Node and Edge Attributes

Total Page:16

File Type:pdf, Size:1020Kb

Node and Edge Attributes Cytoscape User Manual Table of Contents Cytoscape User Manual ........................................................................................................ 3 Introduction ...................................................................................................................... 48 Development .............................................................................................................. 4 License ...................................................................................................................... 4 What’s New in 2.7 ....................................................................................................... 4 Please Cite Cytoscape! ................................................................................................. 7 Launching Cytoscape ........................................................................................................... 8 System requirements .................................................................................................... 8 Getting Started .......................................................................................................... 56 Quick Tour of Cytoscape ..................................................................................................... 12 The Menus ............................................................................................................... 15 Network Management ................................................................................................. 18 The Network Overview Window ................................................................................... 20 Command Line Arguments .................................................................................................. 21 Cytoscape Preferences ........................................................................................................ 22 Managing Properties ................................................................................................... 22 Managing Bookmarks ................................................................................................. 24 Managing Proxy Servers ............................................................................................. 24 Creating Networks ............................................................................................................. 24 Import Fixed-Format Network Files ............................................................................... 25 Import Free-Format Table Files ..................................................................................... 26 Import Networks from Web Services ............................................................................. 30 Edit a New Network ................................................................................................... 30 Supported Network File Formats ........................................................................................... 31 SIF Format ............................................................................................................... 31 NNF ........................................................................................................................ 33 GML Format ............................................................................................................. 38 XGMML Format ....................................................................................................... 38 SBML (Systems Biology Markup Language) Format ........................................................ 39 BioPAX (Biological PAthways eXchange) Format ............................................................ 39 PSI-MI Format .......................................................................................................... 39 Delimited Text Table and Excel Workbook ...................................................................... 39 Node Naming Issues in Cytoscape ................................................................................. 40 Node and Edge Attributes .................................................................................................... 41 Cytoscape Attribute File Format .................................................................................... 41 Import Attribute Table Files ......................................................................................... 44 Attribute Functions and Equations ......................................................................................... 48 Attribute Formulas ..................................................................................................... 48 Loading Gene Expression (Attribute Matrix) Data .................................................................... 52 Data File Format ........................................................................................................ 52 General Procedure ...................................................................................................... 53 Worked Example ....................................................................................................... 53 Detailed file format (Advanced users) ............................................................................ 54 Importing Networks and Attributes from External Databases ...................................................... 55 Web Service Client Manager ........................................................................................ 55 Getting Started .......................................................................................................... 56 1 Cytoscape User Manual Example #1: Retrieving Protein-Protein Interaction Networks from IntAct ............................ 56 Example #2: Retrieving Protein-Protein Interaction Networks from NCBI Entrez Gene ........... 57 Example #3: Retrieving Pathways and Networks from Pathway Commons ............................ 58 Future Directions ....................................................................................................... 61 Import Attributes from External Database ....................................................................... 61 Use Multiple Services in a Workflow ............................................................................. 64 Navigation and Layout ........................................................................................................ 66 Basic Network Navigation ........................................................................................... 66 Other Mouse Behaviors ............................................................................................... 67 Automatic Layout Algorithms ...................................................................................... 68 Manual Layout .......................................................................................................... 77 Node Movement and Placement .................................................................................... 81 Visual Styles ..................................................................................................................... 81 What is a Visual Style? ................................................................................................ 81 Introduction to the VizMapper User Interface .................................................................. 96 Introduction to Visual Styles ........................................................................................ 97 Visual Attributes, Graph Attributes and Visual Mappers ..................................................... 99 Custom Graphics Manager ......................................................................................... 107 Visual Styles Tutorials ............................................................................................... 111 Advanced Topics ...................................................................................................... 126 Managing Visual Styles ............................................................................................. 131 Bypassing Visual Styles ............................................................................................. 131 Finding and Filtering Nodes and Edges ................................................................................. 132 QuickFind ............................................................................................................... 132 Filters .................................................................................................................... 136 Using New Filters .................................................................................................... 137 Using Old Filters ...................................................................................................... 141 The Select Menu ...................................................................................................... 145 Editing Networks ............................................................................................................. 146 Add Interactions (SIF Style) ....................................................................................... 147 Nested Networks .............................................................................................................. 148 Introducing Nested Networks ..................................................................................... 148 Creating Nested Networks .........................................................................................
Recommended publications
  • How to Find out the IP Address of an Omron
    Communications Middleware/Network Browser How to find an Omron Controller’s IP address Valin Corporation | www.valin.com Overview • Many Omron PLC’s have Ethernet ports or Ethernet port options • The IP address for a PLC is usually changed by the programmer • Most customers do not mark the controller with IP address (label etc.) • Very difficult to communicate to the PLC over Ethernet if the IP address is unknown. Valin Corporation | www.valin.com Simple Ethernet Network Basics IP address is up to 12 digits (4 octets) Ex:192.168.1.1 For MOST PLC programming applications, the first 3 octets are the network address and the last is the node address. In above example 192.168.1 is network address, 1 is node address. For devices to communicate on a simple network: • Every device IP Network address must be the same. • Every device node number must be different. Device Laptop EX: Omron PLC 192.168.1.1 192.168.1.1 Device Laptop EX: Omron PLC 127.27.250.5 192.168.1.1 Device Laptop EX: Omron PLC 192.168.1.3 192.168.1.1 Valin Corporation | www.valin.com Omron Default IP Address • Most Omron Ethernet devices use one of the following IP addresses by default. Omron PLC 192.168.250.1 OR 192.168.1.1 Valin Corporation | www.valin.com PING Command • PING is a way to check if the device is connected (both virtually and physically) to the network. • Windows Command Prompt command. • PC must use the same network number as device (See previous) • Example: “ping 172.21.90.5” will test to see if a device with that IP address is connected to the PC.
    [Show full text]
  • Disk Clone Industrial
    Disk Clone Industrial USER MANUAL Ver. 1.0.0 Updated: 9 June 2020 | Contents | ii Contents Legal Statement............................................................................... 4 Introduction......................................................................................4 Cloning Data.................................................................................................................................... 4 Erasing Confidential Data..................................................................................................................5 Disk Clone Overview.......................................................................6 System Requirements....................................................................................................................... 7 Software Licensing........................................................................................................................... 7 Software Updates............................................................................................................................. 8 Getting Started.................................................................................9 Disk Clone Installation and Distribution.......................................................................................... 12 Launching and initial Configuration..................................................................................................12 Navigating Disk Clone.....................................................................................................................14
    [Show full text]
  • Gene Ontology Analysis with Cytoscape
    Introduction to Systems Biology Exercise 6: Gene Ontology Analysis Overview: Gene Ontology (GO) is a useful resource in bioinformatics and systems biology. GO defines a controlled vocabulary of terms in biological process, molecular function, and cellular location, and relates the terms in a somewhat-organized fashion. This exercise outlines the resources available under Cytoscape to perform analyses for the enrichment of gene annotation (GO terms) in networks or sub-networks. In this exercise you will: • Learn how to navigate the Cytoscape Gene Ontology wizard to apply GO annotations to Cytoscape nodes • Learn how to look for enriched GO categories using the BiNGO plugin. What you will need: • The BiNGO plugin, developed by the Computational Biology Division, Dept. of Plant Systems Biology, Flanders Interuniversitary Institute for Biotechnology (VIB), described in Maere S, et al. Bioinformatics. 2005 Aug 15;21(16):3448-9. Epub 2005 Jun 21. • galFiltered.sif used in the earlier exercises and found under sampleData. Please download any missing files from http://www.cbs.dtu.dk/courses/27041/exercises/Ex3/ Download and install the BiNGO plugin, as follows: 1. Get BiNGO from the course page (see above) or go to the BiNGO page at http://www.psb.ugent.be/cbd/papers/BiNGO/. (This site also provides documentation on BiNGO). 2. Unzip the contents of BiNGO.zip to your Cytoscape plugins directory (make sure the BiNGO.jar file is in the plugins directory and not in a subdirectory). 3. If you are currently running Cytoscape, exit and restart. First, we will load the Gene Ontology data into Cytoscape. 1. Start Cytoscape, under Edit, Preferences, make sure your default species, “defaultSpeciesName”, is set to “Saccharomyces cerevisiae”.
    [Show full text]
  • “Log” File in Stata
    Updated July 2018 Creating a “Log” File in Stata This set of notes describes how to create a log file within the computer program Stata. It assumes that you have set Stata up on your computer (see the “Getting Started with Stata” handout), and that you have read in the set of data that you want to analyze (see the “Reading in Stata Format (.dta) Data Files” handout). A log file records all your Stata commands and output in a given session, with the exception of graphs. It is usually wise to retain a copy of the work that you’ve done on a given project, to refer to while you are writing up your findings, or later on when you are revising a paper. A log file is a separate file that has either a “.log” or “.smcl” extension. Saving the log as a .smcl file (“Stata Markup and Control Language file”) keeps the formatting from the Results window. It is recommended to save the log as a .log file. Although saving it as a .log file removes the formatting and saves the output in plain text format, it can be opened in most text editing programs. A .smcl file can only be opened in Stata. To create a log file: You may create a log file by typing log using ”filepath & filename” in the Stata Command box. On a PC: If one wanted to save a log file (.log) for a set of analyses on hard disk C:, in the folder “LOGS”, one would type log using "C:\LOGS\analysis_log.log" On a Mac: If one wanted to save a log file (.log) for a set of analyses in user1’s folder on the hard drive, in the folder “logs”, one would type log using "/Users/user1/logs/analysis_log.log" If you would like to replace an existing log file with a newer version add “replace” after the file name (Note: PC file path) log using "C:\LOGS\analysis_log.log", replace Alternately, you can use the menu: click on File, then on Log, then on Begin.
    [Show full text]
  • Basic STATA Commands
    Summer School on Capability and Multidimensional Poverty OPHI-HDCA, 2011 Oxford Poverty and Human Development Initiative (OPHI) http://ophi.qeh.ox.ac.uk Oxford Dept of International Development, Queen Elizabeth House, University of Oxford Basic STATA commands Typical STATA window Review Results Variables Commands Exploring your data Create a do file doedit Change your directory cd “c:\your directory” Open your database use database, clear Import from Excel (csv file) insheet using "filename.csv" Condition (after the following commands) if var1==3 or if var1==”male” Equivalence symbols: == equal; ~= not equal; != not equal; > greater than; >= greater than or equal; < less than; <= less than or equal; & and; | or. Weight [iw=weight] or [aw=weight] Browse your database browse Look for a variables lookfor “any word/topic” Summarize a variable (mean, standard su variable1 variable2 variable3 deviation, min. and max.) Tabulate a variable (per category) tab variable1 (add a second variables for cross tabs) Statistics for variables by subgroups tabstat variable1 variable2, s(n mean) by(group) Information of a variable (coding) codebook variable1, tab(99) Keep certain variables (use drop for the keep var1 var2 var3 opposite) Save a dataset save filename, [replace] Summer School on Capability and Multidimensional Poverty OPHI-HDCA, 2011 Creating Variables Generate a new variable (a number or a gen new_variable = 1 combinations of other variables) gen new_variable = variable1+ variable2 Generate a new variable conditional gen new_variable
    [Show full text]
  • Problem Solving and Unix Tools
    Problem Solving and Unix Tools Command Shell versus Graphical User Interface • Ease of use • Interactive exploration • Scalability • Complexity • Repetition Example: Find all Tex files in a directory (and its subdirectories) that have not changed in the past 21 days. With an interactive file roller, it is easy to sort files by particular characteristics such as the file extension and the date. But this sorting does not apply to files within subdirectories of the current directory, and it is difficult to apply more than one sort criteria at a time. A command line interface allows us to construct a more complex search. In unix, we find the files we are after by executing the command, find /home/nolan/ -mtime +21 -name ’*.tex’ To find out more about a command you can read the online man pages man find or you can execute the command with the –help option. In this example, the standard output to the screen is piped into the more command which formats it to dispaly one screenful at a time. Hitting the space bar displays the next page of output, the return key displays the next line of output, and the ”q” key quits the display. find --help | more Construct Solution in Pieces • Solve a problem by breaking down into pieces and building back up • Typing vs automation • Error messages - experimentation 1 Example: Find all occurrences of a particular string in several files. The grep command searches the contents of files for a regular expression. In this case we search for the simple character string “/stat141/FINAL” in all files in the directory WebLog that begin with the filename “access”.
    [Show full text]
  • Mmnet: Metagenomic Analysis of Microbiome Metabolic Network
    mmnet: Metagenomic analysis of microbiome metabolic network Yang Cao, Fei Li, Xiaochen Bo May 15, 2016 Contents 1 Introduction 1 1.1 Installation . .2 2 Analysis Pipeline: from raw Metagenomic Sequence Data to Metabolic Network Analysis 2 2.1 Prepare metagenomic sequence data . .3 2.2 Annotation of Metagenomic Sequence Reads . .3 2.3 Estimating the abundance of enzymatic genes . .5 2.4 Building reference metabolic dataset . .7 2.5 Constructing State Specific Network . .8 2.6 Topological network analysis . .9 2.7 Differential network analysis . 10 2.8 Network Visualization . 10 3 Analysis in Cytoscape 11 1 Introduction This manual is a brief introduction to structure, functions and usage of mmnet pack- age. The mmnet package provides a set of functions to support systems analysis of metagenomic data in R, including annotation of raw metagenomic sequence data, con- struction of metabolic network, and differential network analysis based on state specific metabolic network and enzymatic gene abundance. Meanwhile, the package supports an analysis pipeline for metagenomic systems bi- ology. We can simply start from raw metagenomic sequence data, optionally use MG- RAST to rapidly retrieve metagenomic annotation, fetch pathway data from KEGG using its API to construct metabolic network, and then utilize a metagenomic systems biology computational framework mentioned in [Greenblum et al., 2012] to establish further differential network analysis. The main features of mmnet: • Annotation of metagenomic sequence reads with MG-RAST • Estimating abundances of enzymatic gene based on functional annotation 1 • Constructing State Specific metabolic Network • Topological network analysis • Differential network analysis 1.1 Installation mmnet requires these packages: KEGGREST, igraph, Biobase, XML, RCurl, RJSO- NIO, stringr, ggplot2 and biom.
    [Show full text]
  • Generation of Knock-In Primary Human T Cells Using Cas9 Ribonucleoproteins
    Generation of knock-in primary human T cells using Cas9 ribonucleoproteins Kathrin Schumanna,b,1, Steven Linc,1, Eric Boyera,b, Dimitre R. Simeonova,b,d, Meena Subramaniame,f, Rachel E. Gatee,f, Genevieve E. Haliburtona,b, Chun J. Yee, Jeffrey A. Bluestonea, Jennifer A. Doudnac,g,h,i,j,2, and Alexander Marsona,b,g,2 aDiabetes Center, University of California, San Francisco, CA 94143; bDivision of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143; cDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; dBiomedical Sciences Graduate Program, University of California, San Francisco, CA 94143; eDepartment of Epidemiology and Biostatistics, Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California, San Francisco, CA 94143; fBiological and Medical Informatics Graduate Program, University of California, San Francisco, CA 94158; gInnovative Genomics Initiative, University of California, Berkeley, CA 94720; hHoward Hughes Medical Institute, University of California, Berkeley, CA 94720; iDepartment of Chemistry, University of California, Berkeley, CA 94720; and jPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Jennifer A. Doudna, June 29, 2015 (sent for review January 23, 2015) T-cell genome engineering holds great promise for cell-based therapies with specific replacement sequence, rather than deleted (14). Effi- for cancer, HIV, primary immune deficiencies, and autoimmune dis- cient technology to promote homologous recombination in T cells eases, but genetic manipulation of human T cells has been challenging. could eventually allow therapeutic correction of mutations that affect Improved tools are needed to efficiently “knock out” genes and “knock specialized T-cell functions.
    [Show full text]
  • Small Nucleolar Rnas Determine Resistance to Doxorubicin in Human Osteosarcoma
    International Journal of Molecular Sciences Article Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human Osteosarcoma Martina Godel 1, Deborah Morena 1, Preeta Ananthanarayanan 1, Ilaria Buondonno 1, Giulio Ferrero 2,3 , Claudia M. Hattinger 4, Federica Di Nicolantonio 1,5 , Massimo Serra 4 , 1 2 1, , 1, , Riccardo Taulli , Francesca Cordero , Chiara Riganti * y and Joanna Kopecka * y 1 Department of Oncology, University of Torino, 1026 Torino, Italy; martina.godel@edu.unito.it (M.G.); deborah.morena@unito.it (D.M.); preeta.ananthanarayanan@unito.it (P.A.); ilaria.buondonno@unito.it (I.B.); federica.dinicolantonio@unito.it (F.D.N.); riccardo.taulli@unito.it (R.T.) 2 Department of Computer Science, University of Torino, 10149 Torino, Italy; giulio.ferrero@unito.it (G.F.); francesca.cordero@unito.it (F.C.) 3 Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy 4 Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; claudia.hattinger@ior.it (C.M.H.); massimo.serra@ior.it (M.S.) 5 Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy * Correspondence: chiara.riganti@unito.it (C.R.); joanna.kopecka@unito.it (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.) These authors equally contributed to this work. y Received: 31 May 2020; Accepted: 21 June 2020; Published: 24 June 2020 Abstract: Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells.
    [Show full text]
  • Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
    School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage.
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • PC23 and PC43 Desktop Printer User Manual Document Change Record This Page Records Changes to This Document
    PC23 | PC43 Desktop Printer PC23d, PC43d, PC43t User Manual Intermec by Honeywell 6001 36th Ave.W. Everett, WA 98203 U.S.A. www.intermec.com The information contained herein is provided solely for the purpose of allowing customers to operate and service Intermec-manufactured equipment and is not to be released, reproduced, or used for any other purpose without written permission of Intermec by Honeywell. Information and specifications contained in this document are subject to change without prior notice and do not represent a commitment on the part of Intermec by Honeywell. © 2012–2014 Intermec by Honeywell. All rights reserved. The word Intermec, the Intermec logo, Fingerprint, Ready-to-Work, and SmartSystems are either trademarks or registered trademarks of Intermec by Honeywell. For patent information, please refer to www.hsmpats.com Wi-Fi is a registered certification mark of the Wi-Fi Alliance. Microsoft, Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States and/or other countries. Bluetooth is a trademark of Bluetooth SIG, Inc., U.S.A. The products described herein comply with the requirements of the ENERGY STAR. As an ENERGY STAR partner, Intermec Technologies has determined that this product meets the ENERGY STAR guidelines for energy efficiency. For more information on the ENERGY STAR program, see www.energystar.gov. The ENERGY STAR does not represent EPA endorsement of any product or service. ii PC23 and PC43 Desktop Printer User Manual Document Change Record This page records changes to this document. The document was originally released as Revision 001. Version Number Date Description of Change 005 12/2014 Revised to support MR7 firmware release.
    [Show full text]