By 2K) in Assus ATTORNEY - 2,920,260 United States Patent Office Faiented Jan

Total Page:16

File Type:pdf, Size:1020Kb

By 2K) in Assus ATTORNEY - 2,920,260 United States Patent Office Faiented Jan Jan. 5, 1960 A. A. GOFFSTEIN 2,920,260 BATTERY CHARGER AND POWER INVERTER SySTEM Filed Nov. 10, 1953 INVENTOR ----- A bert A. Goffstein n By 2k) in assus ATTORNEY - 2,920,260 United States Patent Office Faiented Jan. 5, 1960 1 2 In the drawings forming a part of the specification: Figure 1 is a diagrammatic view of the circuit arrange - 2,920,260 ment embodying the principles of my invention. BATTERY CHARGERAND POWER INVERTER Figure 2 is a diagrammatic view of a modification of the system of Figure 1. Albert A. Goffstein, St. Paul, Minn, assignor to Ameri Referring to the circuit illustrated in the figure 1, I pro can Television & Radio Co., Ramsey County, Minn., a vide a vibrator interrupter which is indicated in general corporation of Minnesota by the letter A. This interrupter A includes a reed 2 which is provided with suitable contacts thereon adapted Application November 10, 1953, Serial No. 391,335 O to vibrate between oppositely disposed contacts 3 and 4. The reed 2 is driven by an electromagnet 5 which is in 12 Claims. (CI.321-8) series with driving contacts 1. - Co-operating with the vibrator interrupter is a trans This invention relates to an improvement in battery former which is indicated in general by the letter D. charger and power inverter system, and deals particularly 5 This transformer is provided with low tension windings with a device capable of charging a battery from a source provided with a pair of connected coil sections 7 and 8. of alternating current and also capable of inverting the While the coil sections 7 and 8 are shown as having termi battery current so that alternating current consuming de nal connections on opposite sides of a center tap, each vices can be used therewith. coil Section may have intermediate taps or extensions on In recent years the use of an automobile battery as a 20 the winding for the purpose of providing lesser or greater source of power for dictating machines, electric razors, alternating current voltage to the rectifier which is recorders and the like has become increasingly popular. indicated in general by the letter C. One terminal of the The use of battery current for operating automobile heat coil 7 is connected by the conductor 9 to the stationary ing systems, defrosting systems, radios, seat controls and vibrator contact 3. One terminal of the coil section 8 window controls has also increased, thereby placing a 25 is connected by conductor 10 to the stationary vibrator greater strain upon these batteries. The present device contact. 4. In effect, the coil sections provide a low ten is designed to permit the battery to be conveniently sion winding having a center tap 11. charged when the car is near a source of supply of al The center tap 11 is connected by a conductor 12 to ternating current. Conversely, it permits alternating cur the fuse 13 which in turn is connected by conductor 14 rent consuming devices to be operated from battery cur 30 to one side of the battery B. The other terminal of the rent when other alternating current supplies are not battery B, is connected by conductors 15, 16 and 17 to available. .. the reed 2 of the vibrator which is defined by the dotted An important feature of the present invention lies in outline A. This completes the primary low tension power the provision of an apparatus of the class described which circuit. - is safe to use, and which cannot accidentally cause injury 35 The rectifier C consists of rectifier sections having to the user. The charging circuit and the inverter circuit terminals 19 and 20 which are respectively connected to are controlled by a simple switching device which iso the stationary contacts 3 and 4 of the vibrator. These lates either the alternating current input plug or the alter connections are either direct or through taps or exten nating current outlet of the inverter circuit. As a result, sions of the low tension windings 7 and 8 to provide suit the chance of injury to the user is eliminated or materially 40 able arc suppression circuit across the stationary contacts reduced. 3 and 4. In addition the rectifier sections, having termi An object of the present invention lies in providing a nals 19 and 20, are permanently connected across the battery charging and power inverter system having a low tension transformer winding, either directly or single transformer utilized in both a charging circuit for through taps or extensions of said winding, and the asso a battery and a power output circuit from the battery. ciated vibrator contacts 3 and 4 attached to provide a This system comprises, exclusive of the battery, a trans 45 charging circuit to the battery. former having a high tension winding and low tension In addition to the center tapped rectifier circuit as illus winding, a rectifier, and a charging circuit for said bat trated in Figure 1, it is readily apparent that a full wave tery including said low tension winding and said rectifier bridge rectifier circuit as shown in Figure 2 may be easily permanently connected together. The system also in 50 Substituted. In the arrangement of Figure 2, the rectifier cludes a vibrator, a power output circuit, including a I is connected to the low tension windings 7 and 8 at buffer, from said battery including said low tension wind terminals. 19 and 20. One rectifier output terminal is ing and said vibrator, all permanently connected together. connected by conductors 17, 16 and 15 to one terminal The system also incorporates a means for selectively clos of the battery B and through conductor 17 leading to reed ing said charging circuit and said power output circuit, 55 2. The other rectifier output terminal is connected by and a circuit for said high tension winding or portion conductor 18 to the center tap 11 of the low tension coil, thereof adapted to be selectively connected to an alter and through conductor 12, fuse 13, and conductor 14 to nating current source or an alternating current load with the other side of the battery. voltages properly removed to prevent shocks and to Figure 2 merely shows the manner in which the full provide safe operation. - - - - - Wave rectifier may be used in place of rectifiers of other One of the objects of the invention is to provide a recti 60 types. For simplicity of explanation, similar numbers are fier permanently connected to the low tension winding used for similar parts. and associated vibrator power contacts. A further ob The high tension winding 21 of transformer D is -ject of the invention is to provide a means for selectively adapted to deliver an alternating current to the load switching from charging circuit to inverter circuit where through the output socket or receptacle F. To this end by, when inverter circuit is, operating, no high voltage 65 one terminal of the secondary winding 21 is connected f's appears at the charging circuit A.C. input plug and like through a selector switch E, the arm of which is con -wise, when the charging circuit is operating, no A.C. volt nected by conductor 23 to one terminal 24 of the output age will appear at the inverter A.C. receptacle. receptacle F. The other terminal 25 of the high tension Further objects and advantages of the invention will winding 21 is connected through conductor 26 to the appear more fully hereafter in the accompanying specifi 70 switch arm 27 which may be pivoted into contact with cation and claims. - the terminal 29 of the switch G. Terminal 29 is con 2,920,260 3 4. nected by conductor 30 to the second terminal 31 of the current supply, the vibrator reed produces alternately op output receptacle F. A buffer condenser 32 is connected positely directed current flow in the low tension windings between the conductor 26 and a tap 33 of the selector to produce a relatively high voltage alternating current switch E. The selector switch E is selectively connect output. When at least a portion of the high tension coil able to any of a series of taps 33, 34, 35 and 36 to pro is connected to a source of high voltage alternating cur vide a suitable alternating current voltage to the load rent, the opposed rectifiers form a full wave rectifier con connected to the output receptacle F. nected to opposite terminals of the battery for battery The vibrating reed 2 is connected to battery B through charging purposes. The switch arrangement is such that conductors 17, 16 and 15. The contact 1 on the vi high voltage current never appears at the input plug dur brator is connected through the series driving coil 5, O ing generation of alternating current from the battery conductor 37, switch 39, and conductor 40, to contact and the circuit to the output receptacle is broken during 4 of switch G. An arm 42 of switch G which rotates battery charging operations. - in unison with the arm 27 is engageable with terminal In accordance with the patent statutes, I have described 41 and is connected through conductor 43 to fuse 13 the principles of construction and operation of my bat which is connected through conductor 14 to the second 5 tery charger and power inverter system, and while I have terminal of the battery B. The closing of switch 39 endeavored to set forth the best embodiment thereof, I provides power to the series driving coil 5 to actuate the desire to have it understood that obvious changes may vibrator interrupter reed 2.
Recommended publications
  • Switched-Mode Power Supply - Wikipedia, the Free Encyclopedia
    Switched-mode power supply - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit Switched-mode power supply From Wikipedia, the free encyclopedia For other uses, see Switch (disambiguation). Navigation A switched-mode power supply (switching-mode Main page power supply, SMPS, or simply switcher) is an Contents electronic power supply that incorporates a switching Featured content regulator in order to be highly efficient in the Current events conversion of electrical power. Like other types of Random article power supplies, an SMPS transfers power from a Donate to Wikipedia source like the electrical power grid to a load (e.g., a personal computer) while converting voltage and Interaction current characteristics. An SMPS is usually employed to efficiently provide a regulated output voltage, Help typically at a level different from the input voltage. About Wikipedia Unlike a linear power supply, the pass transistor of a Community portal switching mode supply switches very quickly (typically Recent changes between 50 kHz and 1 MHz) between full-on and full- Interior view of an ATX SMPS: below Contact Wikipedia off states, which minimizes wasted energy. Voltage A: input EMI filtering; A: bridge rectifier; regulation is provided by varying the ratio of on to off B: input filter capacitors; Toolbox time. In contrast, a linear power supply must dissipate Between B and C: primary side heat sink; the excess voltage to regulate the output. This higher C: transformer; What links here Between C and D: secondary side heat sink; efficiency is the chief advantage of a switched-mode Related changes D: output filter coil; power supply.
    [Show full text]
  • Chrysler Corporation Tunes in with "Transistor-Ized" Music
    By Rick Hirsh Chrysler Corporation Tunes in with "Transistor-ized" Music Chrysler Corporation was the "first" car manufacturer, to advertise the use of transistors in its production car models. Chrysler and Philco Corporations had originally developed and produced an all- transistor car radio (Mopar model 914HR) in 1955. This “ground breaking” news was first announced in the Wall Street Journal newspaper on April 28, 1955. And it was an “option” for the new 1956 Chrysler and Imperial car models, that became available in its showrooms starting on October 21, 1955. But, it was short- lived, for Chrysler had decided to discontinue its new all-transistor car radio "option" before the end of 1956, due to poor sales and its expensive manufacturing costs to produce. Some of the advantages of using all-transistors versus tubes for car radios … Instant radio turn-on power versus 30-second warm-up time. Uses 90% less battery power supply. Produces less heat than conventional vacuum tube car radios. Uses no noisy vibrator power supply, which supplies the high-voltage needed for the radio's conventional vacuum tubes and was also the number one radio part to fail. Chrysler Corporation had decided that transistors were still the cutting edge of technology and was the wave of the future. And they had made the decision during the fall of 1956, to go with a newly developed “transistorized-hybrid” (vacuum tubes + transistors) car radio design, for all of its divisions and new 1957 car models. Large vacuum tube manufacturers like Tung-Sol had started to worry about its future, with regards to the newly developed transistor technology that would replace its vacuum tubes in car radios.
    [Show full text]
  • Replacing the Mechanical Vibrator in the DY-88 Power Supply for the GRC-9 Transceiver by Craig Vonilten, N6CAV with Contributions by Tom Murphy W6TOM
    Replacing the Mechanical Vibrator in the DY-88 Power Supply for the GRC-9 Transceiver by Craig Vonilten, N6CAV with contributions by Tom Murphy W6TOM As older mechanical vibrators fail (and they will ALL fail at some point) a suitable replacement is needed. I have gone through several different ways of doing this in keeping my DY-88 power supply functional. Initially I did this by repairing the mechanical units (opening and cleaning their contacts), then building my own solid state replacement and finally using ‘kits’ and designs by other amateur radio enthusiasts. All approaches have some merit…but I have settled on an indestructible approach using a small module made by Aurora Design originally intended for restoring commercial automotive radios. Consequently, this article is really more mechanical in nature than it is electrical ‘design’ related. I am using this module because it is incredibly well designed for this application. It has eliminated any desire to “roll my own”. This module is microprocessor controlled. Yes, you read that correctly…it has an onboard microprocessor that provides numerous advantages over traditional designs based on RC timed ‘blind’ switching or 555 timer solutions. With a microprocessor on-board, this module brings some “smarts” to the traditional switching circuit such as: dead-band control, delayed start, soft start, delayed restart, short circuit protection and over-power protection. Better yet…it can help protect downstream devices like the transformer (which would normally be destroyed by a traditional vibrator or solid state module if a buffer capacitor were to fail to a short circuit…not uncommon).
    [Show full text]
  • Special Power Supply Circuits Assignment 24 Ass:Gnment 24
    Electronics Radio Television Radar UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY REVISED 1967 COPYRIGHT 195e UNITED ELECTRONICS LABORATORIES SPECIAL POWER SUPPLY CIRCUITS ASSIGNMENT 24 ASS:GNMENT 24 SPECIAL POWER SUPPLY CIRCUITS In the preceding assignment, we learried the underlying principles of all rectifiers. That is, we found how alternating current is changed to pulsating direct current and then, how the pulsations are smoothed out, leaving almost pure d -c. In that assignment, we discussed in detailthe operation of the half - wave rectifier circuit and the full -wave rectifiercircuit. In this assignment, we will apply the principles which we have already learned to special power supply circuits. Among these circuits are the a -c d -c power supply, the voltage - doubler power supply, and vibrator power supplies. We shall discuss other considerations of power supplies, such as the type of rectifier used, the type of choke, etc. Transformerless Power Supplies In the power supplies discussed in the preceding assignment, power trans- formers were used to change the voltage from the 115 volt a -c supply to some desired value of voltage. (Higher voltages are usually required in vacuum - tube equipment and lower voltages in transistorized equipment.) However, a great number of vacuum -tubes have beendeveloped which operate very satisfactorily with plate voltages of approximately 100 volts. By incorporating these tubes in the circuit design, manufacturers have been able to produce equipment which does not use a power transformer. This has had several ad- vantages. It lowers the price of equipment considerably, since the power transformer is one of the most expensive components in electronics equipment.
    [Show full text]
  • AN120 an Overview of Switched-Mode Power Supplies
    INTEGRATED CIRCUITS AN120 An overview of switched-mode power supplies 1988 Dec Philips Semiconductors Philips Semiconductors Application note An overview of switched-mode power supplies AN120 Conceptually, three basic approaches exist for obtaining regulated Some definitions and comparisons between linear regulators and DC voltage from an AC power source. These are: switched-mode power supplies follow for reference. • Shunt regulation • Series linear regulation REGULATION • Series switched-mode regulation Line Regulation — (Sometimes referred to as static regulation) refers to the changes in the output (as a percent of nominal or actual All require AC power line rectification. value) as the input AC is varied slowly from its rated minimum value to its rated maximum value (e.g., from 105VAC to 125VAC ). The series switched-mode regulators will be referred to as RMS RMS switched-mode power supplies or SMPS during the course of this Load Regulation — (Sometimes referred to as dynamic regulation) article refers to changes in output (as a percent of nominal or actual value) when the load conditions are suddenly changed (e.g., minimum load Briefly stated, if all three types of regulation can perform the same to full load.) function, the following are some of the key parameters to be addressed: NOTES: The combination of static and dynamic regulation are • From an economical point of view, cost of the system is cumulative care should be taken when referring to the regulation paramount. characteristics of a power supply • From an operations point of view, weight of the system is critical. Thermal Regulation — Referred to as changes due to ambient variations or thermal drift.
    [Show full text]
  • My Troubleshooting Textbook by Max Robinson
    My Troubleshooting Textbook by Max Robinson Chapter 1 Introduction to Troubleshooting. Chapter 2 Test Equipment. 2.1 The Volt-Ohm-Milliammeter (VOM). 2.2 The Electronic Voltmeter. 2.3 The Digital Multimeter (DMM). 2.4 Choosing The Correct Test Meter. 2.5 Analog Versus Digital Meters. 2.6 The Oscilloscope. 2.7 The Signal Tracer. 2.8 Miscellaneous Test Equipment. 2.9 Instruction Manuals. Chapter 3 Failure Modes. 3.1 Generalized Failure Modes. 3.2 Electrolytic Capacitors. Chapter 4 Troubleshooting Techniques. 4.1 Check The Obvious First. 4.2 Do Not Make Modifications. 4.3 The Power Supply Section. 4.4 Half-splitting. 4.5 Signal Tracing. 4.6 Signal Injection. 4.7 Disturbance Testing. 4.8 Static Testing. 4.9 Shotgunning. Chapter 5 Faults in Power Supplies. 5.1 Rectifier-Filter Circuits. 5.2 Analog Voltage and current Regulator Circuits. 5.3 Switching Mode Power Supplies. Chapter 6 Faults in Transistor Circuits. 6.1 Common Emitter Amplifier. 6.2 The Emitter-follower's Fatal Flaw. 6.3 AC Coupled Amplifiers. 6.4 DC Coupled Amplifiers. 6.5 Radio Frequency Amplifiers. 6.6 Switching Circuits. Chapter 7 Transistorized Consumer Equipment. 7.1 Audio Amplifiers. 7.2 Radios and tuners. 7.3 Things you should leave alone. Chapter 8 Faults in Vacuum Tube Circuits. 8.1 Audio Amplifiers. 8.2 Radio Receivers. Chapter 9 Antique Equipment. 9.1 Before Turning on the Power. 9.2 Pre 1930 Radios. 9.3 Pre World War Two Radios. 9.4 The All American Five. 9.5 Three Way Portable Radios. 9.6 Phonographs and Record Changers.
    [Show full text]
  • IN THIS ISSUE How to Fix a Radio That Hums Alumni Association
    IN THIS ISSUE How To Fix A Radio That Hums AUG. -SEPT. How To Align Radio Receivers VOL. 12 1946 Alumni Association News www.americanradiohistory.com NE WON'T LET 60! Off the coast of New England a fishing boat was being tossed about in a rough sea. Suddenly a sea- man noticed a young man hanging to the mast, lashed by the biting wind. In horror the seaman ran to the Captain and exclaimed, "Look, Captain, your son is up there in grave danger. If he lets go h.e'll he dashed to pireex." The Captain looked up and calmly replied, "IIe won't let go." There is a moral in that little story. Many of its need to train ourselves to withstand set- backs. We must learn how to meet adversity. In every career, in every business, in every life, problems will present them- selves. Some will be trivial. Some will be serious. Some will seem almost insurmountable. It is then we are put to the real test. To yield to strong resistance is a weakness. Someone has well said, "Only the game fish can swim up- stream." Here and there we find a strong man. His problems are many and no different from those of others. But he keeps on hustling. He knows that he is master of his own destiny. Whatever his future shall be, he knows depends upon him and hint alone. While others are will- ing to float with the tide, the is swimming up- stream. He doesn't know defeat. He won't let go.
    [Show full text]
  • Technical Manual
    This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. https://books.google.com DEPARTMENT OF THE ARMY TECHNICAL MANUAL Is VIBRATOR PACK PP-31/TIQ-2 DEPARTMENT OF THE ARMY TECHNICAL MANUAL TM 11-2596 VIBRATOR PACK PP-31/TIQ-2 DEPARTMENT OF THE ARMY AUGUST 1948 Untied States Government Printing Office Washington : 1948 DEPARTMENT OF THE ARMY Washington 25, D. C, 31 August 1948 TM 11-2596, Vibrator Pack PP-31/TIQ-2, is published for the in formation and guidance of all concerned. [AG 300.7 (2 Aug 48)] By order of the Secretary of the Army : Official : OMAR N. BRADLEY Chief of Staff, United States Army EDWARD F. WITSELL Major General The Adjutant General Distribution : Army : Tech Sv (2) ; Arm & Sv Bd (1) ; AFF Bd (ea Sv Test Sec) (1) ; AFF (5) ; OS Maj Comd (5) ; Base Comd (3) ; MDW (5) ; A (ZI) (20), (Overseas) (5); CHQ (2); FC (2); USMA (2); Sch 11 (10) ; Gen Dep 11 (10) ; Dep 11 (5) except Baltimore & Sacramento (20) ; Tng Ctr (2) ; PE (10) ; Lab 11 (2) ; 4th & 5th Ech Maint Shops 11 (2) ; T/O & E 11-47 (2) ; 11-107 (2) ; 11-127 (2) ; 11-587 (2) ; 11-592 (2) ; 11-597 (2) ; SPECIAL DISTRIBUTION. Air Force : USAF (5) ; USAF Maj Comd (5) ; USAF Sub Comd (3) ; Serv ices (ATC) (2) ; Class III Instls (2) ; SPECIAL DISTRIBU TION. For explanation of distribution formula see TM 38-405.
    [Show full text]
  • Aurora Design Vbx-1 Electronic Vibrator
    Aurora Design VBx-1 Electronic Vibrator The VBx-1 electronic vibrator represents a whole new paradigm in vibrator replacements. Microprocessor controlled for the highest accuracy and features available, nothing else even comes close! Full protection against reverse battery, shorted outputs and over power, the VBx-1 is nearly indestructible. Because of this ruggedness, the VBx-1 can be hard wired into the circuit or wired to an original style vibrator base, even placed inside the can of an original vibrator! With this flexibility, hard to find 5, 6 and 7 pin vibrators are no longer an issue. Operating from 3.0 - 18V (12-36V for VBF-1), only one board is required for all positive ground installations and one for all negative ground installations. Through the use of sophisticated algorithms, the microprocessor allows the VBx-1 to offer such unheard of features as deadband control, delayed start, soft start, delayed restart, short circuit protection and over power protection, all with astounding accuracy. The deadband control, delayed start and soft start features in particular greatly reduce the stresses on the transformer, rectifier and filters extending their lives. Not only does the VBx-1 protect itself, but it also protects expensive parts in the radio like the transformer, rectifier and filters. Unlike simple “dumb” electronic vibrators that will burn a transformer up if something as simple as the buffer capacitor shorts, the VBx-1 immediately senses this condition, protecting itself and the radio components until the buffer capacitor can be replaced! No longer can a careless user destroy expensive parts in their radio simply by leaving it turned on after a failure.
    [Show full text]
  • Understanding Switch Mode Power Supplies
    Understanding Switch Mode Power Supplies Switch mode power supplies (SMPS) Conventional “linear” power supplies are automobiles. The vibrator “chopped” the have been used for many years in inefficient because they regulate by 6 volt battery voltage into an AC signal industrial and aerospace applications dumping the excess power in to heat. The that could be stepped up and down to where good efficiency, light weight and AC power transformer, operating at 60 Hz, deliver the plate and bias voltages needed small size were of prime concern. Today also contributes to the inefficiency of to power the tube radio. SMPS (often called “choppers” or some power supplies. When all the “switchers” are used extensively in AC inefficiencies are added, conventional, A more modern SMPS that you may be powered electronic devices such as linear power supplies are typically 40- familiar with is the horizontal output stage computers, monitors, television receivers, 50% efficient, while switchers have of a television receiver or computer and VCRs. efficiencies from 60 to 90%. This is very monitor that develops the high voltage. important when the designer wants to Although this “flyback” circuit is not This Tech Tip explains the basic operation reduce generated heat, reduce power commonly called a switch mode supply, it of the typical switch mode power supplies costs, or increase battery life. is a type of switcher. used in consumer electronic equipment. We will cover both the Pulse Width Anther key benefit of a SMPS is their Today’s more sophisticated SMPS still (PWM) and Pulse Rate (PRM) types. ability to closely regulate the output employ the same basic concept used in Refer to Tech Tip #204 for information on voltage.
    [Show full text]
  • ON Semiconductor Is
    ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others.
    [Show full text]
  • Vibrator Power 1 Supply
    fSTQRfCAU WAR DEPARTMENT TECHNICAL MANUAL VIBRATOR POWER SUPPLY 1 PP-114/VRC-3 ' WAR DEPARTMENT 27 FEBRUARY 1945 WAR DEPARTMENT TECHNICAL MANUAJ. TM 11-983 VIBRATOR POWER SUPPLY PP-114/ VRC-3 WAR DEPARTMENT 27 FEBRUARY 1945 I WAR DEPARTMENT, WASHING'rON 25, D. C., 27 February 1945. TM 11-983, Vibrator Power Supply PP-114 / VRC-:~. is pub­ lished for the information and guidance of all concerned. !A. G. 300.7 (21 Nov 4-ll.l BY ORDER OF TilE SECRETARY OF WAR: G. C. MARSHALL, Cllif•f of Stcrj)'. OFFICIAL: J. A. ULIO, Major General, T II e Adj ulan t G rneral. DISTRIBUTION : A (Sig) (5); SvC (Sig) (5); Dept~ (Sig) (5); Def Comd (Sig) (2); D (2) ; Tech Sv (2) ; Arm & Sv Bd (2) ; PC & S (Continental) (2)-(0verseM) (1); ROTC (5); Gen & Sp Sv Sch (10); T of Opns (5); Base Comds (5); Dep 11 (2); Gen Oversea~ SOS Dep (Sig Sec) (2) ; Lab 11 (2); Rep Shops 11 (2); PE (Sig) (2). T/ 0 & E 11- 107(5); 11-127(5); 11-237(5); 11-587(5); 11-592(5); 11-597(5); 17-27(5); 17-478(5); 17-57(5); 17-117(5). (For explanation of ~ymbols see FM 21-6.) II TABLE OF CONTENTS Paragraph Page PART ONE. Introduction. SECTION I. Description of Vibrator Power Supply PP-114/ VRC-3. General ------------························ 1 1 Application .............................. 2 3 Technical characteristics........ 3 3 Table of components................ 4 4 Packaging data ........................ 5 4 II. Installation of Vibrator Power Supply PP-114/ VRC-3. Unpacking and checking .......
    [Show full text]