Beta Diversity in Triassic and Modern Reef Basin Assemblages Beta-Diversität in Triassischen Und Rezenten Riffbeckenfaunen

Total Page:16

File Type:pdf, Size:1020Kb

Beta Diversity in Triassic and Modern Reef Basin Assemblages Beta-Diversität in Triassischen Und Rezenten Riffbeckenfaunen Beta diversity in Triassic and modern reef basin assemblages Beta-Diversität in triassischen und rezenten Riffbeckenfaunen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Vanessa Julie Roden Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 20. Dezember 2019 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Wolfgang Kiessling PD Dr. Kenneth De Baets Summary Changes in alpha and gamma diversity throughout the Phanerozoic have long been of interest in paleontology, but beta diversity remains understudied, particularly in the post-Paleozoic. Beta diversity – the compositional variation among communities or assemblages – is a key aspect of bio- diversity and is crucial to revealing the principles of diversity assembly. Studying the biodiversity patterns of well-preserved fossil and modern assemblages can provide insight into how these patterns arise, how they change through time, and whether there are unifying principles in community composition and assembly. Taphonomic effects and sampling biases complicate the assessment of changes in biodiversity over time. Intensively sampled and well-preserved fossil assemblages are ideal to study biodiversity patterns and compare them with modern assemblages. The Middle to Late Triassic (Ladinian–Carnian) Cassian Formation, exposed in the Dolomites, Southern Alps, northern Italy, is characterized by high diversity and excellent preservation of fossils. The Cassian Formation comprises shallow and deeper water sediments deposited between carbonate platforms in a warm, tropical setting in the Western Tethys, comparable with modern tropical environments. A wide breadth of depositional environments are recorded in the Cassian Formation: a nearshore back-reef area with patch reefs and the sediments intercalated between these, the carbonate platform, and the shallow and deeper reef basin. With 1421 invertebrate species, the Cassian Formation yields the highest species richness reported from any known spatially constrained pre-Quaternary formation. This is due to (1) excellent presser- vation of fossils and the ease with which they are extracted from the poorly lithified sediments as well as (2) the high primary diversity, which is probably due to the tropical reef-associated setting, high alpha diversity, and a wide breadth of habitat types, driving beta diversity. Beta diversity is partitioned into a large species turnover and a small nestedness component. Particularly notable for a fossil assem- blage is the high proportion of molluscs, particularly gastropods. Molluscs comprise 67% of all inver- tebrate species in the Cassian Formation, and the proportion of gastropods (39%) is almost level with modern tropical settings. Studying more 'liberation lagerstätten' like the Cassian Formation can greatly contribute to our understanding of biodiversity of reef basin assemblages and other habitats, and may lead us to rethink the concept of a substantial rise of gastropods in the Cenozoic. Testing which factors drive biodiversity, specifically beta diversity, in the Cassian Formation and other comparable assemblages is the main focus of this thesis. Mean pairwise proportional dissim- ilarity is a very suitable measure to express beta diversity, as it is relatively robust to differences in sample size and grain and can be used to quantify overall beta diversity in a region or between samples as well as along gradients. Beta diversity as pairwise proportional dissimilarity is driven by dominant species. The role of rare species can be neglected in large-scale assessments of beta diversity. This finding not only makes it easier to accumulate larger amounts of data to be used in beta diversity studies but also makes incorrect taxon identification less significant. To disentangle the drivers of biodiversity patterns in the Cassian Formation and another reef- associated soft-bottom environment from the modern Bay of Safaga in the Red Sea, Egypt, beta diversity is evaluated with regard to age, water depth, and geographic distance. Results are compares with a null model to evaluate the stochasticity of community assembly. Only the ten most abundant species per sample are included to determine mean pairwise proportional dissimilarity. As in the previous studies, overall beta diversity is found to be very high in the Cassian Formation. The Bay of Safaga yields a similarly high value. The variation in community composition is found to be independent of geographic or temporal distance. Beta diversity between shallow- and deep-water communities is relatively high. Samples from deeper-water settings yield a slightly higher beta diversity than those from shallower areas. A similar pattern is seen in both assemblages. Although water depth has been a driving factor in other studies on beta diversity, it is not considered to be a major driver in the studied assemblages. Priority effects are postulated to be the main driver of beta diversity in these reef basin assemblages. In summary, results from this thesis show that dominant species drive beta diversity. Species turnover, not species loss, are the ecological cause of beta diversity in the Cassian Formation, probably resulting from the evolution of new species within this heterogeneous environment. The high diversity in the Cassian Formation results from high local diversity and large differences in community composition between assemblages driving beta diversity. Reasons for the high preserved diversity are ascribed to taphonomic conditions. Biodiversity in the Cassian Formation is similar to comparable modern environments. The high number of species and the large proportion of gastropods in the Cassian Formation are close to those found in modern soft-bottom assemblages. Values of alpha, beta and gamma diversity are similarly high. And while the heterogeneity and breadth of environments is thought to increase beta diversity, priority effects may also play an important role. Zusammenfassung Die Entwicklung von Alpha- und Gamma-Diversität während des Phanerozoikums wurde bereits in verschiedenen Studien untersucht, jedoch wurde die Beta-Diversität in paläontologischen Arbeiten meist vernachlässigt. Beta-Diversität – die Variation in der Zusammensetzung zwischen Lebensgemeinschaften oder Ansammlungen von Taxa – ist ein Schlüsselaspekt der Biodiversität und von besonderer Bedeutung, um die Mechanismen von Biodiversitätsmustern aufzudecken. Biodiversitätsmuster von gut erhaltenen fossilen sowie rezenten Lebensgemeinschaften können Rückschlüsse auf ihre Entstehung und Entwicklung über die Zeit ermöglichen, sowie einheitliche Mechanismen der Etablierung von Artengemeinschaften aufdecken. Erschwert wird die Erforschung von Biodiversität über die Zeit durch Unterschiede in der Taphonomie oder in der Probengröße und -intensität. Intensiv beprobte und gut erhaltene Fossilgemeinschaften eignen sich ideal, um Biodiversitätsmuster zu untersuchen und sie mit heutigen Lebensgemeinschaften zu vergleichen. Die Cassian-Formation (Ladinium bis Karnium, Mittel- bis Obertrias), aufgeschlossen in den Dolomiten (südliche Kalkalpen, Nord-Italien), zeichnet sich durch hohe Diversität und sehr gute Erhaltung aus. Sie umfasst Flachwassersedimente und Sedimente aus tieferen Bereichen, abgelagert zwischen Karbonatplattformen in warmen, tropischen Gewässern der westlichen Tethys, vergleichbar mit heutigen tropischen Habitaten. Die Cassian-Formation verfügt somit über eine große Bandbreite an Ablagerungsräumen: Ein küstennahes Rückriff mit Fleckriffen und dazwischen eingeschalteten Sedimenten, eine Karbonatplattform sowie ein flaches und tieferes Riffbecken. Mit 1421 Invertebraten-Arten verfügt die Cassian-Formation über das größte Artenreichtum unter allen bekannten räumlich begrenzten, präquartären Formationen. Dies liegt einerseits an der sehr guten Fossilerhaltung und der Leichtigkeit, mit der diese aus den geringlithifizierten Sedimenten erschlossen werden können, gleichzeitig aber auch an der hohen primären Diversität. Die hohe primäre Diversität resultiert vermutlich aus dem tropischen, riffnahen Habitat, der hohen Alpha-Diversität sowie der Bandbreite an Habitattypen, welche die Beta-Diversität erhöhen. Die Beta-Diversität besteht aus einer großen species turnover Komponente und einer kleinen nestedness Komponente. Besonders hervorzuheben ist der hohe Anteil an Mollusken, insbesondere Gastropoden. Mollusken umfassen 67 % aller Invertebraten-Arten in der Cassian Formation, und der Anteil an Gastropoden (39 %) ist fast so hoch wie in heutigen tropischen Habitaten. Mehr Forschung an sogenannten “Liberation Lagerstätten” wie der Cassian-Formation kann dazu beitragen, unser Wissen um Biodiversität in Riffbeckenfaunen und anderen Habitaten zu erweitern. Dies wiederum kann dazu führen, das Konzept eines erheblichen Anstiegs der Gastropoden im Känozoikum zu überdenken. Das Hauptaugenmerk dieser Arbeit liegt auf der Untersuchung der Faktoren, welche die Biodiversität, insbesondere die Beta-Diversität, in der Cassian-Formation und vergleichbaren Faunengemeinschaften bestimmen. Die mittlere pairwise proportional dissimilarity eignet sich gut als Index für die Beschreibung der Beta-Diversität. Sie ist relativ robust gegenüber Unterschieden in der Probengröße und -aufteilung und kann verwendet werden, um die gesamte Beta-Diversität einer Region oder zwischen Proben sowie
Recommended publications
  • [Oceanography and Marine Biology - an Annual Review] R. N
    OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use.
    [Show full text]
  • Stratigraphy, Paleontology and Correlation of Lower Cretaceous Exposures in Southeastern New Mexico Barry S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/44 Stratigraphy, paleontology and correlation of lower Cretaceous exposures in southeastern New Mexico Barry S. Kues and Spencer G. Lucas, 1993, pp. 245-260 in: Carlsbad Region (New Mexico and West Texas), Love, D. W.; Hawley, J. W.; Kues, B. S.; Austin, G. S.; Lucas, S. G.; [eds.], New Mexico Geological Society 44th Annual Fall Field Conference Guidebook, 357 p. This is one of many related papers that were included in the 1993 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Download Full Article 1.7MB .Pdf File
    https://doi.org/10.24199/j.mmv.1934.8.08 September 1934 Mem. Nat. Mus. Vict., viii, 1934. THE CAINOZOIG CIDARIDAE OF AUSTRALIA. By Frederick Chapman, A.L.S., F.G.S., Commonwealth Palaeon- tologist, and Francis A. Cudmore, Hon. Palaeontologist, National Museum. Plates XII-XV. Nearly 60 years ago Professor P. M. Duncan described the first Australian Cainozoic cidaroid before the Geological Society of London. During the next 20 years Professors R. Tate and J. W. Gregory published references to our fossil cidaroids, but further descriptive work was not attempted until the present authors undertook to examine the accumulated material in the National Museum, the Tate Collection at Adelaide University Museum, the Commonwealth Palaeontological Collection, and the private collections made by the late Dr. T. S. Hall, F. A. Singleton, the Rev. Geo. Cox and the authors. The classification of the Cidaridae is founded mainly upon living species and it is partly based on structures which are only rarely preserved in fossils. Fossil cidaroid tests are usually imperfect. On abraded tests the conjugation of ambulacral pores is obscure. The apical system is preserved only in one specimen among those examined. The spines are rarely attached to the test and pedicellariae are wanting. Therefore, in dealing with our specimens we have been guided mainly by the appear- ance and structure of ambulacral and interambulacral areas. Certain features used in our classification vary with the growth stage of the test : for instance, the number of coronal plates in vertical series, the number of ambulacral plates adjacent to the largest coronal plate, and sometimes the number of granules on the inner end of ambulacral plates.
    [Show full text]
  • Partitioning the Colonization and Extinction Components of Beta Diversity: Spatiotemporal Species Turnover Across Disturbance Gradients
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.956631; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Research article Partitioning the colonization and extinction components of beta diversity: Spatiotemporal species turnover across disturbance gradients Shinichi TATSUMI1,2,*, Joachim STRENGBOM3, Mihails ČUGUNOVS4, Jari KOUKI4 1 Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada 2 Hokkaido Research Center, Forestry and Forest Products Research Institute, Hokkaido, Japan 3 Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden 4 School of Forest Sciences, University of Eastern Finland, Joensuu, Finland * Corresponding author Shinichi Tatsumi ([email protected], +1-416-208-5130) Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.956631; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 ABSTRACT 2 Changes in species diversity often result from species losses and gains. The dynamic nature of 3 beta diversity (i.e., spatial variation in species composition) that derives from such temporal 4 species turnover, however, has been largely overlooked.
    [Show full text]
  • Predation Has No Competition: Factors Influencing Space and Resource Use by Echinoids in Deep-Sea Coral Habitats, As Evidenced by Continuous Video Transects
    1 Marine Ecology Achimer December 2015, Volume 36, Issue 4, Pages 1454-1467 http://dx.doi.org/10.1111/maec.12245 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00242/35303/ © 2014 Blackwell Verlag GmbH Predation has no competition: factors influencing space and resource use by echinoids in deep-sea coral habitats, as evidenced by continuous video transects Stevenson Angela 1, * , Mitchell Fraser J. G. 1, Davies Jaime 2 1 School of Natural Sciences; Trinity College Dublin; Dublin Ireland 2 Ifremer; Département LEP; Centre de Brest; Plouzané France * Corresponding author : Angela Stevenson, email address : [email protected] Abstract : Predation and competition are highly influential factors determining space use in foraging animals, and ultimately contribute to the spatial heterogeneity observed within habitats. Here we investigated the influence of competition and predation on space and resource use via continuous video transect observations – a tool that has not previously been employed for this purpose. This study therefore also evaluates video data as a pragmatic tool to study community interactions in the deep sea. Observations were compiled from 15 video transects spanning five submarine canyons in the Bay of Biscay, France. Substrate choice, positioning on the coral, echinoid aggregate size, and the presence/absence of predators (e.g. fish and decapods) as well as competitors (both inter- and intra-specific) were recorded. Two dominant co-existing echinoid taxa, echinothurids and Cidaris cidaris (3188 total observations), were observed in the study. For the echinothurids, no significant trends were detected in the inter- and intra-specific competition data. For Cidaris cidaris, significant shifts in substrate use were correlated to the presence of inter-specific competitors (echinothurids), whereby an increase in dead coral substrate usage was observed.
    [Show full text]
  • (Echinodermata: Holothuroidea) from the Latest Cretaceous Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century.
    [Show full text]
  • Drivers of Beta Diversity in Modern and Ancient Reef-Associated Soft-Bottom Environments
    Drivers of beta diversity in modern and ancient reef-associated soft-bottom environments Vanessa Julie Roden1, Martin Zuschin2, Alexander Nützel3,4,5, Imelda M. Hausmann3,4 and Wolfgang Kiessling1 1 GeoZentrum Nordbayern, Section Paleobiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany 2 Department of Palaeontology, University of Vienna, Vienna, Austria 3 SNSB—Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany 4 Department of Earth & Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany ABSTRACT Beta diversity, the compositional variation among communities, is often associated with environmental gradients. Other drivers of beta diversity include stochastic processes, priority effects, predation, or competitive exclusion. Temporal turnover may also explain differences in faunal composition between fossil assemblages. To assess the drivers of beta diversity in reef-associated soft-bottom environments, we investigate community patterns in a Middle to Late Triassic reef basin assemblage from the Cassian Formation in the Dolomites, Northern Italy, and compare results with a Recent reef basin assemblage from the Northern Bay of Safaga, Red Sea, Egypt. We evaluate beta diversity with regard to age, water depth, and spatial distance, and compare the results with a null model to evaluate the stochasticity of these differences. Using pairwise proportional dissimilarity, we find very high beta diversity for the Cassian Formation (0.91 ± 0.02) and slightly lower beta diversity for the Bay of Safaga (0.89 ± 0.04). Null models show that stochasticity only plays a minor role in determining faunal differences. Spatial distance is also irrelevant. Contrary to expectations, there is no tendency of beta Submitted 26 September 2019 Accepted 16 April 2020 diversity to decrease with water depth.
    [Show full text]
  • Larvae of Marine Bivalves and Echinoderms
    V.L. KflSVflNOV>G.fl. KRVUCHKOVfl VAKUUKOVfl-LAIVICDVCDevn Scientific Cditor Dovid L pQiuson LARVAE OF MARINE BIVALVES AND ECHINODERMS V.L. KASYANOV, G.A. KRYUCHKOVA, V.A. KULIKOVA AND L. A. MEDVEDEVA Scientific Editor David L. Pawson SMITHSONIAN INSTITUTION LIBRARIES Washington, D.C. 1998 Smin B87-101 Lichinki morskikh dvustvorchatykh moUyuskov i iglokozhikh Akademiya Nauk SSSR Dal'nevostochnyi Nauchnyi Tsentr Institut Biologii Morya Nauka Publishers, Moscow, 1983 (Revised 1990) Translated from the Russian © 1998, Oxonian Press Pvt. Ltd., New Delhi Library of Congress Cataloging-in-Publication Data Lichinki morskikh dvustvorchatykh moUiuskov i iglokozhikh. English Larvae of marine bivalves and echinodermsA^.L. Kasyanov . [et al.]; scientific editor David L. Pawson. p. cm. Includes bibliographical references. 1. Bivalvia — Larvae — Classification. 2. Echinodermata — Larvae — Classification. 3. Mollusks — Larvae — Classification. 4. Bivalvia — Lar- vae. 5. Echinodermata — Larvae. 6. Mollusks — Larvae. I. Kas'ianov, V.L. II. Pawson, David L. (David Leo), 1938-III. Title. QL430.6.L5313 1997 96-49571 594'.4139'0916454 — dc21 CIP Translated and published under an agreement, for the Smithsonian Institution Libraries, Washington, D.C., by Amerind Publishing Co. Pvt. Ltd., 66 Janpath, New Delhi 110001 Printed at Baba Barkha Nath Printers, 26/7, Najafgarh Road Industrial Area, NewDellii-110 015. UDC 591.3 This book describes larvae of bivalves and echinoderms, living in the Sea of Japan, which are or may be economically important, and where adult forms are dominant in benthic communities. Descriptions of 18 species of bivalves and 10 species of echinoderms are given, and keys are provided for the iden- tification of planktotrophic larvae of bivalves and echinoderms to the family level.
    [Show full text]
  • Epibiotic Associates of Oceanic-Stage Loggerhead Turtles from the Southeastern North Atlantic
    Acknowledgements We thank the biology students of the occasional leatherback nests in Brazil. Marine Turtle Federal University of Paraíba (Pablo Riul, Robson G. dos Newsletter 96:13-16. Santos, André S. dos Santos, Ana C. G. P. Falcão, Stenphenson Abrantes, MS Elaine Elloy), the marathon MARCOVALDI, M. Â. & G. G. MARCOVALDI. 1999. Marine runner José A. Nóbrega, and the journalist Germana turtles of Brazil: the history and structure of Projeto Bronzeado for the volunteer field work; the Fauna department TAMAR-IBAMA. Biological Conservation 91:35-41. of IBAMA/PB and Jeremy and Diana Jeffers for kindly MARCOVALDI, M.Â., C.F. VIEITAS & M.H. GODFREY. 1999. providing photos, and also Alice Grossman for providing Nesting and conservation management of hawksbill turtles the TAMAR protocols. The manuscript benefited from the (Eretmochelys imbricata) in northern Bahia, Brazil. comments of two referees. Chelonian Conservation and Biology 3:301-307. BARATA, P.C.R. & F.F.C. FABIANO. 2002. Evidence for SAMPAIO, C.L.S. 1999. Dermochelys coriacea (Leatherback leatherback sea turtle (Dermochelys coriacea) nesting in sea turtle), accidental capture. Herpetological Review Arraial do Cabo, state of Rio de Janeiro, and a review of 30:38-39. Epibiotic Associates of Oceanic-Stage Loggerhead Turtles from the Southeastern North Atlantic Michael G. Frick1, Arnold Ross2, Kristina L. Williams1, Alan B. Bolten3, Karen A. Bjorndal3 & Helen R. Martins4 1 Caretta Research Project, P.O. Box 9841, Savannah, Georgia 31412 USA. (E-mail: [email protected]) 2 Scripps Institution of Oceanography, Marine Biology Research Division, La Jolla, California 92093-0202, USA, (E-mail: [email protected]) 3 Archie Carr Center for Sea Turtle Research and Department of Zoology, University of Florida, P.O.
    [Show full text]
  • Persistent and Widespread Occurrence of Bioactive Quinone Pigments During Post-Paleozoic Crinoid Diversification
    Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification Klaus Wolkenstein1 Department of Geobiology, Geoscience Centre, University of Göttingen, 37077 Göttingen, Germany Edited by Tomasz K. Baumiller, University of Michigan, Ann Arbor, MI, and accepted by the Editorial Board January 20, 2015 (received for review September 9, 2014) Secondary metabolites often play an important role in the adapta- (14, 15), closely related to the gymnochromes, suggesting that the tion of organisms to their environment. However, little is known fossil pigments may be only slightly changed during diagenesis. about the secondary metabolites of ancient organisms and their Although violet coloration has been occasionally observed in fossil evolutionary history. Chemical analysis of exceptionally well-pre- crinoids (e.g., refs. 16 and 17), until now, only very few chemical served colored fossil crinoids and modern crinoids from the deep sea proofs of quinone pigments have been found for crinoids other than suggests that bioactive polycyclic quinones related to hypericin Liliocrinus (14, 15, 18, 19). Recent measurements suggested the were, and still are, globally widespread in post-Paleozoic crinoids. presence of quinone-like compounds in Paleozoic (Mississippian) The discovery of hypericinoid pigments both in fossil and in present- crinoids (20), but the identity of these compounds has been ques- day representatives of the order Isocrinida indicates that the pig- tioned on methodological grounds (21). ments remained almost unchanged since the Mesozoic, also suggest- To investigate the general occurrence of polycyclic quinone ing that the original color of hypericinoid-containing ancient crinoids pigments in the Crinoidea, the coloration of numerous fossil may have been analogous to that of their modern relatives.
    [Show full text]
  • SI Appendix for Hopkins, Melanie J, and Smith, Andrew B
    Hopkins and Smith, SI Appendix SI Appendix for Hopkins, Melanie J, and Smith, Andrew B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Corrections to character matrix Before running any analyses, we corrected a few errors in the published character matrix of Kroh and Smith (1). Specifically, we removed the three duplicate records of Oligopygus, Haimea, and Conoclypus, and removed characters C51 and C59, which had been excluded from the phylogenetic analysis but mistakenly remain in the matrix that was published in Appendix 2 of (1). We also excluded Anisocidaris, Paurocidaris, Pseudocidaris, Glyphopneustes, Enichaster, and Tiarechinus from the character matrix because these taxa were excluded from the strict consensus tree (1). This left 164 taxa and 303 characters for calculations of rates of evolution and for the principal coordinates analysis. Other tree scaling methods The most basic method for scaling a tree using first appearances of taxa is to make each internal node the age of its oldest descendent ("stand") (2), but this often results in many zero-length branches which are both theoretically questionable and in some cases methodologically problematic (3). Several methods exist for modifying zero-length branches. In the case of the results shown in Figure 1, we assigned a positive length to each zero-length branch by having it share time equally with a preceding, non-zero-length branch (“equal”) (4). However, we compared the results from this method of scaling to several other methods. First, we compared this with rates estimated from trees scaled such that zero-length branches share time proportionally to the amount of character change along the branches (“prop”) (5), a variation which gave almost identical results as the method used for the “equal” method (Fig.
    [Show full text]