(II) Complexes of Flavonoids: Quercitrin, Myricitrin, Rutin B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Compounds with Potential Therapeutic Uses From
International Journal of Molecular Sciences Article Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO) Lucía Guevara 1, María Ángeles Domínguez-Anaya 1, Alba Ortigosa 1, Salvador González-Gordo 1 , Caridad Díaz 2 , Francisca Vicente 2 , Francisco J. Corpas 1 , José Pérez del Palacio 2 and José M. Palma 1,* 1 Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; [email protected] (L.G.); [email protected] (M.Á.D.-A.); [email protected] (A.O.); [email protected] (S.G.-G.); [email protected] (F.J.C.) 2 Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; [email protected] (C.D.); [email protected] (F.V.); [email protected] (J.P.d.P.) * Correspondence: [email protected]; Tel.: +34-958-181-1600; Fax: +34-958-181-609 Abstract: Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Citation: Guevara, L.; Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and Domínguez-Anaya, M.Á.; Ortigosa, A.; González-Gordo, S.; Díaz, C.; analgesic activities have been reported in the literature. -
Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant
molecules Review Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant Species: A Comprehensive Review Javad Mottaghipisheh 1,* and Marcello Iriti 2,* 1 Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary 2 Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy * Correspondence: [email protected] (J.M.); [email protected] (M.I.); Tel.: +36-60702756066 (J.M.); +39-0250316766 (M.I.) Academic Editor: Francesco Cacciola Received: 20 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: Flavonoids are considered one of the most diverse phenolic compounds possessing several valuable health benefits. The present study aimed at gathering all correlated reports, in which Sephadex® LH-20 (SLH) has been utilized as the final step to isolate or purify of flavonoid derivatives among all plant families. Overall, 189 flavonoids have been documented, while the majority were identified from the Asteraceae, Moraceae, and Poaceae families. Application of SLH has led to isolate 79 flavonols, 63 flavones, and 18 flavanones. Homoisoflavanoids, and proanthocyanidins have only been isolated from the Asparagaceae and Lauraceae families, respectively, while the Asteraceae was the richest in flavones possessing 22 derivatives. Six flavones, four flavonols, three homoisoflavonoids, one flavanone, a flavanol, and an isoflavanol have been isolated as the new secondary metabolites. This technique has been able to isolate quercetin from 19 plant species, along with its 31 derivatives. Pure methanol and in combination with water, chloroform, and dichloromethane have generally been used as eluents. This comprehensive review provides significant information regarding to remarkably use of SLH in isolation and purification of flavonoids from all the plant families; thus, it might be considered an appreciable guideline for further phytochemical investigation of these compounds. -
And East Siberian Rhododendron (Rh. Adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry
molecules Article Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry Mayya Razgonova 1,2,* , Alexander Zakharenko 1,2 , Sezai Ercisli 3 , Vasily Grudev 4 and Kirill Golokhvast 1,2,5 1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia; [email protected] (A.Z.); [email protected] (K.G.) 2 SEC Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia 3 Agricultural Faculty, Department of Horticulture, Ataturk University, 25240 Erzurum, Turkey; [email protected] 4 Far Eastern Investment and Export Agency, 123112 Moscow, Russia; [email protected] 5 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia * Correspondence: [email protected] Academic Editors: Seung Hwan Yang and Satyajit Sarker Received: 29 June 2020; Accepted: 12 August 2020; Published: 19 August 2020 Abstract: Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder have been actively used in ethnomedicine in Mongolia, China and Buryatia (Russia) for centuries, as an antioxidant, immunomodulating, anti-inflammatory, vitality-restoring agent. These plants contain various phenolic compounds and fatty acids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) extraction has been shown to be the method of choice for the recovery of these naturally occurring compounds. Operative parameters and working conditions have been optimized by experimenting with different pressures (300–400 bar), temperatures (50–60 ◦C) and CO2 flow rates (50 mL/min) with 1% ethanol as co-solvent. The extraction time varied from 60 to 70 min. -
Quercitrin and Afzelin Isolation: Chemical Synthesis of A
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2017 Quercitrin and Afzelin Isolation: Chemical Synthesis of a Novel Methicillin-Resistant Staphylococcus Aureus (MRSA) Antibiotic Analogue Taylor Ramsaroop University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Chemistry Commons Recommended Citation Ramsaroop, Taylor, "Quercitrin and Afzelin Isolation: Chemical Synthesis of a Novel Methicillin-Resistant Staphylococcus Aureus (MRSA) Antibiotic Analogue" (2017). Honors Theses. 905. https://egrove.olemiss.edu/hon_thesis/905 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. QUERCITRIN AND AFZELIN ISOLATION: CHEMICAL SYNTHESIS OF A NOVEL METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) ANTIBIOTIC ANALOGUE by Taylor Nichole Ramsaroop A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2017 Approved by ___________________________________ Advisor: Dr. James McChesney ___________________________________ Reader: Dr. Susan Pedigo ___________________________________ Reader: Dr. Nathan Hammer © 2017 Taylor Ramsaroop ii Acknowledgements I would like to thank my thesis advisors for making this project possible and the Sally McDonnell Barksdale Honors College for all the opportunities made available to me throughout my incredible four years at the University of Mississippi. A special thank you to Dr. McChesney for choosing to hire me at Ironstone Separations, Inc two years ago, his continued support, and patience throughout this process. -
Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: an Asian Herbal Medicine
antioxidants Article Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: An Asian Herbal Medicine 1,2, 3, 1,4,5 3 Sabrina S. Soares y , Elmira Bekbolatova y, Maria Dulce Cotrim , Zuriyadda Sakipova , Liliya Ibragimova 3, Wirginia Kukula-Koch 6,* , Thais B. Sardella Giorno 7, Patrícia D. Fernandes 7, Diogo André Fonseca 1,4,5 and Fabio Boylan 2,* 1 Laboratory of Pharmacy and Pharmaceutical care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal 2 School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland 3 School of Pharmacy, JSC National Medical University, 050000 Almaty, Kazakhstan 4 Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal 5 CIBB Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal 6 Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki str., 20-093 Lublin, Poland 7 Laboratório da Dor e Inflamação, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil * Correspondence: [email protected] (W.K.-K.); [email protected] (F.B.) Sabrina S. Soares and Elmira Bekbolatova contributed equally to this paper. y Received: 26 June 2019; Accepted: 6 August 2019; Published: 10 August 2019 Abstract: Crataegus almaatensis, an endemic ornamental plant in Kazakhstan is used in popular medicine due to its cardiotonic properties. The most studied species of the same genus are commonly found in Europe, which shows the importance of having the Kazakh species validated via its chemical and pharmacological studies. -
Phenolic Constituentswith Promising Antioxidant and Hepatoprotective
id27907328 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com December 2007 Volume 3 Issue 3 NNaattuurraall PPrrAoon dIdnduuian ccJotutrnssal Trade Science Inc. Full Paper NPAIJ, 3(3), 2007 [151-158] Phenolic constituents with promising antioxidant and hepatoprotective activities from the leaves extract of Carya illinoinensis Haidy A.Gad, Nahla A.Ayoub*, Mohamed M.Al-Azizi Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, (EGYPT) E-mail: [email protected] Received: 15th November, 2007 ; Accepted: 20th November, 2007 ABSTRACT KEYWORDS The aqueous ethanolic leaf extract of Carya illinoinensis Wangenh. K.Koch Carya illinoinensis; (Juglandaceae) showed a significant antioxidant and hepatoprotective Juglandaceae; activities in a dose of 100 mg/ kg body weight. Fifteen phenolic compounds Phenolic compounds; were isolated from the active extract among which ten were identified for Hepatoprotective activity. the first time from Carya illinoinensis . Their structures were elucidated to be gallic acid(1), methyl gallate(2), P-hydroxy benzoic acid(3), 2,3-digalloyl- 4 â 4 -D- C1-glucopyranoside(4), kaempferol-3-O- -D- C1-galactopyranoside, ’-O-galloyl)- 4 trifolin(8), querectin-3-O-(6' -D- C1-galactopyranoside(9), ’-O-galloyl)- 4 kaempferol-3-O-(6' -D- C1-galactopyranoside(10), ellagic acid(11), 3,3' dimethoxyellagic acid(12), epigallocatechin-3-O-gallate(13). Establishment of all structures were based on the conventional methods of analysis and confirmed by NMR spectral analysis. 2007 Trade Science Inc. - INDIA INTRODUCTION dition, caryatin(quercetin-3,5-dimethyl ether) , caryatin glucoside and rhamnoglucoside were also isolated from Family Juglandaceae includes the deciduous gen- the bark[4], while, quercetin glycoside, galactoside, rham- era, Juglans(walnuts) and Carya(hickories). -
Download Product Insert (PDF)
PRODUCT INFORMATION Quercitrin Item No. 19866 CAS Registry No.: 522-12-3 OH Formal Name: 3-[(6-deoxy-ɑ-L-mannopyranosyl) oxy]-2-(3,4-dihydroxyphenyl)-5,7- OH dihydroxy-4H-1-benzopyran-4-one Synonyms: C.I. 75720, NSC 9221, HO O Quercetin 3-rhamnoside Quercetin 3-L-rhamnoside O MF: C21H20O11 O FW: 448.4 OH HO Purity: ≥98% O UV/Vis.: λmax: 254, 351 nm Supplied as: A crystalline solid OH Storage: -20°C OH Stability: As supplied, 2 years from the QC date provided on the Certificate of Analysis, when stored properly Laboratory Procedures Quercitrin is supplied as a crystalline solid. A stock solution may be made by dissolving the quercitrin in the solvent of choice. Quercitrin is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide, which should be purged with an inert gas. The solubility of quercitrin in these solvents is approximately 1, 30, and 15 mg/ml, respectively. Quercitrin is sparingly soluble in aqueous solutions. To enhance aqueous solubility, dilute the organic solvent solution into aqueous buffers or isotonic saline. If performing biological experiments, ensure the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. We do not recommend storing the aqueous solution for more than one day. Description Quercitrin is a glycoside formed from the flavonoid quercetin (Item No. 10005169) and the deoxy sugar rhamnose. It can be found in a wide range of medicinal plants and has been reported to have antioxidant, antiviral, and anti-inflammatory properties.1,2,3 References 1. -
Analysis of the Binding and Interaction Patterns of 100 Flavonoids with the Pneumococcal Virulent Protein Pneumolysin: an in Silico Virtual Screening Approach
Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (16):40-51 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Analysis of the binding and interaction patterns of 100 flavonoids with the Pneumococcal virulent protein pneumolysin: An in silico virtual screening approach Udhaya Lavinya B., Manisha P., Sangeetha N., Premkumar N., Asha Devi S., Gunaseelan D. and Sabina E. P.* 1School of Biosciences and Technology, VIT University, Vellore - 632014, Tamilnadu, India 2Department of Computer Science, College of Computer Science & Information Systems, JAZAN University, JAZAN-82822-6694, Kingdom of Saudi Arabia. _____________________________________________________________________________________________ ABSTRACT Pneumococcal infection is one of the major causes of morbidity and mortality among children below 2 years of age in under-developed countries. Current study involves the screening and identification of potent inhibitors of the pneumococcal virulence factor pneumolysin. About 100 flavonoids were chosen from scientific literature and docked with pnuemolysin (PDB Id.: 4QQA) using Patch Dockprogram for molecular docking. The results obtained were analysed and the docked structures visualized using LigPlus software. It was found that flavonoids amurensin, diosmin, robinin, rutin, sophoroflavonoloside, spiraeoside and icariin had hydrogen bond interactions with the receptor protein pneumolysin (4QQA). Among others, robinin had the highest score (7710) revealing that it had the best geometrical fit to the receptor molecule forming 12 hydrogen bonds ranging from 0.8-3.3 Å. Keywords : Pneumococci, pneumolysin, flavonoids, antimicrobial, virtual screening _____________________________________________________________________________________________ INTRODUCTION Streptococcus pneumoniae is a gram positive pathogenic bacterium causing opportunistic infections that may be life-threating[1]. Pneumococcus is the causative agent of pneumonia and is the most common agent causing meningitis. -
(12) United States Patent (10) Patent No.: US 7,399,783 B2 Rosenbloom (45) Date of Patent: Jul
US007399.783B2 (12) United States Patent (10) Patent No.: US 7,399,783 B2 Rosenbloom (45) Date of Patent: Jul. 15, 2008 (54) METHODS FOR THE TREATMENT OF SCAR Quercetin: Implications for the Treatment of Excessive Scars.” TSSUE Internet Web Page, vol. 57(5); Nov. 2004. Marilyn Sterling, R.D., Article: Science Beat, Internet Web Page, (75) Inventor: Richard A. Rosenbloom, Elkins Park, Natural Foods Merchandiser vol. XXIV, No. 10, p. 50, 2003. PA (US) Phan TT. See P. Tran E. Nguyen TT, Chan SY. Lee ST and Huynh H., PubMed, Internet Web Page, “Suppression of Insulin-like Growth (73) Assignee: The Quigley Corporation, Doylestown, Factor Signalling Pathway and Collagen Expression in Keloid-De rived Fibroblasts by Quercetin: It's Therapeutic Potential Use in the PA (US) Treatment and/or Prevention of Keloids.” Br. J. Dermatol., Mar. 2003, 148(3):544-52. (*) Notice: Subject to any disclaimer, the term of this Crystal Smith, Kevin A. Lombard, Ellen B. Peffley and Weixin Liu; patent is extended or adjusted under 35 "Genetic Analysis of Quercetin in Onion (Allium cepa L.) Lady U.S.C. 154(b) by 440 days. Raider.” The Texas Journal of Agriculture and Natural Resource, vol. 16 pp. 24-28, 2003. (21) Appl. No.: 11/158,986 Skin Actives Scientific L.L.C., Internet Web Page, “Quercetin.” Quercetin by Skinactives, printed on Apr. 10, 2006. (22) Filed: Jun. 22, 2005 Saulis, Alexandrina S. M.D.; Mogford, Jon H. Ph.D.; Mustoe, Tho mas A., M.D., Plastic and Reconstructive Surgery, “Effect of (65) Prior Publication Data Mederma on Hypertrophic Scarring in the Rabbit Ear Model.” Jour US 2006/O293257 A1 Dec. -
Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed)
Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed) Authors: Igor A. Schepetkin, Andrew G. Ramstead, Liliya N. Kirpotina, Jovanka M. Voyich, Mark A. Jutila, and Mark T. Quinn This is the peer reviewed version of the following article: [Schepetkin, IA, AG Ramstead, LN Kirpotina, JM Voyich, MA Jutila, and MT Quinn. "Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed)." Phytotherapy Research 30, no. 8 (May 2016): 1287-1297.], which has been published in final form at https://dx.doi.org/10.1002/ptr.5648. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed) Igor A. Schepetkin, Andrew G. Ramstead, Liliya N. Kirpotina, Jovanka M. Voyich, Mark A. Jutila and Mark T. Quinn* Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, an- tibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the com- pounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other poly- phenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E. -
Myricetin Inhibits Matrix Metalloproteinase 2 Protein Expression and Enzyme Activity in Colorectal Carcinoma Cells
Molecular Cancer Therapeutics 281 Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells Ching-Huai Ko,1 Shing-Chuan Shen,3,4 sion, with reduced ERK phosphorylation and c-Jun protein Tony J.F. Lee,5,6 and Yen-Chou Chen2 expression. Addition of myricetin but not myricitrin sup- pressed TPA-induced MMP-2 protein expression in COLO Graduate Institutes of 1Pharmaceutical Sciences and 2 3 205 cells by blocking the TPA-induced events, including Pharmacognosy, School of Pharmacy and Department of A Dermatology, School of Medicine, Taipei Medical University, translocation of PKC from cytosol to membrane, phos- Taipei, Taiwan; 4Department of Dermatology, Taipei Municipal phorylation of ERK1/2 protein, and induction of c-Jun Wan-Fang Hospital, Taipei, Taiwan; 5Neuro-Medical Scientific protein expression. Addition of PD98059 or GF-109203X Center, Tzu Chi Hospital, College of Life Sciences, significantly enhanced the inhibitory effect of myricetin on Tzu Chi University, Hualien, Taiwan; and 6Department of Pharmacology, Southern Illinois University School of Medicine, MMP-2 enzyme activity induced by TPA. Furthermore, Springfield, Illinois myricetin, but not myricitrin, suppressed TPA-induced invasion of COLO 205 cells in an in vitro invasion assay using Engelbreth-Holm-Swarm sarcoma tumor extract Abstract Matrigel–coated Transwells. Results of the present study Colorectal carcinoma is a leading cause of human mortality indicate that myricetin significantly blocked both endoge- due to its high metastatic ability. Because the activation of nous and TPA-induced MMP-2 enzyme activity by inhibit- matrix metalloproteinases (MMP) is a key factor in the ing its protein expression and enzyme activity. -
Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 600-OH Group
molecules Article Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 600-OH Group Xican Li 1,*, Qian Jiang 1, Tingting Wang 1, Jingjing Liu 1 and Dongfeng Chen 2,* 1 School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; [email protected] (Q.J.); [email protected] (T.W.); [email protected] (J.L.) 2 School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China * Correspondence: [email protected] or [email protected] (X.L.); [email protected] (D.C.); Tel.: +86-203-935-8076 (X.L.) Academic Editor: Maurizio Battino Received: 6 July 2016; Accepted: 6 September 2016; Published: 19 September 2016 Abstract: The role of the 600-OH (!-OH) group in the antioxidant activity of flavonoid glycosides has been largely overlooked. Herein, we selected quercitrin (quercetin-3-O-rhamnoside) and isoquercitrin (quercetin-3-O-glucoside) as model compounds to investigate the role of the 600-OH group in several antioxidant pathways, including Fe2+-binding, hydrogen-donating (H-donating), and electron-transfer (ET). The results revealed that quercitrin and isoquercitrin both exhibited dose-dependent antioxidant activities. However, isoquercitrin showed higher levels of activity than quercitrin in the Fe2+-binding, ET-based ferric ion reducing antioxidant power, and multi-pathways-based superoxide anion-scavenging assays. In contrast, quercitrin exhibited greater activity than isoquercitrin in an H-donating-based 1,1-diphenyl-2-picrylhydrazyl radical-scavenging assay.