Biomarcadores Periféricos, Toxicidade Sistêmica E

Total Page:16

File Type:pdf, Size:1020Kb

Biomarcadores Periféricos, Toxicidade Sistêmica E UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE CIÊNCIAS BÁSICAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS: BIOQUÍMICA TESE DE DOUTORADO Biomarcadores periféricos, toxicidade sistêmica e regulação transcricional no transtorno bipolar: identificação de vias moleculares associadas com a sua fisiopatologia e potenciais alvos terapêuticos BIANCA PFAFFENSELLER Porto Alegre 2016 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE CIÊNCIAS BÁSICAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS: BIOQUÍMICA Biomarcadores periféricos, toxicidade sistêmica e regulação transcricional no transtorno bipolar: identificação de vias moleculares associadas com a sua fisiopatologia e potenciais alvos terapêuticos BIANCA PFAFFENSELLER Orientador: Prof. Dr. Fábio Klamt Coorientador: Prof. Dr. Flávio Kapczinski Tese apresentada ao Programa de Pós- Graduação em Ciências Biológicas: Bioquímica da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do grau de Doutor em Bioquímica. Porto Alegre 2016 CIP - Catalogação na Publicação Pfaffenseller, Bianca Biomarcadores periféricos, toxicidade sistêmica e regulação transcricional no transtorno bipolar: identificação de vias moleculares associadas com a sua fisiopatologia e potenciais alvos terapêuticos / Bianca Pfaffenseller. -- 2016. 248 f. Orientador: Fábio Klamt. Coorientador: Flávio Kapczinski. Tese (Doutorado) -- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Porto Alegre, BR-RS, 2016. 1. transtorno bipolar. 2. EGR3. 3. regulação transcricional. 4. biomarcadores. 5. toxicidade. I. Klamt, Fábio, orient. II. Kapczinski, Flávio, coorient. III. Título. Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a). “Aprender é a única coisa de que a mente nunca se cansa, nunca tem medo e nunca se arrepende.” (Leonardo da Vinci) AGRADECIMENTOS Ao meu orientador, Professor Fábio Klamt, pela orientação, ensinamentos e dedicação a minha formação acadêmica e especialmente pela sua amizade e empolgação com a pesquisa. Ao meu coorientador, Professor Flávio Kapczinski, pela orientação e importante referência na área da pesquisa e pela oportunidade de aprendizado e crescimento profissional. Aos colegas e amigos do Laboratório de Psiquiatria Molecular, particularmente ao pessoal da bancada, com quem é muito bom compartilhar experiências e momentos divertidos no laboratório e fora dele. Destaco os amigos que estão no exterior, Gabriel, Gabi e Laura, que contribuíram muito na minha trajetória acadêmica. Em especial, agradeço à Bi Aguiar, minha xará, grande amiga, braço direito e parceria de sempre há mais de dez anos, com quem sempre pude contar. Um obrigado também muito especial à Gi, minha amiga-irmã, pelas trocas de ideias, apoio e consideráveis ajudas que foram fundamentais para a conclusão deste trabalho. Também agradeço à Bruna Maria, Emily e Thaís pelas conversas e parceria. E, mais recentemente, aos queridos amigos Ellen e Rafa Colombo. Pessoal, valeu pela amizade, companheirismo e pelo apoio de sempre. Aos demais colegas e professores do Laboratório de Psiquiatria Molecular, pela amizade e troca de experiência e conhecimentos, principalmente ao Pedro Magalhães pela importante contribuição neste trabalho. iii Aos amigos e colegas do Departamento de Bioquímica, principalmente à Pati, Dai, Ivi, Fer, que me auxiliaram no aprendizado e discussão de técnicas. E um obrigado essencial ao Marco Antônio pela sua disponibilidade, tranquilidade e por compartilhar seu conhecimento na área da bioinformática. Da mesma forma, agradeço ao Mauro Castro pela fundamental participação neste trabalho com seu admirável conhecimento e dedicação. As minhas grandes amigas da Biomed: Bianca, Roberta e Bárbara pela amizade e parceria desde a faculdade. À CAPES e ao CNPq pelas bolsas de estudo e financiamento de projetos. Ao Programa de Pós-graduação em Ciências Biológicas: Bioquímica pela excelência em educação e ensino. À Cleia pela simpatia, auxílio e esclarecimentos constantes. Um agradecimento mais que especial ao Adriano pela companhia, amor e carinho. Muito obrigada por me apoiar e compreender as minhas ausências e preocupações. A minha família, pela paciência, confiança, dedicação e compreensão em todos os momentos desta trajetória, principalmente naqueles em que estive mais ausente. Destaco meu pai Eliseu, que sempre incentivou o estudo e a busca pelo conhecimento. Agradeço por tudo! iv SUMÁRIO PARTE I ..................................................................................................................... 1 RESUMO .................................................................................................................... 2 ABSTRACT ................................................................................................................ 3 Lista de abreviaturas .................................................................................................. 4 1. INTRODUÇÃO ...................................................................................................... 7 1.1 Transtorno bipolar ............................................................................................... 7 1.2 Biomarcadores periféricos no transtorno bipolar .................................................. 9 1.2.1 Toxicidade sistêmica no transtorno bipolar ................................................. 11 1.3 Progressão do transtorno bipolar ........................................................................ 13 1.4 Resiliência e plasticidade celular ....................................................................... 14 1.5 Genética do transtorno bipolar ........................................................................... 16 1.6 Metodologias para estudo da genética em transtornos psiquiátricos.................... 17 1.6.1 Redes de regulação transcricional e análise de ‘reguladores mestres’ .......... 19 1.7 Modelos celulares para estudo do transtorno bipolar .......................................... 24 1.8 Justificativa ....................................................................................................... 26 2. OBJETIVOS ......................................................................................................... 27 2.1 Objetivo geral .................................................................................................... 27 2.2 Objetivos específicos ......................................................................................... 27 PARTE II .................................................................................................................. 29 3. ARTIGOS CIENTÍFICOS ................................................................................... 30 3.1 CAPÍTULO 1: Neurotrophins, inflammation and oxidative stress as illness activity biomarkers in bipolar disorder ...................................................................... 30 3.2 CAPÍTULO 2: Anatomical faces of neuroprogression in bipolar disorder......... 47 3.3 CAPÍTULO 3: Differential expression of transcriptional regulatory units in the prefrontal cortex of patients with bipolar disorder: potential role of early growth response gene 3 .......................................................................................................... 50 3.4 CAPÍTULO 4: Caracterização neuronal do modelo de células de neuroblastoma humano SH-SY5Y diferenciadas para estudo de alvos relacionados ao transtorno bipolar ....... 60 v 3.5 CAPÍTULO 5: Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder ................................................................................................................................... 97 PARTE III ............................................................................................................... 103 4. DISCUSSÃO ....................................................................................................... 104 5. CONCLUSÕES ................................................................................................... 124 6. PERSPECTIVAS ................................................................................................ 126 REFERÊNCIAS ...................................................................................................... 128 ANEXOS ................................................................................................................. 154 ANEXO 1: Artigo: Staging and neuroprogression in bipolar disorder ...................... 155 ANEXO 2: Capítulo de livro: Fisiopatologia do transtorno bipolar: novas tendências ................................................................................................................................. 164 ANEXO 3: Artigo: Early apoptosis in peripheral blood mononuclear cells from patients with bipolar disorder. ............................................................................................... 180 ANEXO 4: Artigo: Dissimilar Mechanism of Action and Dopamine Transporter Dependency of 6-Hydroxydopamine-Induced Toxicity in Undifferentiated and RA- Differentiated SH-SY5Y Human Neuroblastoma Cells. ............................................ 184 ANEXO 5: Lista de genes-alvo das unidades regulatórias enriquecidas no transtorno bipolar e seu modo de ação. ...................................................................................... 221 vi APRESENTAÇÃO A presente
Recommended publications
  • The VLDL Receptor Regulates Membrane Progesterone Receptor
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs212522. doi:10.1242/jcs.212522 RESEARCH ARTICLE The VLDL receptor regulates membrane progesterone receptor trafficking and non-genomic signaling Nancy Nader, Maya Dib, Raphael Courjaret, Rawad Hodeify, Raya Machaca, Johannes Graumann and Khaled Machaca* ABSTRACT the plasma membrane and interact with the classical P4 receptor, is Progesterone mediates its physiological functions through activation of nonetheless effective at mediating non-genomic P4 signaling both transcription-coupled nuclear receptors and seven-pass- (Bandyopadhyay et al., 1998; Dressing et al., 2011; Peluso et al., transmembrane progesterone receptors (mPRs), which transduce 2002). These results argued for the presence of membrane P4 the rapid non-genomic actions of progesterone by coupling to various receptors that are distinct from the nuclear P4 receptors. In 2003, the signaling modules. However, the immediate mechanisms of action Thomas laboratory identified a family of membrane progesterone downstream of mPRs remain in question. Herein, we use an untargeted receptors (mPRs) from fish ovaries (Zhu et al., 2003a,b) that belong quantitative proteomics approach to identify mPR interactors to better to the progestin and adiponectin (AdipoQ) receptor family (also define progesterone non-genomic signaling. Surprisingly, we identify named PAQ receptors). However, the signal transduction cascade the very-low-density lipoprotein receptor (VLDLR) as an mPRβ downstream of mPRs that mediates the non-genomic actions of P4 (PAQR8) partner that is required for mPRβ plasma membrane remains unclear. localization. Knocking down VLDLR abolishes non-genomic The non-genomic action of mPR and the ensuing signaling progesterone signaling, which is rescued by overexpressing VLDLR.
    [Show full text]
  • Mouse Kcnip2 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Kcnip2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Kcnip2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Kcnip2 gene (NCBI Reference Sequence: NM_145703 ; Ensembl: ENSMUSG00000025221 ) is located on Mouse chromosome 19. 10 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 10 (Transcript: ENSMUST00000162528). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Kcnip2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-98F2 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for disruptions in this gene are susceptible to induced cardiac arrhythmias but are otherwise normal. Exon 4 starts from about 27.65% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 574 bp, and the size of intron 4 for 3'-loxP site insertion: 532 bp. The size of effective cKO region: ~625 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 5 6 7 8 9 10 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Kcnip2 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors
    Cancer Biology & Therapy ISSN: 1538-4047 (Print) 1555-8576 (Online) Journal homepage: http://www.tandfonline.com/loi/kcbt20 Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru To cite this article: Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru (2016) Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors, Cancer Biology & Therapy, 17:3, 262-271, DOI: 10.1080/15384047.2016.1139240 To link to this article: http://dx.doi.org/10.1080/15384047.2016.1139240 Accepted author version posted online: 19 Jan 2016. Published online: 19 Jan 2016. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kcbt20 Download by: [University of Connecticut] Date: 26 May 2016, At: 11:28 CANCER BIOLOGY & THERAPY 2016, VOL. 17, NO. 3, 262–271 http://dx.doi.org/10.1080/15384047.2016.1139240 RESEARCH PAPER Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clarka,*, Anne M. Frielb,*, Cindy A. Prua, Ling Zhangb, Toshi Shiodac, Bo R. Ruedab, John J. Pelusod, and James K. Prua aDepartment of Animal Sciences,
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • The Relevance of Clinical, Genetic and Serological Markers
    AUTREV-01901; No of Pages 18 Autoimmunity Reviews xxx (2016) xxx–xxx Contents lists available at ScienceDirect Autoimmunity Reviews journal homepage: www.elsevier.com/locate/autrev Review Cardiovascular risk assessment in patients with rheumatoid arthritis: The relevance of clinical, genetic and serological markers Raquel López-Mejías a, Santos Castañeda b, Carlos González-Juanatey c,AlfonsoCorralesa, Iván Ferraz-Amaro d, Fernanda Genre a, Sara Remuzgo-Martínez a, Luis Rodriguez-Rodriguez e, Ricardo Blanco a,JavierLlorcaf, Javier Martín g, Miguel A. González-Gay a,h,i,⁎ a Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain b Division of Rheumatology, Hospital Universitario la Princesa, IIS-IPrincesa, Madrid, Spain c Division of Cardiology, Hospital Lucus Augusti, Lugo, Spain d Rheumatology Division, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain e Division of Rheumatology, Hospital Clínico San Carlos, Madrid, Spain f Division of Epidemiology and Computational Biology, School of Medicine, University of Cantabria, and CIBER Epidemiología y Salud Pública (CIBERESP), IDIVAL, Santander, Spain g Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain h School of Medicine, University of Cantabria, Santander, Spain i Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa article info abstract Article history: Cardiovascular disease (CV) is the most common cause of premature mortality in patients with rheumatoid ar- Received 7 July 2016 thritis (RA). This is the result of an accelerated atherosclerotic process. Adequate CV risk stratification has special Accepted 9 July 2016 relevance in RA to identify patients at risk of CV disease.
    [Show full text]
  • BIO4342 Exercise 2: Browser-Based Annotation and RNA-Seq Data
    BIO4342 Exercise 2: Browser-Based Annotation and RNA-Seq Data Jeremy Buhler March 15, 2010 This exercise continues your introduction to practical issues in comparative annotation. You’ll be annotating genomic sequence from the dot chromosome of Drosophila mojavensis using your knowledge of BLAST and some improved visualization tools. You’ll also consider how best to integrate information from high-throughput sequencing of expressed RNA. 1 Getting Started To begin, go to our local genome browser at http://gander.wustl.edu/. Select “Genome Browser” from the left-side menu and choose the “Improved Dot” assembly of D. mojavensis for viewing. Finally, hit submit to start looking at the sequence. The entire dot assembly is about 1.69 megabases in length; zoom out to see everything. This assembly is built from a set of overlapping fosmid clones prepared for the 2009 edition of BIO 4342. We’ve added a variety of information to the genome browser to help you annotate, such as: • gene-structure predictions from several different tools; • repeats annotated using the RepeatMasker program; • BLAST hits to D. melanogaster proteins; • RNA-Seq data, which we’ll describe in more detail later. Having all this evidence available at once is somewhat overwhelming. To keep the view to a manageable level, I’d suggest that you initially set all the gene prediction tracks (Genscan, Nscan, SNAP, Geneid), as well as the repeat tracks, to “dense” mode, so that each displays on a single line. Set the BLAST hit track (called “D. mel proteins”) to “pack” to see the locations of all BLAST hits, and set the “RNA-Seq Coverage” track to “full” and the “TopHat junctions” track to “pack” to get a detailed view of these results.
    [Show full text]
  • BLAT—The BLAST-Like Alignment Tool
    Resource BLAT—The BLAST-Like Alignment Tool W. James Kent Department of Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments. A new tool, BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences. BLAT’s speed stems from an index of all nonoverlapping K-mers in the genome. This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly. BLAT has several major stages. It uses the index to find regions in the genome likely to be homologous to the query sequence. It performs an alignment between homologous regions. It stitches together these aligned regions (often exons) into larger alignments (typically genes). Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible. This paper describes how BLAT was optimized. Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches. BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications. http://genome.ucsc.edu hosts a web-based BLAT server for the human genome. Some might wonder why in the year 2002 the world needs sions on any number of perfect or near-perfect hits. Where another sequence alignment tool.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • PAQR6 Antibody (C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP13667B
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PAQR6 Antibody (C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP13667B Specification PAQR6 Antibody (C-term) - Product Information Application WB,E Primary Accession Q6TCH4 Other Accession NP_940798.1, NP_079173.2 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 37989 Antigen Region 283-312 PAQR6 Antibody (C-term) - Additional Information PAQR6 Antibody (C-term) (Cat. #AP13667b) Gene ID 79957 western blot analysis in Jurkat cell line lysates (35ug/lane).This demonstrates the PAQR6 Other Names antibody detected the PAQR6 protein (arrow). Progestin and adipoQ receptor family member 6, Progestin and adipoQ receptor family member VI, PAQR6 PAQR6 Antibody (C-term) - Background Target/Specificity The function of this protein remains unknown. This PAQR6 antibody is generated from rabbits immunized with a KLH conjugated PAQR6 Antibody (C-term) - References synthetic peptide between 283-312 amino acids from the C-terminal region of human PAQR6. Kamatani, Y., et al. Nat. Genet. 42(3):210-215(2010) Dilution Smith, J.L., et al. Steroids WB~~1:1000 73(11):1160-1173(2008) Tang, Y.T., et al. J. Mol. Evol. Format 61(3):372-380(2005) Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. Precautions PAQR6 Antibody (C-term) is for research Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 use only and not for use in diagnostic or therapeutic procedures.
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • A Multithread Blat Algorithm Speeding up Aligning Sequences to Genomes Meng Wang and Lei Kong*
    Wang and Kong BMC Bioinformatics (2019) 20:28 https://doi.org/10.1186/s12859-019-2597-8 SOFTWARE Open Access pblat: a multithread blat algorithm speeding up aligning sequences to genomes Meng Wang and Lei Kong* Abstract Background: The blat is a widely used sequence alignment tool. It is especially useful for aligning long sequences and gapped mapping, which cannot be performed properly by other fast sequence mappers designed for short reads. However, the blat tool is single threaded and when used to map whole genome or whole transcriptome sequences to reference genomes this program can take days to finish, making it unsuitable for large scale sequencing projects and iterative analysis. Here, we present pblat (parallel blat), a parallelized blat algorithm with multithread and cluster computing support, which functions to rapidly fine map large scale DNA/RNA sequences against genomes. Results: The pblat algorithm takes advantage of modern multicore processors and significantly reduces the run time with the number of threads used. pblat utilizes almost equal amount of memory as when running blat. The results generated by pblat are identical with those generated by blat. The pblat tool is easy to install and can run on Linux and Mac OS systems. In addition, we provide a cluster version of pblat (pblat-cluster) running on computing clusters with MPI support. Conclusion: pblat is open source and free available for non-commercial users. It is easy to install and easy to use. pblat and pblat-cluster would facilitate the high-throughput mapping of large scale genomic and transcript sequences to reference genomes with both high speed and high precision.
    [Show full text]
  • Homology & Alignment
    Protein Bioinformatics Johns Hopkins Bloomberg School of Public Health 260.655 Thursday, April 1, 2010 Jonathan Pevsner Outline for today 1. Homology and pairwise alignment 2. BLAST 3. Multiple sequence alignment 4. Phylogeny and evolution Learning objectives: homology & alignment 1. You should know the definitions of homologs, orthologs, and paralogs 2. You should know how to determine whether two genes (or proteins) are homologous 3. You should know what a scoring matrix is 4. You should know how alignments are performed 5. You should know how to align two sequences using the BLAST tool at NCBI 1 Pairwise sequence alignment is the most fundamental operation of bioinformatics • It is used to decide if two proteins (or genes) are related structurally or functionally • It is used to identify domains or motifs that are shared between proteins • It is the basis of BLAST searching (next topic) • It is used in the analysis of genomes myoglobin Beta globin (NP_005359) (NP_000509) 2MM1 2HHB Page 49 Pairwise alignment: protein sequences can be more informative than DNA • protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties • codons are degenerate: changes in the third position often do not alter the amino acid that is specified • protein sequences offer a longer “look-back” time • DNA sequences can be translated into protein, and then used in pairwise alignments 2 Find BLAST from the home page of NCBI and select protein BLAST… Page 52 Choose align two or more sequences… Page 52 Enter the two sequences (as accession numbers or in the fasta format) and click BLAST.
    [Show full text]