Jeremy C. Smith Environment

Emptying Hg flasks at the dumping shed (1955)

Energy

Disease Cloud Gate, Anish Kapoor, Chicago Emptying Hg flasks at the dumping shed (1955) Oak Ridge

Hg(0)

Emptying Hg flasks at the dumping shed (1955) Oxidation Hg(II)

Methylation by Bad

+ CH3Hg How do bacteria methylate mercury? HgcA HgcB Experiment

2500

2000

G. 1500 Sulfurreducens

cysteine 1000

500 2 e- Methylmercury (ng/L) 0

cobalami Homologyn Science, 339 1332 (2013) Good Bacteria! Hg(0) Mer Operon

Reduction -Mer A Hg(II)

Demethylation -Mer B + CH3Hg De Gennes Narrowing LIANG ~ r ~ HONG ω π S( ) ∝ 2 q0 r0 ∝ Δω Dcoh,slow (narrowing !)

q 0 q ∝ Δω Dcoh, fast ω D ∝ Δω r coh 0 π ∝ 2 r q0 r0 Dcoh r fast const 0 D (q) = coh S(q)

D slow coh q r PRL, 112 158102 (2014) De Gennes Narrowing Describes LIANG = const Protein Interdomain Motion Dco (q) HONG h S(q)

40 Modelling (de Gennes narrowing) De Gennes from SAXS nnnnnnnnnn using SAXS data 30 (a)

20

(arb. units) 10 coh D

0 8 Modelling (de Gennes narrowing) MD De Gennes nnnnnnnn NSE experimentalExperimental data 6 (b) Fitted from I (q,t) derived )

30 MD Directcoh 2 from MD trajectories internal protein motion ) m/s 2 4 μ

20 ( m/s

coh μ (arb units) 2 D ( coh coh 10 D

D 0

0.0 0.5 1.0 1.5 2.0 0 -1 0.0 0.5 1.0 1.5 2.0 q (nm ) q (nm-1) PRL, 112 158102 (2014) Functional Dynamics LIANG of a Mercury-Transforming Enzyme HONG

(a)

MD R / Å SANS g

0

6

2 0 100 200 300 400 500 t (n s) 101 (b) X (a) 0 1/4 ) 2 10 t (nm

-1 MS10 D NmerA_B1) NmerA_A 10-2 10-2 10-1 100 101 102 103 104 105 106 107

t (ns) 0 30

Biophys. J. In Press (2014) Environment

Emptying Hg flasks at the dumping shed (1955)

Energy

Disease Cellulosic Ethanol

Fermentation Fuel

Hydrolysis

Breakdown into sugars

Strong Fermentation Tradition in TN! Recalcitrance! Cellulosic Biomass

Lignin Precipitation on Cellulose Interface Interaction Energy Density (kJ/mol/nm2) lignin: -49±2 crystalline cellulose lignin: -50±2 noncrystallinenon-crystalline cellulose water : -94±2 crystalline cellulose water : -107±2 non-crystalline cellulose Solvent-Driven Preferential Association of Lignin with Crystalline Cellulose

Biomacromolecules, 14 3390 (2013)

Effect of Pretreatment Untreated on Biomass Structure

Pretreated

Green Chemistry 16 1 (2014) New View of Pretreatment

Room T cellulose lignin hemi-cellulose

T~150° C

Room T

Green Chemistry 16 1 (2014) 1010 atoms Exascale? = Living Cell

Human Embryonic Stem Cell But…

Microsecond Timescale Limitation!

New Concepts Needed…. Exascale Concepts

Dynamical Fingerprints

JCP 126 840 (2007); 134 244108 (2011); PNAS 108 4822 (2011) Environment

Emptying Hg flasks at the dumping shed (1955)

Energy

Disease Drug Development: Too costly, Too random.

3 10 compounds 100 leads 10 candidates 1 approval screened

Discovery/Preclinical Clinical Trials

$800M-1.5B

Reasons: Safety Efficacy Static Structure-Based Design of Viral Inhibitors

Oseltamivir Zanamivir HIV-protease inhibitor: (Tamiflu)) (Relenza)) Nelfinavir (Viracept)

Tamiflu bound to neuraminidase What has changed in the last 20 years?

Genomics

Systems

Structures

Computers

Computational Methods Supercomputing and Drug Discovery

Identification of compounds likely to bind

Modeling and simulation Drug development, drug repurposing, personalized medicine Supercomputer Scaling Reduces SALLY ELLINGSON Time to Solution

400,000 compounds in 15 minutes

J Comp Chem 34 2212 (2013) Ensemble-based docking

Molecular dynamics (MD) of each High-throughput screening (HTS) protein: Identify permanent in silico on each structure and transient binding pockets of interest Ensemble of receptor conformations Potential drugs 123 n Multi- protein screening

Traditional screen

Multireceptor screen

Binding to MD snapshots

Schames et al., “Discovery of a Novel Raltegravir Binding Trench in HIV Integrase,” (HIV integrase inhibitor): J. Med. Chem. 47, 1879–1881 (2004) FDA approval, 2007 Discovery of molecular effectors JASON HARRIS of the coagulation cascade JEROME BAUDRY

535 docked compounds suggested FXa/FVa complex 97 tested formation: experimentally

24 bind

10 work (modulate coagulation)

FXa 8 would not bind in crystal structure

Ensemble of structures (11 MD snapshots + 1 crystal structure) Systems-Level Toxicity Prediction

Drug can bind the protein of interest . . .

. . . but also bind other proteins, affecting both efficacy Personalized and toxicity protein structural library

Personalized Medicine Supercomputing: The Future

Protein Ligands Time Today: 1108 1 day 10 PF 100 106 1 day Exascale 1,000 107 1 day Co-workers Collaborators Torsten Becker Ilia Horenko, Frank Noe Barbara Collignon Christof Schuette (FU Berlin) John Chodera (Memorial Sloan Kettering) Sally Ellingson Erika Balog (U. Budapest) Jerome Baudry Kei Moritsugu (RIKEN, Tokyo) Loukas Petridis Dwayne Elias, Mircea Podar, Alex Johs, Roland Schulz Liyuan Liang, Alexei Sokolov, Barbara Benjamin Lindner Evans, Hugh O’Neill, Venky Pingali, Dennis Glass William Heller, Paul Langan (ORNL) Xiaohu Hu Judy Wall (U. Missouri) Barmak Mostofian Anne Summers (U.Ga) Sue Miller (UCSF) Amandeep Sangha Ahmed Zewail (CalTech) Liang Hong Akio Kitao (U. Tokyo) Yinglong Miao Dieter Richter, Ralf Biehl, Michael Ohl, Yi Zheng Melissa Sharp (FZ Juelich) Jerry Parks Salim Shah (Georgetown U Med Center)

Funding: DOE(BER, BES, ASCR),NSF, NIH Toxicity Prediction: PCB Estrogenicity

Binds to specific P450

Geometry predicts metabolites

Experimental confirmation Metabolites bind to 24000 human ERα 18000 12000

6000

0 5 6 7 8 9 10 11 12 13 Biomass Pretreatment

Are Lignin Aggregates Spheres? Lignin Aggregates

Molecular Small-Angle Dynamics Neutron Scattering −d − N(r) = r s S(q) ∝ Qds 6

This image cannot currently be displayed.

ds=2.65±0.01 ds=2.62±0.02

Petridis et al Physical Review E 83(61):061911 (2011) Surface Fractals over Three Orders of Magnitude

R =4.2Å g Rg=42Å Rg=420Å

Enzyme:lignin interaction distribution

Petridis et al Physical Review E 83(61):061911 (2011) Bacterial Mercury Resistance – The Mer Operon

• MerR – regulation (transcriptional activator) • MerB – organomercurial lyase • MerA – mercuric reductase Loukas Petridis

MD Simulation of Softwood Lignin

JACS 133 20277 (2011) Lignin Aggregation During Heating Phase of Dilute-acid Pretreatment cellulose lignin hemi- cool- heating cellulose down

aggregation occurs during cool-down

aggregation occurs during heating Why does Lignin Collapse Loukas at Room Temperature? Petridis

• Hydration water translational & ∆G=∆H-T∆S collapsed rotational entropy extended • -T∆St+r ≈ -100 kJ/mol Favorable • Enthalpy • ∆H ≈ +200 kJ/mol Unfavorable

• Hydration water compressibility

• -T∆Sfluc ≈ -300 kJ/mol Favorable • Lignin configurational entropy

• -T∆Sconf≈ +10 kJ/mol Unfavorable

Collapse Driven by Removal of Entropically Unfavorable Water Molecules from Lignin Surface to JACS 133 20277 (2011) Bulk Geobacter chapelleii, 172 Geobacter pelophilus, Dfr2 Geobacter bremensis, Dfr1 45 years Geobacter lovleyi, SZ Geobacter metallireducens, GS-15 Geobacter grbiciae, TACP-2 Geobacter hydrogenophilus, strain H4 Desulfuromonales Geobacter sulfurreducens, PCA of agony Desulfuromonas palmitatis, SDBY1 Desulfuromonas chloroethenica, TT4B Desulfuromonas thiophila, NZ27 (DSMZ 8987) Desulfuromonas acetoxidans, DSM 624 sulfexigens, SB164P1 Desulfotalea psychrophila, LSv54 Desulforhopalus vacuolatus, ltk10 Desulfobulbus propionicus, DSM 2032 variabilis multivorans, DSM 2059 oceanense, ASv26 sp., BG33 Desulfobacterales Desulfobacterium autotrophicum, DSM 3382 vibrioformis, B54 Desulfobacter species, 4ac11 DSM 2057 Desulfobacter species, 3ac10 DSM 2035 Desulfobacter hydrogenophilus DSM 3380 , DSM 3379 Desulfobacter sp., BG8 Corallococcus coralloides, DSM 2259 Myxococcus xanthus, DSM 435 (Mx x1) Myxococcales dechloracetivorans, ATCC 700912 Desulfovibrio desulfuricans, ND132 Desulfovibrio profundus, DSM 11384 Desulfovibrio sp., T2 Desulfovibrio sp., W3A Desulfovibrio gigas Desulfovibrio sp., X2 Desulfovibrio desulfuricans, DSM1926 El Agheila Z Desulfovibrio africanus Desulfovibrionales Desulfovibrio desulfuricans , MB; ATCC27774 Desulfovibrio desulfuricans, Essex 6; ATCC29577 , Hildenborough , G20 Desulfovibrio alaskensis, NCIMB 13491 Desulfomicrobium baculatum, DSM 4028T Desulfomicrobium orale, DSM12838 Shewanella algae, Bry Shewanella oneidensis, MR-1 Shewanella putrefaciens, CN-32

0.10 Non Hg methylator Weak Hg methylator Strong Hg methylator Chemistry of mercury methylation JERRY PARKS - 2+ + CH3 +Hg CH3Hg

- Generate carbanion, CH3 : + CH3 + Co(I)-protein CH3-Co(III)-protein

- 2+ Transfer CH3 to Hg : 2+ + CH3-Co(III)-protein + Hg Co(III)-protein + CH3Hg

Regenerate Co(I): Co(III)-protein + 2 e- Co(I)-protein

Need to find protein(s) that can: 1. Stabilize Co(III) for carbanion transfer 2. Provide 2 electrons to generate Co(I) cobalamin

Science, 339 1332 (2013) ROLAND SCHULZ

Molecular Dynamics Supercomputer Scaling

~ 100 million atoms.

• Scales to 150,000 cores

Bioinformatics, 29 845 (2013) ROLAND SCHULZ TITAN

• Reaction Field 1000 PME EtOl 1.56M atoms 23M atoms, 3750 ADH 230k atoms 100 nodes (60k cores): DHFR 23.6k atoms 40ns/day • OpenMP for all 10 28.6 ns/day kernels 103 1 ns/day • Larger number of [ms] step-time 267 threads for PME ns/day 0.1 • AMD AVX intrinsic 1 100 nodes Multiscale Structure and Dynamics

1μm Exascale

spin echo 100 10PF SANS nm Petascale reflectometry 1 Cluster nm

0.1 vibrational backscattering crystallography, nm solution diffraction 1 fs 1 ps 1 ns 1 μs