Update on the Aldehyde Dehydrogenase Gene (ALDH) Superfamily Brian Jackson,1 Chad Brocker,1 David C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(ALDH1A3) for the Maintenance of Non-Small Cell Lung Cancer Stem Cells Is Associated with the STAT3 Pathway
Author Manuscript Published OnlineFirst on June 6, 2014; DOI: 10.1158/1078-0432.CCR-13-3292 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Essential role of aldehyde dehydrogenase 1A3 (ALDH1A3) for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway Chunli Shao1,2, James P. Sullivan3, Luc Girard1,2, Alexander Augustyn1,2, Paul Yenerall1,2, Jaime Rodriguez4, Hui Liu4, Carmen Behrens4, Jerry W. Shay5, Ignacio I. Wistuba4, John D. Minna 1,2,6,7 1Hamon Center for Therapeutic Oncology Research, 2Simmons Comprehensive Cancer Center, 3Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, 4Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77054, 5Department of Cell Biology, 6Department of Pharmacology, 7Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA. Running Title: ALDH1A3 in non-small cell lung cancer stem cells Keywords: Lung cancer, cancer stem cells, ALDH1A3, STAT3, Stattic Financial Support This project was supported by CPRIT, NCI SPORE P50CA70907, UTSW Cancer Center Support Grant 5P30-CA142543, and the Gillson-Longenbaugh Foundation. Address Correspondence: John D. Minna, M.D. 6000 Harry Hines Blvd Dallas, TX 75390-8593 Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Phone: 214-648-4900; Fax: 214-648-4940 [email protected] Disclosure of Potential Conflict of Interest The authors indicate no potential conflicts of interest. Word count: 4583 Total number of figures and tables: 6 figures Downloaded from clincancerres.aacrjournals.org on September 28, 2021. © 2014 American Association for Cancer Research. -
PGENETICS-D-11-00413 Title: Integrating
Editorial Manager(tm) for PLoS Genetics Manuscript Draft Manuscript Number: PGENETICS-D-11-00413 Title: Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets Short Title: Integrative association analysis of gene sets Article Type: Research Article Section/Category: Natural Variation Keywords: gene set analysis; eQTL; integrative genomics Corresponding Author: Sayan Mukherjee Corresponding Author's Institution: Duke University First Author: Qing Xiong Order of Authors: Qing Xiong;Nicola Ancona;Elizabeth Hauser;Sayan Mukherjee;Terrence Furey Abstract: Background: Single variant or single gene analyses generally account for only a small proportion of the phenotypic variation in complex traits. Alternatively, gene set or pathway association analyses are playing an increasingly important role in uncovering genetic architectures of complex traits through the identification of systematic genetic interactions. Two dominant paradigms for gene set analyses are association analyses based on SNP genotypes and those based on gene expression profiles. However, gene-disease association can manifest in many ways such as alterations of gene expression, genotype and copy number, thus an integrative approach combining multiple forms of evidence can more accurately and comprehensively capture pathway associations. Methodology: We have developed a single statistical framework, Gene Set Association Analysis (GSAA), that simultaneously measures genome-wide patterns of genetic variation and gene expression variation -
Transcriptomic Characterization of Fibrolamellar Hepatocellular
Transcriptomic characterization of fibrolamellar PNAS PLUS hepatocellular carcinoma Elana P. Simona, Catherine A. Freijeb, Benjamin A. Farbera,c, Gadi Lalazara, David G. Darcya,c, Joshua N. Honeymana,c, Rachel Chiaroni-Clarkea, Brian D. Dilld, Henrik Molinad, Umesh K. Bhanote, Michael P. La Quagliac, Brad R. Rosenbergb,f, and Sanford M. Simona,1 aLaboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065; bPresidential Fellows Laboratory, The Rockefeller University, New York, NY 10065; cDivision of Pediatric Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; ePathology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and fJohn C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065 Edited by Susan S. Taylor, University of California, San Diego, La Jolla, CA, and approved September 22, 2015 (received for review December 29, 2014) Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a exon of DNAJB1 and all but the first exon of PRKACA. This deletion of ∼400 kb in chromosome 19, resulting in a fusion of the produced a chimeric RNA transcript and a translated chimeric genes for the heat shock protein, DNAJ (Hsp40) homolog, subfam- protein that retains the full catalytic activity of wild-type PKA. ily B, member 1, DNAJB1, and the catalytic subunit of protein ki- This chimeric protein was found in 15 of 15 FLHCC patients nase A, PRKACA. The resulting chimeric transcript produces a (21) in the absence of any other recurrent mutations in the DNA fusion protein that retains kinase activity. -
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
Supplementary Materials
1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No. -
Alters Enhancer Function in the Developing Telencephalon Meis1
Downloaded from genome.cshlp.org on March 19, 2014 - Published by Cold Spring Harbor Laboratory Press Restless Legs Syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon Derek Spieler, Maria Kaffe, Franziska Knauf, et al. Genome Res. published online March 18, 2014 Access the most recent version at doi:10.1101/gr.166751.113 Supplemental http://genome.cshlp.org/content/suppl/2014/02/10/gr.166751.113.DC1.html Material P<P Published online March 18, 2014 in advance of the print journal. Open Access Freely available online through the Genome Research Open Access option. Creative This article, published in Genome Research, is available under a Creative Commons Commons License (Attribution-NonCommercial 3.0 Unported), as described at License http://creativecommons.org/licenses/by-nc/3.0/. Email Alerting Receive free email alerts when new articles cite this article - sign up in the box at the Service top right corner of the article or click here. Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions © 2014 Spieler et al.; Published by Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on March 19, 2014 - Published by Cold Spring Harbor Laboratory Press Research Restless Legs Syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon Derek Spieler,1,25 Maria Kaffe,1,2,25 Franziska Knauf,1,25 Jose´ Bessa,3 Juan J. -
Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia
Open Access Annals of Hematology & Oncology Research Article Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia Yi H, Deng R, Fan F, Sun H, He G, Lai S and Su Y* Department of Hematology, General Hospital of Chengdu Abstract Military Region, China Background: Acute myeloid leukemia is a heterogeneous disease. Identify *Corresponding author: Su Y, Department of the prognostic biomarker is important to guide stratification and therapeutic Hematology, General Hospital of Chengdu Military strategies. Region, Chengdu, 610083, China Method: We detected the expression level and the prognostic impact of Received: November 25, 2017; Accepted: January 18, each ALDH1 family members in AML by The Cancer Genome Atlas (TCGA) 2018; Published: February 06, 2018 database. Results: Upon 168 patients whose expression level of ALDH1 family members were available. We found that the level of ALDH1A1correlated to the prognosis of AML by the National Comprehensive Cancer Network (NCCN) stratification but not in other ALDH1 members. Moreover, we got survival data from 160 AML patients in TCGA database. We found that high ALDH1A1 expression correlated to poor Overall Survival (OS), mostly in Fms-like Tyrosine Kinase-3 (FLT3) mutated group. HighALDH1A2 expression significantly correlated to poor OS in FLT3 wild type population but not in FLT3 mutated group. High ALDH1A3 expression significantly correlated to poor OS in FLT3 mutated group but not in FLT3 wild type group. There was no relationship between the OS of AML with the level of ALDH1B1, ALDH1L1 and ALDH1L2. Conclusion: The prognostic impacts were different in each ALDH1 family members, which needs further investigation. -
Overall Survival of Pancreatic Ductal Adenocarcinoma Is Doubled by Aldh7a1 Deletion in the KPC Mouse
Overall survival of pancreatic ductal adenocarcinoma is doubled by Aldh7a1 deletion in the KPC mouse Jae-Seon Lee1,2*, Ho Lee3*, Sang Myung Woo4, Hyonchol Jang1, Yoon Jeon1, Hee Yeon Kim1, Jaewhan Song2, Woo Jin Lee4, Eun Kyung Hong5, Sang-Jae Park4, Sung- Sik Han4§§ and Soo-Youl Kim1§ 1Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea. 2Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea. 3Graduate School of Cancer Science and Policy, 4Department of Surgery, Center for Liver and Pancreatobiliary Cancer and 5Department of Pathology, National Cancer Center, Goyang, Republic of Korea. Correspondence §Corresponding author: [email protected] (S.-Y.K.) §§Co-corresponding author: [email protected] (S.-S.H.) *These authors contributed equally to this work 1 Abstract Rationale: The activity of aldehyde dehydrogenase 7A1 (ALDH7A1), an enzyme that catalyzes the lipid peroxidation of fatty aldehydes was found to be upregulated in pancreatic ductal adenocarcinoma (PDAC). ALDH7A1 knockdown significantly reduced tumor formation in PDAC. We raised a question how ALDH7A1 contributes to cancer progression. Methods: To answer the question, the role of ALDH7A1 in energy metabolism was investigated by knocking down and knockdown gene in mouse model, because the role of ALDH7A1 has been reported as a catabolic enzyme catalyzing fatty aldehyde from lipid peroxidation to fatty acid. Oxygen consumption rate (OCR), ATP production, mitochondrial membrane potential, proliferation assay and immunoblotting were performed. In in vivo study, two human PDAC cell lines were used for pre-clinical xenograft model as well as spontaneous PDAC model of KPC mice was also employed for anti-cancer therapeutic effect. -
Comparative Proteomics Analysis of Human Liver Microsomes and S9
DMD Fast Forward. Published on November 7, 2019 as DOI: 10.1124/dmd.119.089235 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 89235 Comparative Proteomics Analysis of Human Liver Microsomes and S9 Fractions Xinwen Wang, Bing He, Jian Shi, Qian Li, and Hao-Jie Zhu Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009 (Q.L.) Downloaded from dmd.aspetjournals.org at ASPET Journals on October 2, 2021 1 DMD Fast Forward. Published on November 7, 2019 as DOI: 10.1124/dmd.119.089235 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 89235 Running title: Comparative Proteomics of Human Liver Microsomes and S9 Corresponding author: Hao-Jie Zhu Ph.D. Department of Clinical Pharmacy University of Michigan College of Pharmacy 428 Church Street, Room 4565 Downloaded from Ann Arbor, MI 48109-1065 Tel: 734-763-8449, E-mail: [email protected] dmd.aspetjournals.org Number of words in Abstract: 250 at ASPET Journals on October 2, 2021 Number of words in Introduction: 776 Number of words in Discussion: 2304 2 DMD Fast Forward. Published on November 7, 2019 as DOI: 10.1124/dmd.119.089235 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 89235 Non-standard ABBreviations: DMEs, drug metabolism enzymes; HLM, human liver microsomes; HLS9, -
NIH Public Access Author Manuscript Expert Opin Drug Metab Toxicol
NIH Public Access Author Manuscript Expert Opin Drug Metab Toxicol. Author manuscript; available in PMC 2009 March 19. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Expert Opin Drug Metab Toxicol. 2008 June ; 4(6): 697±720. doi:10.1517/17425250802102627. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily Satori A Marchitti, Chad Brocker*, Dimitrios Stagos*, and Vasilis Vasiliou† University of Colorado Health Sciences Center, Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, Denver, Colorado 80262, USA Abstract Background—Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. Objective—This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. Methods—Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. Conclusion—To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, γ-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption. Keywords aldehyde dehydrogenase; aldehyde metabolism; ALDH 1. -
Plenary and Platform Abstracts
American Society of Human Genetics 68th Annual Meeting PLENARY AND PLATFORM ABSTRACTS Abstract #'s Tuesday, October 16, 5:30-6:50 pm: 4. Featured Plenary Abstract Session I Hall C #1-#4 Wednesday, October 17, 9:00-10:00 am, Concurrent Platform Session A: 6. Variant Insights from Large Population Datasets Ballroom 20A #5-#8 7. GWAS in Combined Cancer Phenotypes Ballroom 20BC #9-#12 8. Genome-wide Epigenomics and Non-coding Variants Ballroom 20D #13-#16 9. Clonal Mosaicism in Cancer, Alzheimer's Disease, and Healthy Room 6A #17-#20 Tissue 10. Genetics of Behavioral Traits and Diseases Room 6B #21-#24 11. New Frontiers in Computational Genomics Room 6C #25-#28 12. Bone and Muscle: Identifying Causal Genes Room 6D #29-#32 13. Precision Medicine Initiatives: Outcomes and Lessons Learned Room 6E #33-#36 14. Environmental Exposures in Human Traits Room 6F #37-#40 Wednesday, October 17, 4:15-5:45 pm, Concurrent Platform Session B: 24. Variant Interpretation Practices and Resources Ballroom 20A #41-#46 25. Integrated Variant Analysis in Cancer Genomics Ballroom 20BC #47-#52 26. Gene Discovery and Functional Models of Neurological Disorders Ballroom 20D #53-#58 27. Whole Exome and Whole Genome Associations Room 6A #59-#64 28. Sequencing-based Diagnostics for Newborns and Infants Room 6B #65-#70 29. Omics Studies in Alzheimer's Disease Room 6C #71-#76 30. Cardiac, Valvular, and Vascular Disorders Room 6D #77-#82 31. Natural Selection and Human Phenotypes Room 6E #83-#88 32. Genetics of Cardiometabolic Traits Room 6F #89-#94 Wednesday, October 17, 6:00-7:00 pm, Concurrent Platform Session C: 33. -
Prepublication PDF Version BIOCHEMICAL GENETICS OF
Biochemical Genetics of Opossum Aldehyde Dehydrogenase 3: Evidence for Three ALDH3A-Like Genes and an ALDH3B- Like Gene Author Holmes, Roger S Published 2010 Journal Title Biochemical Genetics DOI https://doi.org/10.1007/s10528-009-9318-3 Copyright Statement © 2010 Springer Netherlands. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com Downloaded from http://hdl.handle.net/10072/30852 Griffith Research Online https://research-repository.griffith.edu.au Published in Biochemical Genetics 48: 287-303 (2010) Prepublication PDF Version BIOCHEMICAL GENETICS OF OPOSSUM ALDEHYDE DEHYDROGENASE 3. Evidence for three ALDH3A-like genes and an ALDH3B-like gene Roger S Holmes School of Biomolecular and Physical Sciences, Griffith University, Nathan 4111 Brisbane Queensland Australia Email: [email protected] ABSTRACT Mammalian ALDH3 isozymes participate in peroxidic and fatty aldehyde metabolism, and in anterior eye tissue UV-filtration. BLAT analyses were undertaken of the opossum genome using rat ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2 amino acid sequences. Two predicted opossum ALDH3A1-like genes and an ALDH3A2-like gene were observed on chromosome 2; as well as an ALDH3B-like gene, which showed similar intron-exon boundaries with other mammalian ALDH3-like genes. Opossum ALDH3 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for rat ALDH3A1 by Liu and coworkers (1997). Eleven glycine residues were conserved for all of the opossum ALDH3-like sequences examined, including two glycine residues previously located within the stem of the rat ALDH3A1 active site funnel.