Cytoscape User Manual Release 3.5.0

Total Page:16

File Type:pdf, Size:1020Kb

Cytoscape User Manual Release 3.5.0 Cytoscape User Manual Release 3.5.0 The Cytoscape Consortium Mar 27, 2017 Contents 1 Introduction 3 2 Launching Cytoscape 5 2.1 System Requirements..........................................5 2.2 Getting Started..............................................5 3 Command Line Arguments 9 4 Quick Tour of Cytoscape 11 4.1 Welcome Screen............................................. 11 4.2 Basic Features.............................................. 12 4.3 The Menus................................................ 15 4.4 Network Management.......................................... 20 4.5 The View Navigator........................................... 23 5 Creating Networks 25 5.1 Import Fixed-Format Network Files................................... 25 5.2 Import Networks from Unformatted Table Files............................. 26 5.3 Import Networks from Public Databases................................ 31 5.4 Getting Started.............................................. 32 5.5 Example: Retrieving Protein-Protein Interaction Networks from Multiple Databases......... 32 5.6 Create a New Network or Edit One Manually.............................. 35 6 Nested Networks 39 6.1 Creating Nested Networks........................................ 39 6.2 Visualization of Nested Networks.................................... 39 7 Supported Network File Formats 41 7.1 SIF Format................................................ 41 7.2 NNF................................................... 43 7.3 GML Format............................................... 47 7.4 XGMML Format............................................. 47 7.5 SBML (Systems Biology Markup Language) Format.......................... 48 7.6 BioPAX (Biological PAthways eXchange) Format........................... 48 7.7 PSI-MI Format.............................................. 48 7.8 GraphML................................................. 48 7.9 Delimited Text Table and Excel Workbook............................... 48 i 7.10 Cytoscape.js JSON............................................ 49 8 Node and Edge Column Data 55 8.1 Import Data Table Files......................................... 55 8.2 Legacy Cytoscape Attributes Format.................................. 57 8.3 Import Data Table from Public Databases................................ 60 8.4 Mapping Identifiers........................................... 62 9 Ontology and Annotation Import 65 9.1 Ontology and Annotation File Format.................................. 66 9.2 Default List of Ontologies........................................ 66 9.3 Gene Association File.......................................... 66 9.4 Import Ontology and Annotation.................................... 67 10 Column Data Functions and Equations 69 10.1 Column Formulas............................................ 69 10.2 The Formula Builder........................................... 72 10.3 A Note for App Writers......................................... 73 11 Finding and Filtering Nodes and Edges 75 11.1 Search Bar................................................ 75 11.2 Filters................................................... 76 11.3 The Select Menu............................................. 83 12 Navigation and Layout 85 12.1 Basic Network Navigation........................................ 85 12.2 Other Mouse Behaviors......................................... 86 12.3 Automatic Layout Algorithms...................................... 87 12.4 yFiles Layouts.............................................. 94 12.5 Layout Parameters............................................ 98 12.6 Edge Bend and Automatic Edge Bundling................................ 99 12.7 Manual Layout.............................................. 102 12.8 Node Layout Tools............................................ 102 13 Styles 105 13.1 What are Styles?............................................. 105 13.2 Introduction to the Style Interface.................................... 112 13.3 Introduction to Style........................................... 114 13.4 Images, Charts and Gradients...................................... 117 13.5 Styles Tutorials.............................................. 124 13.6 Advanced Topics............................................. 152 13.7 Managing Styles............................................. 158 14 App Manager 161 14.1 What are Apps?............................................. 161 14.2 Installing Apps.............................................. 161 14.3 Managing your Installed Apps...................................... 163 15 Command Tool 165 16 Merge 167 16.1 Merge Networks............................................. 167 16.2 Merge Tables............................................... 168 17 NetworkAnalyzer 169 17.1 Network Analysis............................................ 169 ii 17.2 Subnetwork Creation........................................... 173 17.3 NetworkAnalyzerDemo: Computation and Visualization of Topological Parameters and Centrality Measures for Biological Networks.................................... 174 18 Cytoscape Preferences 177 18.1 Managing Properties........................................... 177 18.2 Managing Bookmarks.......................................... 179 18.3 Managing Proxy Servers......................................... 180 18.4 Managing Group Settings........................................ 181 18.5 Managing OpenCL Settings....................................... 183 19 Linkout 185 19.1 Adding and Removing Links....................................... 186 20 Panels 189 20.1 Basic Usage............................................... 191 21 Rendering Engine 193 21.1 What is Level of Detail (LOD)?..................................... 193 22 Export Your Data 195 22.1 Raw Data Export............................................. 195 22.2 Exporting for Publication........................................ 197 23 Cytoscape and OpenCL (Computing on the GPU) 209 23.1 What it is for?.............................................. 209 23.2 Setup & Configuration.......................................... 209 23.3 OpenCL/GPU Troubleshooting..................................... 210 24 Cytoscape.js and Cytoscape 211 24.1 What is Cytoscape.js?.......................................... 211 24.2 Data Exchange between Cytoscape and Cytoscape.js.......................... 214 24.3 Export Styles to Cytoscape.js...................................... 215 24.4 Build Your Own Web Application with Cytoscape.js.......................... 215 25 Programmatic Access to Cytoscape Features (Scripting) 217 25.1 Programmatic Access to Cytoscape Features.............................. 217 25.2 Topics................................................... 217 25.3 Background................................................ 217 26 Cytoscape Privacy Policy 223 27 Basic Expression Analysis Tutorial 225 27.1 Loading Network............................................. 225 27.2 Loading Expression Data........................................ 226 27.3 Visualizing Expression Data....................................... 228 iii iv Cytoscape User Manual, Release 3.5.0 The Cytoscape User Manual copyright is owned by The Cytoscape Consortium, and is made available under the same GPL license as Cytoscape itself: LGPL 2.1, the GNU Lesser General Public License, version 2.1, February 1999 available in text at http://www.gnu.org/licenses/lgpl-2.1.html. Copyright (c) 2001-2017 The Cytoscape Consortium Table of Contents Contents 1 Cytoscape User Manual, Release 3.5.0 2 Contents CHAPTER 1 Introduction This version of Cytoscape builds upon the new 3.x architecture, developer API and set of user controls established. If you’re familiar with former versions of Cytoscape, this version will feel completely familiar and you’ll be all set to go. In future releases, we will continue to tweak and improve both the software and the documentation. This manual will be updated to reflect all the latest changes. If you would prefer to learn by doing, consider starting with the Basic Expression Analysis Tutorial chapter. This manual describes the installation and use of Cytoscape. For a more thorough understanding of Cytoscape and its ecosystem, we highly recommend reading the Welcome Letter accessible on the http://cytoscape.org website. 3 Cytoscape User Manual, Release 3.5.0 4 Chapter 1. Introduction CHAPTER 2 Launching Cytoscape Cytoscape is a Java application verified to run on the Linux, Windows, and Mac OS X platforms. Although not officially supported, other UNIX platforms such as Solaris or FreeBSD may run Cytoscape if Java version 8 or later is available for the platform. System Requirements The system requirements for Cytoscape depend on the size of the networks you want to load, view and manipulate. Note that as of Cytoscape v3.2, networks are loaded faster and in less memory than with previous versions. While this is good news, networks created on v3.2 on a given memory configuration (e.g., 1GB) may not be loadable by prior Cytoscape versions on the same memory configuration. Specific system requirements, limitations, and configuration options apply to each platform, as described in the Release Notes available on the http://cytoscape.org website. Getting Started Install Java Cytoscape requires Java 8 or later. • While Cytoscape versions prior to v3.2 run on Java 6, Oracle and other JVM suppliers have dropped Java 6 support. Consequently, Cytoscape v3.2 and later don’t support Java 6 either. With v3.3, we have also dropped support for Java 7 for the same reason. • We recommend a 64 bit Java
Recommended publications
  • Gene Ontology Analysis with Cytoscape
    Introduction to Systems Biology Exercise 6: Gene Ontology Analysis Overview: Gene Ontology (GO) is a useful resource in bioinformatics and systems biology. GO defines a controlled vocabulary of terms in biological process, molecular function, and cellular location, and relates the terms in a somewhat-organized fashion. This exercise outlines the resources available under Cytoscape to perform analyses for the enrichment of gene annotation (GO terms) in networks or sub-networks. In this exercise you will: • Learn how to navigate the Cytoscape Gene Ontology wizard to apply GO annotations to Cytoscape nodes • Learn how to look for enriched GO categories using the BiNGO plugin. What you will need: • The BiNGO plugin, developed by the Computational Biology Division, Dept. of Plant Systems Biology, Flanders Interuniversitary Institute for Biotechnology (VIB), described in Maere S, et al. Bioinformatics. 2005 Aug 15;21(16):3448-9. Epub 2005 Jun 21. • galFiltered.sif used in the earlier exercises and found under sampleData. Please download any missing files from http://www.cbs.dtu.dk/courses/27041/exercises/Ex3/ Download and install the BiNGO plugin, as follows: 1. Get BiNGO from the course page (see above) or go to the BiNGO page at http://www.psb.ugent.be/cbd/papers/BiNGO/. (This site also provides documentation on BiNGO). 2. Unzip the contents of BiNGO.zip to your Cytoscape plugins directory (make sure the BiNGO.jar file is in the plugins directory and not in a subdirectory). 3. If you are currently running Cytoscape, exit and restart. First, we will load the Gene Ontology data into Cytoscape. 1. Start Cytoscape, under Edit, Preferences, make sure your default species, “defaultSpeciesName”, is set to “Saccharomyces cerevisiae”.
    [Show full text]
  • Mmnet: Metagenomic Analysis of Microbiome Metabolic Network
    mmnet: Metagenomic analysis of microbiome metabolic network Yang Cao, Fei Li, Xiaochen Bo May 15, 2016 Contents 1 Introduction 1 1.1 Installation . .2 2 Analysis Pipeline: from raw Metagenomic Sequence Data to Metabolic Network Analysis 2 2.1 Prepare metagenomic sequence data . .3 2.2 Annotation of Metagenomic Sequence Reads . .3 2.3 Estimating the abundance of enzymatic genes . .5 2.4 Building reference metabolic dataset . .7 2.5 Constructing State Specific Network . .8 2.6 Topological network analysis . .9 2.7 Differential network analysis . 10 2.8 Network Visualization . 10 3 Analysis in Cytoscape 11 1 Introduction This manual is a brief introduction to structure, functions and usage of mmnet pack- age. The mmnet package provides a set of functions to support systems analysis of metagenomic data in R, including annotation of raw metagenomic sequence data, con- struction of metabolic network, and differential network analysis based on state specific metabolic network and enzymatic gene abundance. Meanwhile, the package supports an analysis pipeline for metagenomic systems bi- ology. We can simply start from raw metagenomic sequence data, optionally use MG- RAST to rapidly retrieve metagenomic annotation, fetch pathway data from KEGG using its API to construct metabolic network, and then utilize a metagenomic systems biology computational framework mentioned in [Greenblum et al., 2012] to establish further differential network analysis. The main features of mmnet: • Annotation of metagenomic sequence reads with MG-RAST • Estimating abundances of enzymatic gene based on functional annotation 1 • Constructing State Specific metabolic Network • Topological network analysis • Differential network analysis 1.1 Installation mmnet requires these packages: KEGGREST, igraph, Biobase, XML, RCurl, RJSO- NIO, stringr, ggplot2 and biom.
    [Show full text]
  • PMAP: Databases for Analyzing Proteolytic Events and Pathways Yoshinobu Igarashi1, Emily Heureux1, Kutbuddin S
    Published online 8 October 2008 Nucleic Acids Research, 2009, Vol. 37, Database issue D611–D618 doi:10.1093/nar/gkn683 PMAP: databases for analyzing proteolytic events and pathways Yoshinobu Igarashi1, Emily Heureux1, Kutbuddin S. Doctor1, Priti Talwar1, Svetlana Gramatikova1, Kosi Gramatikoff1, Ying Zhang1, Michael Blinov3, Salmaz S. Ibragimova2, Sarah Boyd4, Boris Ratnikov1, Piotr Cieplak1, Adam Godzik1, Jeffrey W. Smith1, Andrei L. Osterman1 and Alexey M. Eroshkin1,* 1The Center on Proteolytic Pathways, The Cancer Research Center and The Inflammatory and Infectious Disease Center at The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, 2Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia, 3Center of Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA and 4Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia Received August 15, 2008; Revised September 19, 2008; Accepted September 23, 2008 ABSTRACT Proteolysis is essential to almost all fundamental cellular processes including proliferation, death and migration The Proteolysis MAP (PMAP, http://www. (1–4). Equally as important, mis-regulated proteolysis proteolysis.org) is a user-friendly website intended can cause diseases ranging from emphysema (5) and to aid the scientific community in reasoning about thrombosis (6), to arthritis (7) and Alzheimer’s (8). There proteolytic networks and pathways. PMAP is com- are a number of online resources containing information prised of five databases, linked together in one on proteases including SwissProt (the oldest), HPRD environment. The foundation databases, Protease- (human protein reference database) (9) and UniProt (10).
    [Show full text]
  • How to Use and Integrate.Pdf
    Journal of Proteomics 171 (2018) 37–52 Contents lists available at ScienceDirect Journal of Proteomics journal homepage: www.elsevier.com/locate/jprot How to use and integrate bioinformatics tools to compare proteomic data from distinct conditions? A tutorial using the pathological similarities between Aortic Valve Stenosis and Coronary Artery Disease as a case-study Fábio Trindade a,b,⁎, Rita Ferreira c, Beatriz Magalhães a, Adelino Leite-Moreira b, Inês Falcão-Pires b,RuiVitorinoa,b a Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal b Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal c QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal article info abstract Article history: Nowadays we are surrounded by a plethora of bioinformatics tools, powerful enough to deal with the large Received 22 December 2016 amounts of data arising from proteomic studies, but whose application is sometimes hard to find. Therefore, Received in revised form 28 February 2017 we used a specific clinical problem – to discriminate pathophysiology and potential biomarkers between two Accepted 19 March 2017 similar cardiovascular diseases, aortic valve stenosis (AVS) and coronary artery disease (CAD) – to make a Available online 21 March 2017 step-by-step guide through four bioinformatics tools: STRING, DisGeNET, Cytoscape and ClueGO. Proteome data was collected from articles available on PubMed centered on proteomic studies enrolling subjects with Keywords: fi fi Proteomics AVS or CAD. Through the analysis of gene ontology provided by STRING and ClueGO we could nd speci cbio- Bioinformatics logical phenomena associated with AVS, such as down-regulation of elastic fiber assembly, and with CAD, such STRING as up-regulation of plasminogen activation.
    [Show full text]
  • A Roadmap for Metagenomic Enzyme Discovery
    Natural Product Reports View Article Online REVIEW View Journal A roadmap for metagenomic enzyme discovery Cite this: DOI: 10.1039/d1np00006c Serina L. Robinson, * Jorn¨ Piel and Shinichi Sunagawa Covering: up to 2021 Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a ‘needle in a haystack’ without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, This article is licensed under a genomic context, 3D structure-based approaches, and machine learning techniques.
    [Show full text]
  • Some Considerations for Analyzing Biodiversity Using Integrative
    Some considerations for analyzing biodiversity using integrative metagenomics and gene networks Lucie Bittner, Sébastien Halary, Claude Payri, Corinne Cruaud, Bruno de Reviers, Philippe Lopez, Eric Bapteste To cite this version: Lucie Bittner, Sébastien Halary, Claude Payri, Corinne Cruaud, Bruno de Reviers, et al.. Some considerations for analyzing biodiversity using integrative metagenomics and gene networks. Biology Direct, BioMed Central, 2010, 5 (5), pp.47. 10.1186/1745-6150-5-47. hal-02922363 HAL Id: hal-02922363 https://hal.archives-ouvertes.fr/hal-02922363 Submitted on 26 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bittner et al. Biology Direct 2010, 5:47 http://www.biology-direct.com/content/5/1/47 HYPOTHESIS Open Access Some considerations for analyzing biodiversity using integrative metagenomics and gene networks Lucie Bittner1†, Sébastien Halary2†, Claude Payri3, Corinne Cruaud4, Bruno de Reviers1, Philippe Lopez2, Eric Bapteste2* Abstract Background: Improving knowledge of biodiversity will benefit conservation biology, enhance bioremediation studies, and could lead to new medical treatments. However there is no standard approach to estimate and to compare the diversity of different environments, or to study its past, and possibly, future evolution.
    [Show full text]
  • Node and Edge Attributes
    Cytoscape User Manual Table of Contents Cytoscape User Manual ........................................................................................................ 3 Introduction ...................................................................................................................... 48 Development .............................................................................................................. 4 License ...................................................................................................................... 4 What’s New in 2.7 ....................................................................................................... 4 Please Cite Cytoscape! ................................................................................................. 7 Launching Cytoscape ........................................................................................................... 8 System requirements .................................................................................................... 8 Getting Started .......................................................................................................... 56 Quick Tour of Cytoscape ..................................................................................................... 12 The Menus ............................................................................................................... 15 Network Management ................................................................................................. 18 The
    [Show full text]
  • A Computational Approach for Identifying the Impact Of
    ering & B ne io Harishchander, J Bioengineer & Biomedical Sci 2017, 7:3 gi m n e e d io i c DOI: 10.4172/2155-9538.1000235 B a f l S Journal of o l c a i e n n r c u e o J ISSN: 2155-9538 Bioengineering & Biomedical Science Short Communication Open Access A Computational Approach for Identifying the Impact of Pharmacogenomics in Regulatory Networks to Understand Disease Pathology Harishchander A* Department of Bioinformatics, Sathyabama University, Chennai, Tamil Nadu, India Abstract In the current era of post genomics, there exist a varity of computational methodologies to understand the nature of disease pathology like RegNetworks, DisgiNet, pharmGkb, pharmacomiR and etc. In most of these computational methodologies either a seed pairing approach or a base pair complement is being followed. Hence there exists a gap in understanding the nature of disease pathology in a holistic view point. In this manuscript we combine the approach of seed pairing and graph theory to illustrate the impact of Pharmacogenomics in Regulatory Networks to understand disease Pathology. Keywords: Pharmacogenomics; Macromolecules; Phenotypes potentials [16,17]. This information can still be used to predict the new regulatory relationships between TFs and genes by matching Introduction the binding motifs in DNA sequences. Hence, these predictions were Events in gene regulation play vital roles in a various developmental based on TFBS to integrate into PharmacoReg to provide a more and physiological processes in a cell, in which macromolecules such as comprehensive landscape in gene regulation. Moreover, to include the RNAs, genes and proteins to coordinate and organize responses under post- transcriptional regulatory relationship, consideration of miRNAs ∼ various conditions [1].
    [Show full text]
  • Genome-Wide Analysis Identifies 12 Loci Influencing Human Reproductive Behavior
    Genome-wide analysis identifies 12 loci influencing human reproductive behavior Correspondence to: Melinda C. Mills ([email protected]), Nicola Barban ([email protected]), Harold Snieder ([email protected]) or Marcel den Hoed ([email protected]) Authors: Nicola Barban1,*, Rick Jansen2,#, Ronald de Vlaming3,4,5,#, Ahmad Vaez6,#, Jornt J. Mandemakers7,#, Felix C. Tropf1,#, Xia Shen8,9,10,#, James F. Wilson10,9,#, Daniel I. Chasman11,#, Ilja M. Nolte6,#, Vinicius Tragante,#12, Sander W. van der Laan13,#, John R. B. Perry14,#, Augustine Kong32,15 ,#, BIOS Consortium, Tarunveer Ahluwalia16,17,18, Eva Albrecht19, Laura Yerges-Armstrong20, Gil Atzmon21,22, Kirsi Auro23,24 , Kristin Ayers25, Andrew Bakshi26, Danny Ben-Avraham27, Klaus Berger28, Aviv Bergman29, Lars Bertram30, Lawrence F. Bielak31, Gyda Bjornsdottir32, Marc Jan Bonder33, Linda Broer34, Minh Bui35, Caterina Barbieri36, Alana Cavadino37,38, Jorge E Chavarro39,40,41, Constance Turman41, Maria Pina Concas42, Heather J. Cordell25, Gail Davies43,44, Peter Eibich45, Nicholas Eriksson46, Tõnu Esko47,48, Joel Eriksson49, Fahimeh Falahi6, Janine F. Felix50,4,51, Mark Alan Fontana52, Lude Franke33, Ilaria Gandin53, Audrey J. Gaskins39, Christian Gieger54,55, Erica P. Gunderson56, Xiuqing Guo57, Caroline Hayward9, Chunyan He58, Edith Hofer59,60, Hongyan Huang41, Peter K. Joshi10, Stavroula Kanoni61, Robert Karlsson8, Stefan Kiechl62, Annette Kifley63, Alexander Kluttig64, Peter Kraft 41,65, Vasiliki Lagou66,67,68,Cecile Lecoeur,99 Jari Lahti69,70,71, Ruifang Li-Gao72, Penelope A. Lind73, Tian Liu74, Enes Makalic35, Crysovalanto Mamasoula25, Lindsay Matteson75, Hamdi Mbarek76,77, Patrick F. McArdle20, George McMahon78, S. Fleur W. Meddens79, 5, Evelin Mihailov47, Mike Miller80, Stacey A. Missmer81,41, Claire Monnereau50,4,51 , Peter J.
    [Show full text]
  • Network Generation and Analysis Through Cytoscape and PSICQUIC
    (v6, 6/6/13) Network generation and analysis through Cytoscape and PSICQUIC Author: Pablo Porras Millán IntAct Scientific Database Curator This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. Contents Summary ........................................................................................................................................................ 3 Objectives ....................................................................................................................................................... 3 Software requirements ............................................................................................................................... 3 Introduction to Cytoscape ........................................................................................................................ 3 Tutorial ........................................................................................................................................................... 4 Dataset description ................................................................................................................................. 4 Representing an interaction network using Cytoscape ............................................................... 8 Filtering with edge and node attributes ..........................................................................................
    [Show full text]
  • Comparative Bioinformatic Analysis of Proteome and Transcriptome
    Comparative Bioinformatic Analysis of Proteome and Transcriptome Derived from a Single Cell Type Martin Damsbo, Jacob Poder, Erik Nielsen, Christian Ravnsborg, Alexandre Podtelejnikov Thermo Fisher Scientific, Odense, Denmark Overview In total, 242 pathways were detected out of 251 available While the knowledge of over-represented gene ontology from KEGG for all human proteins. Among under- terms or pathways is helpful, it does not always explain the Purpose: Demonstration of a fast and effective way to represented pathways were asthma, autoimmune thyroid molecular mechanism relevant to the explored proteins and perform statistical, comparative and bioinformatic analysis disease, allograft rejection, olfactory transduction and investigation of protein–protein interaction (PPI) networks. of large scale proteome and transcriptome studies. others. All of them are not expected to be functionally To complete the bioinformatic analysis of the data set we relevant in HeLa cells. At the same time, some of the over- performed PPI analysis using Cytoscape graph algorithms Methods: Set of bioinformatic data-mining tools. represented pathways like nucleotide excision repair have and the VizMapper visualization tool, where ProteinCenter Results: Comprehensive bioinformatic analysis of data more than 92% coverage. All in all, average pathway software data were used to colour-code nodes according to derived from large-scale LC-MS/MS proteomics study of coverage is around 46% and suggests that the detected the protein quantitative values. Integration of ProteinCenter HeLa cells and comparison to transcriptome data. proteome covers a very large part of functional pathways. software with Cytoscape also allowed access to a significant number of plug-ins and provides exhaustive Introduction analysis of interactome.
    [Show full text]
  • Task Specialization Is Commonly Regulated Across All
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.020461; this version posted April 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Multiple lineages, same molecular basis: task specialization is 2 commonly regulated across all eusocial bee groups 3 4 Natalia de Souza Araujo1,2* and Maria Cristina Arias1 5 6 1 Department of Genetics and Evolutionary Biology, Universidade de São Paulo. Rua do Matão, 277, 7 05508-090 São Paulo - SP, Brazil 8 2 [current address] Interuniversity Institute of Bioinformatics in Brussels and Department of 9 Evolutionary Biology & Ecology, Université Libre de Bruxelles. Avenue F.D. Roosevelt, 50. B-1050 10 Brussels, Belgium 11 12 * Corresponding author: N.S. Araujo – [email protected] 13 14 Abstract 15 A striking feature of advanced insect societies is the existence of workers that forgo 16 reproduction. Two broad types of workers exist in eusocial bees: nurses which care 17 for their young siblings and the queen, and foragers who guard the nest and forage for 18 food. Comparisons between this two worker subcastes have been performed in 19 honeybees, but data from other bees are scarce. To understand whether similar 20 molecular mechanisms are involved in nurse-forager differences across distinct 21 species, we compared gene expression and DNA methylation profiles between nurses 22 and foragers of the buff-tailed bumblebee Bombus terrestris and of the stingless bee 23 Tetragonisca angustula.
    [Show full text]