…………………………………………………………………..67 Results…………………………………………………………………....68 Discussion………………………………………………………………..77 IV. COMPARATIVE GENOMICS, MOLECULAR EVOLUTION AND COMPUTATIONAL MODELING OF ALDH1B1 AND ALDH2……………..80 Summary…………………………………………………………………80 vi Introduction……………………………………………………………....81 Methods………………………………………………………………..…84 Results……………………………………………………………………86 Discussion………………………………………………………………104 V. ROLE OF DEAD ENZYMES OF THE ALDEHYDE DEHYDROGENASE FAMILY IN DRUG METABOLISM AND TOXICOLOGY…………………106 Summary……………………………………………………………..…106 Introduction…………………………………………………………..…107 Discovering new ALDH dead-enzymes………………………………..109 Discussion………………………………………………………………111 VI. HUMAN ALDH1B1 POLYMORPHISMS MAY AFFECT THE METABOLISM OF ACETALDEHYDE AND ALL-TRANS RETINALDEHYDE – IN VITRO STUDIES AND COMPUTATIONAL ……………………………………...…123 Summary………………………………………………………………..123 Introduction……………………………………………………………..124 Methods…………………………………………………………………128 Results…………………………………………………………………..136 Discussion………………………………………………………………152 VII. SUMMARY AND FUTURE DIRECTIONS…………………………………..161 REFERENCES………………………………………………………………………....165 vii LIST OF TABLES TABLE 2.1 Total number of aldehyde dehydrogenase (ALDH) NCBI gene records identified within each species’ genome…………………………………………………….39 2.2 ALDH genes and duplicated genes across species with respective chromosome (Chr) locations…………………………………………………………………...43 2.3 List of the Entrez Gene ID (GI), chromosome location, presence of introns, gene type and recommended gene name of all ALDH genes in this study that show evidence of gene duplication, compared with that in the human genome……….45 2.4 Tabulation of all ALDH genes in this study that show evidence of gene duplication, compared with that in the human genome………………………….47 2.5 Known copy number variations in humans……………………………………...55 3.1 Frog ALDH genes………………………………………………………………..70 3.2 Exons present in ALDH16A1 by species………………………………………..77 4.1 ALDH1B1 and ALDH1A genes and enzymes in selected vertebrate species…...88 4.2 Aldehyde dehydrogenase (ALDH2) genes and enzymes in selected vertebrate species……………………………………………………………………………89 4.3 Comparative docking interaction energies and protein stabilities for ALDH2 and ALDH1B1 subunits…………………………………………………………….100 4.4 Specific interactions made by ALDH homo- and heterotetramers……………..103 5.1 Non-enzymatic functions of ALDHs…………………………………………...109 5.2 Summary of groups of ALDH dead enzyme records…………………………...114 5.3 Full list of ALDH dead enzyme records………………………………………..115 5.4 Summary of mutations of key residues for ALDH dead enzyme groups………121 6.1 Computational modeling of interactions between ALDH isozymes and substrates………………………………………………………………………..138 6.2 Kinetic values for the metabolism of select substrates by ALDH isozymes…...141 6.3 Polymorphisms of human ALDH1B1, and variant frequency by race…………143 6.4 Summary of docking poses for NAD+ binding to ALDH isozymes……………147 viii 6.5 Root mean square (RMSD) distances between ALDH1B1 variants and wild- type……………………………………………………………………..………150 6.6 Homology modeling metrics for ALDH1B1 and variants……………………...150
Recommended publications
  • (ALDH1A3) for the Maintenance of Non-Small Cell Lung Cancer Stem Cells Is Associated with the STAT3 Pathway
    Author Manuscript Published OnlineFirst on June 6, 2014; DOI: 10.1158/1078-0432.CCR-13-3292 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Essential role of aldehyde dehydrogenase 1A3 (ALDH1A3) for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway Chunli Shao1,2, James P. Sullivan3, Luc Girard1,2, Alexander Augustyn1,2, Paul Yenerall1,2, Jaime Rodriguez4, Hui Liu4, Carmen Behrens4, Jerry W. Shay5, Ignacio I. Wistuba4, John D. Minna 1,2,6,7 1Hamon Center for Therapeutic Oncology Research, 2Simmons Comprehensive Cancer Center, 3Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, 4Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77054, 5Department of Cell Biology, 6Department of Pharmacology, 7Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA. Running Title: ALDH1A3 in non-small cell lung cancer stem cells Keywords: Lung cancer, cancer stem cells, ALDH1A3, STAT3, Stattic Financial Support This project was supported by CPRIT, NCI SPORE P50CA70907, UTSW Cancer Center Support Grant 5P30-CA142543, and the Gillson-Longenbaugh Foundation. Address Correspondence: John D. Minna, M.D. 6000 Harry Hines Blvd Dallas, TX 75390-8593 Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Phone: 214-648-4900; Fax: 214-648-4940 [email protected] Disclosure of Potential Conflict of Interest The authors indicate no potential conflicts of interest. Word count: 4583 Total number of figures and tables: 6 figures Downloaded from clincancerres.aacrjournals.org on September 28, 2021. © 2014 American Association for Cancer Research.
    [Show full text]
  • The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance Over ALDH2*1 in Transduced Hela Cells
    The aldehyde dehydrogenase ALDH2*2 allele exhibits dominance over ALDH2*1 in transduced HeLa cells. Q Xiao, … , T Johnston, D W Crabb J Clin Invest. 1995;96(5):2180-2186. https://doi.org/10.1172/JCI118272. Research Article Individuals heterozygous or homozygous for the variant aldehyde dehydrogenase (ALDH2) allele (ALDH2*2), which encodes a protein differing only at residue 487 from the normal protein, have decreased ALDH2 activity in liver extracts and experience cutaneous flushing when they drink alcohol. The mechanisms by which this allele exerts its dominant effect is unknown. To study this effect, the human ALDH2*1 cDNA was cloned and the ALDH2*2 allele was generated by site-directed mutagenesis. These cDNAs were transduced using retroviral vectors into HeLa and CV1 cells, which do not express ALDH2. The normal allele directed synthesis of immunoreactive ALDH2 protein (ALDH2E) with the expected isoelectric point. Extracts of these cells contained increased aldehyde dehydrogenase activity with low Km for the aldehyde substrate. The ALDH2*2 allele directed synthesis of mRNA and immunoreactive protein (ALDH2K), but the protein lacked enzymatic activity. When ALDH2*1-expressing cells were transduced with ALDH2*2 vectors, both mRNAs were expressed and immunoreactive proteins with isoelectric points ranging between those of ALDH2E and ALDH2K were present, indicating that the subunits formed heteromers. ALDH2 activity in these cells was reduced below that of the parental ALDH2*1-expressing cells. Thus, the ALDH2*2 allele is sufficient to cause ALDH2 deficiency in vitro. Find the latest version: https://jci.me/118272/pdf The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance over ALDH2*1 in Transduced HeLa Cells Qing Xiao, * Henry Weiner,* Timothy Johnston,* and David W.
    [Show full text]
  • ATAP00021-Recombinant Human ALDH1A1 Protein
    ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein Product Details Summary English name Recombinant Human ALDH1A1 protein Purity >90% as determined by SDS-PAGE Endotoxin level Please contact with the lab for this information. Construction A DNA sequence encoding the human ALDH1A1 (Met1-Ser501) was fused with His tag Accession # P00352 Host E.coli Species Homo sapiens (Human) Predicted Molecular Mass 52.58 kDa Formulation Supplied as solution form in PBS pH 7.5 or lyophilized from PBS pH 7.5. Shipping In general, proteins are provided as lyophilized powder/frozen liquid. They are shipped out with dry ice/blue ice unless customers require otherwise. Stability &Storage Use a manual defrost freezer and avoid repeated freeze thaw cycles. Store at 2 to 8 °C for one week . Store at -20 to -80 °C for twelve months from the date of receipt. Reconstitution Reconstitute in sterile water for a stock solution.A copy of datasheet will be provided with the products, please refer to it for details. Background Background Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), also known as Aldehyde dehydrogenase 1 (ALDH1), or Retinaldehyde Dehydrogenase 1 (RALDH1), is an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. The retinaldehyde dehydrogenase (RALDH) subfamily of ALDHs, composed of ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1, regulate development by catalyzing retinoic acid biosynthesis. The ALDH1A1 protein belongs to the aldehyde dehydrogenases family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. ALDH1A1 also belongs to the group of corneal crystallins that Web:www.atagenix.com E-mail: [email protected] Tel: 027-87433958 ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein help maintain the transparency of the cornea.
    [Show full text]
  • PGENETICS-D-11-00413 Title: Integrating
    Editorial Manager(tm) for PLoS Genetics Manuscript Draft Manuscript Number: PGENETICS-D-11-00413 Title: Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets Short Title: Integrative association analysis of gene sets Article Type: Research Article Section/Category: Natural Variation Keywords: gene set analysis; eQTL; integrative genomics Corresponding Author: Sayan Mukherjee Corresponding Author's Institution: Duke University First Author: Qing Xiong Order of Authors: Qing Xiong;Nicola Ancona;Elizabeth Hauser;Sayan Mukherjee;Terrence Furey Abstract: Background: Single variant or single gene analyses generally account for only a small proportion of the phenotypic variation in complex traits. Alternatively, gene set or pathway association analyses are playing an increasingly important role in uncovering genetic architectures of complex traits through the identification of systematic genetic interactions. Two dominant paradigms for gene set analyses are association analyses based on SNP genotypes and those based on gene expression profiles. However, gene-disease association can manifest in many ways such as alterations of gene expression, genotype and copy number, thus an integrative approach combining multiple forms of evidence can more accurately and comprehensively capture pathway associations. Methodology: We have developed a single statistical framework, Gene Set Association Analysis (GSAA), that simultaneously measures genome-wide patterns of genetic variation and gene expression variation
    [Show full text]
  • Transcriptomic Characterization of Fibrolamellar Hepatocellular
    Transcriptomic characterization of fibrolamellar PNAS PLUS hepatocellular carcinoma Elana P. Simona, Catherine A. Freijeb, Benjamin A. Farbera,c, Gadi Lalazara, David G. Darcya,c, Joshua N. Honeymana,c, Rachel Chiaroni-Clarkea, Brian D. Dilld, Henrik Molinad, Umesh K. Bhanote, Michael P. La Quagliac, Brad R. Rosenbergb,f, and Sanford M. Simona,1 aLaboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065; bPresidential Fellows Laboratory, The Rockefeller University, New York, NY 10065; cDivision of Pediatric Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; ePathology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and fJohn C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065 Edited by Susan S. Taylor, University of California, San Diego, La Jolla, CA, and approved September 22, 2015 (received for review December 29, 2014) Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a exon of DNAJB1 and all but the first exon of PRKACA. This deletion of ∼400 kb in chromosome 19, resulting in a fusion of the produced a chimeric RNA transcript and a translated chimeric genes for the heat shock protein, DNAJ (Hsp40) homolog, subfam- protein that retains the full catalytic activity of wild-type PKA. ily B, member 1, DNAJB1, and the catalytic subunit of protein ki- This chimeric protein was found in 15 of 15 FLHCC patients nase A, PRKACA. The resulting chimeric transcript produces a (21) in the absence of any other recurrent mutations in the DNA fusion protein that retains kinase activity.
    [Show full text]
  • Location Analysis of Estrogen Receptor Target Promoters Reveals That
    Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17␤-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand.
    [Show full text]
  • Upregulation of ALDH1B1 Promotes Tumor Progression in Osteosarcoma
    www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 2), pp: 2502-2514 Research Paper Upregulation of ALDH1B1 promotes tumor progression in osteosarcoma Xin Wang1,*, Yan Yu2,*, Yuting He2,*, Qiqing Cai1, Songtao Gao1, Weitao Yao1, Zhiyong Liu1, Zhichao Tian1, Qicai Han3, Weiwei Wang4, Ranran Sun2, Yonggang Luo3 and Chao Li1 1Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China 2Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China 3Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China 4Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China *These authors have contributed equally to this work Correspondence to: Chao Li, email: [email protected] Yonggang Luo, email: [email protected] Keywords: osteosarcoma; ALDH1B1; progression; proliferation; metastasis Received: August 21, 2017 Accepted: December 04, 2017 Published: December 20, 2017 Copyright: Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood and adolescence with poor prognosis. The mechanism underlying tumorigenesis and development of OS is largely unknown. ALDH1B1 has been reported to involve in many kinds of human cancers and functions as an oncogene, but the role of ALDH1B1 in OS has not been investigated comprehensively. In the present study, we aimed to examine clinical value and biological function of ALDH1B1 in OS.
    [Show full text]
  • Volatile and Intravenous Anesthesia Alter Rat Liver Proteins: Proteomic Time Course Analysis of Rat Liver Proteins
    8 The Open Proteomics Journal, 2012, 5, 8-16 Open Access Volatile and Intravenous Anesthesia Alter Rat Liver Proteins: Proteomic Time Course Analysis of Rat Liver Proteins Hisashi Watanabe1,*, Chihiro Kamagata2, Yoshiaki Tsuboko2 and Atsuhiro Sakamoto3 1Graduate Student, Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan 2Staff Member, Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan 3Professor and Chair, Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan Abstract: Background: Our previous microarray study showed that sevoflurane anesthesia affects the expression of rat genes in multiple organs including the liver. In this study, we investigated whether liver protein expression was altered after propofol, sevoflurane, or isoflurane anesthesia. We also investigated differences in the time course of each drug 24 and 72 h after anesthesia. Methods: Rats were randomly assigned to four groups (non-anesthetized group and three groups anesthetized at each time point, n = 6 per group). A venous catheter was inserted into the caudal vein of all rats. Rats were anesthetized with each agent for 6 h, and the liver was obtained immediately after anesthesia. Proteomic analysis was performed. Results: About 4200 spots in each gel were discriminated, and at least 2619 spots were matched. Using LC-MS/MS, we identified 47 spots for propofol, 45 spots for sevoflurane, and 21 spots for isoflurane that were differentially expressed (p < 0.05) 0 h after anesthesia. The numbers of altered proteins were 14 and 19 in the isoflurane and sevoflurane groups, respectively, 72 h after anesthesia, but alterations in 40 proteins were seen in the propofol group 72 h after anesthesia.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia
    Open Access Annals of Hematology & Oncology Research Article Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia Yi H, Deng R, Fan F, Sun H, He G, Lai S and Su Y* Department of Hematology, General Hospital of Chengdu Abstract Military Region, China Background: Acute myeloid leukemia is a heterogeneous disease. Identify *Corresponding author: Su Y, Department of the prognostic biomarker is important to guide stratification and therapeutic Hematology, General Hospital of Chengdu Military strategies. Region, Chengdu, 610083, China Method: We detected the expression level and the prognostic impact of Received: November 25, 2017; Accepted: January 18, each ALDH1 family members in AML by The Cancer Genome Atlas (TCGA) 2018; Published: February 06, 2018 database. Results: Upon 168 patients whose expression level of ALDH1 family members were available. We found that the level of ALDH1A1correlated to the prognosis of AML by the National Comprehensive Cancer Network (NCCN) stratification but not in other ALDH1 members. Moreover, we got survival data from 160 AML patients in TCGA database. We found that high ALDH1A1 expression correlated to poor Overall Survival (OS), mostly in Fms-like Tyrosine Kinase-3 (FLT3) mutated group. HighALDH1A2 expression significantly correlated to poor OS in FLT3 wild type population but not in FLT3 mutated group. High ALDH1A3 expression significantly correlated to poor OS in FLT3 mutated group but not in FLT3 wild type group. There was no relationship between the OS of AML with the level of ALDH1B1, ALDH1L1 and ALDH1L2. Conclusion: The prognostic impacts were different in each ALDH1 family members, which needs further investigation.
    [Show full text]
  • Mapping Aldehyde Dehydrogenase 1A1 Activity Using an [18F]Substrate-Based Approach Raul Pereira,[A] Thibault Gendron,[B] Chandan Sanghera,[A] Hannah E
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Birkbeck Institutional Research Online DOI: 10.1002/chem.201805473 Full Paper & Biochemistry Mapping Aldehyde Dehydrogenase 1A1 Activity using an [18F]Substrate-Based Approach Raul Pereira,[a] Thibault Gendron,[b] Chandan Sanghera,[a] Hannah E. Greenwood,[a] Joseph Newcombe,[b, c] Patrick N. McCormick,[a] Kerstin Sander,[b] Maya Topf,[c] Erik rstad,[b] and Timothy H. Witney*[a] Abstract: Aldehyde dehydrogenases (ALDHs) catalyze the focused library of compounds evaluated, N-ethyl-6-(fluoro)- oxidation of aldehydes to carboxylic acids. Elevated ALDH N-(4-formylbenzyl)nicotinamide 4b was found to have excel- expression in human cancers is linked to metastases and lent affinity and isozyme selectivity for ALDH1A1 in vitro. poor overall survival. Despite ALDH being a poor prognostic Following 18F-fluorination, [18F]4b was taken up by colorectal factor, the non-invasive assessment of ALDH activity in vivo tumor cells and trapped through the conversion to its 18F-la- has not been possible due to a lack of sensitive and transla- beled carboxylate product under the action of ALDH. In vivo tional imaging agents. Presented in this report are the syn- positron emission tomography revealed high uptake of thesis and biological evaluation of ALDH1A1-selective chemi- [18F]4b in the lungs and liver, with radioactivity cleared cal probes composed of an aromatic aldehyde derived from through the urinary tract. Oxidation of [18F]4b, however, was N,N-diethylamino benzaldehyde (DEAB) linked to a fluorinat- observed in vivo, which may limit the tissue penetration of ed pyridine ring either via an amide or amine linkage.
    [Show full text]
  • Overall Survival of Pancreatic Ductal Adenocarcinoma Is Doubled by Aldh7a1 Deletion in the KPC Mouse
    Overall survival of pancreatic ductal adenocarcinoma is doubled by Aldh7a1 deletion in the KPC mouse Jae-Seon Lee1,2*, Ho Lee3*, Sang Myung Woo4, Hyonchol Jang1, Yoon Jeon1, Hee Yeon Kim1, Jaewhan Song2, Woo Jin Lee4, Eun Kyung Hong5, Sang-Jae Park4, Sung- Sik Han4§§ and Soo-Youl Kim1§ 1Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea. 2Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea. 3Graduate School of Cancer Science and Policy, 4Department of Surgery, Center for Liver and Pancreatobiliary Cancer and 5Department of Pathology, National Cancer Center, Goyang, Republic of Korea. Correspondence §Corresponding author: [email protected] (S.-Y.K.) §§Co-corresponding author: [email protected] (S.-S.H.) *These authors contributed equally to this work 1 Abstract Rationale: The activity of aldehyde dehydrogenase 7A1 (ALDH7A1), an enzyme that catalyzes the lipid peroxidation of fatty aldehydes was found to be upregulated in pancreatic ductal adenocarcinoma (PDAC). ALDH7A1 knockdown significantly reduced tumor formation in PDAC. We raised a question how ALDH7A1 contributes to cancer progression. Methods: To answer the question, the role of ALDH7A1 in energy metabolism was investigated by knocking down and knockdown gene in mouse model, because the role of ALDH7A1 has been reported as a catabolic enzyme catalyzing fatty aldehyde from lipid peroxidation to fatty acid. Oxygen consumption rate (OCR), ATP production, mitochondrial membrane potential, proliferation assay and immunoblotting were performed. In in vivo study, two human PDAC cell lines were used for pre-clinical xenograft model as well as spontaneous PDAC model of KPC mice was also employed for anti-cancer therapeutic effect.
    [Show full text]