1 The Pika and the Watershed: The Impact of Small Mammal Poisoning on 2 the Ecohydrology of the Qinghai-Tibetan Plateau 3 4 Maxwell C. Wilson 5 Graduate Student 6 School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA 7 8 Andrew T. Smith 9 Professor 10 School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA 11 12 Corresponding author: Maxwell C. Wilson 13 School of Life Sciences, Arizona State University, Box 874601,Tempe, AZ 14 85287-4601, USA. 15 Tel.: +1(480)965-4975; fax: +1(480) 965 8330; e-mail address: 16
[email protected] 17 18 Word Count (text): 4541 19 20 Acknowledgments Funding for this research was provided by the Phoenix Zoo 21 Conservation and Science Grants program, the Cleveland Metroparks Zoo Asia 22 Seed Fund, and the US NSF Dynamics of Coupled Natural and Human Systems 23 Program (DBCS-0814794). We thank Badingqiuying and Nicholas Whipps for 24 their assistance in providing on-the-ground support. Brigitte Hogan and Zhao 25 Qingling assisted in the initial design of this experiment, and Crystal Palmer 26 drafted the map. We thank Ana Davidson, Ed Grumbine, Sharon Hall, Harriet 27 Smith, Cherie Westbrook, and Jingle Wu for their conscientious and insightful 28 reviews of an earlier draft of this manuscript. 29 30 31 The Pika and the Watershed: The Impact of Small Mammal Poisoning on 32 the Ecohydrology of the Qinghai-Tibetan Plateau 33 34 Abstract With approximately 20% of the world’s population living in its 35 downstream watersheds, the Qinghai-Tibetan Plateau (QTP) is considered 36 “Asia’s Water Tower.” However, grasslands of the QTP, where most of Asia’s 37 great rivers originate, are becoming increasingly degraded, which leads to 38 elevated population densities of a native small mammal, the plateau pika 39 (Ochotona curzoniae).