Download PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF File ISSN 1994-4136 (print) ISSN 1997-3500 (online) Myrmecological News Volume 25 October 2017 Schriftleitung / editors Florian M. STEINER, Herbert ZETTEL & Birgit C. SCHLICK-STEINER Fachredakteure / subject editors Jens DAUBER, Falko P. DRIJFHOUT, Evan ECONOMO, Heike FELDHAAR, Nicholas J. GOTELLI, Heikki O. HELANTERÄ, Daniel J.C. KRONAUER, John S. LAPOLLA, Philip J. LESTER, Timothy A. LINKSVAYER, Alexander S. MIKHEYEV, Ivette PERFECTO, Christian RABELING, Bernhard RONACHER, Helge SCHLÜNS, Chris R. SMITH, Andrew V. SUAREZ Wissenschaftliche Beratung / editorial advisory board Barry BOLTON, Jacobus J. BOOMSMA, Alfred BUSCHINGER, Daniel CHERIX, Jacques H.C. DELABIE, Katsuyuki EGUCHI, Xavier ESPADALER, Bert HÖLLDOBLER, Ajay NARENDRA, Zhanna REZNIKOVA, Michael J. SAMWAYS, Bernhard SEIFERT, Philip S. WARD Eigentümer, Herausgeber, Verleger / publisher © 2017 Österreichische Gesellschaft für Entomofaunistik c/o Naturhistorisches Museum Wien, Burgring 7, 1010 Wien, Österreich (Austria) Myrmecological News 25 17-28 Vienna, October 2017 Larvae of trap-jaw ants, Odontomachus LATREILLE, 1804 (Hymenoptera: Formicidae): morphology and biological notes Eduardo G. P. FOX, Adrian A. SMITH, Joshua C. GIBSON & Daniel R. SOLIS Abstract This study aims to contribute to the neglected topic of larval biology in ants. The number of larval instars for three differ- ent species of trap-jaw ants, Odontomachus meinerti FOREL, 1905, Odontomachus bauri EMERY, 1892, and Odontomachus brunneus (PATTON, 1894) was estimated to three based on the maximum width frequency distributions of head cap- sules from worker and male larvae. The obtained number of larval instars was smaller than from a previous report with another species in the genus, indicating possible interspecific variation. Larvae of different sexes and instars among the three different species were generally identical, differing merely by relative dimensions and patterns of hair distribution. Dorsal "doorknob" protuberances were recorded for the first time in the genus, and observed being used to fix larvae onto nest walls. From observing several individuals, we suggest the ornamentation of spiracle peritremes and the types of body protuberances are useful characters for larval taxonomy within this group. Moreover, a few individuals were found pos- sessing anomalous structures which are reminiscent of characters from related taxa. Finally, some brief observations are made on an unidentified parasite found inside some mature larvae of O. bauri. Key words: Juvenile morphology, post-embryonic development, ecdysis, Odontomachus meinerti, O. bauri, O. brunneus. Myrmecol. News 25: 17-28 (online 8 May 2017) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 30 November 2016; revision received 19 March 2017; accepted 21 March 2017 Subject Editor: Chris R. Smith Eduardo Gonçalves P. Fox (contact author), Red Imported Fire Ant Research Center, South China Agricultural Uni- versity, Guangzhou 510642, China. E-mail: [email protected] Adrian A. Smith, Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA; De- partment of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA. Joshua C. Gibson, Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Daniel R. Solis, Centro de Estudos de Insetos Sociais, Sao Paulo State University. 24A, 1515, Bela Vista 13506-900, Rio Claro, SP, Brazil. Introduction Excluding the poles and a few Pacific islands, ants can be ANTWEB 2016). Odontomachus colonies vary in worker found across all terrestrial habitats wherein they typically number from less than a hundred to several hundred, while play central ecological roles at multiple trophic levels (HÖLL- queens can be quite numerous depending on the species DOBLER & WILSON 1990). In the context of their nutri- (e.g., more than 80 reported by ITO & al. 1996). For Odon- tional adaptations and social plasticity, ant larvae usually tomachus, detailed morphological studies on larvae are avail- play a key role inside the colony as "social stomachs" as able only for the following species: Odontomachus haema- they store, interconnect, and passively distribute nutrients todus (LINNAEUS, 1758), Odontomachus simillimus SMITH, to nestmates (HÖLLDOBLER & WILSON 1990). Whilst the 1858 by WHEELER & WHEELER (1952, 1964, 1980), and outstanding diversity and ecological dominance of ants has Odontomachus clarus (ROGER, 1861) by PETRALIA & VIN- attracted a great deal of attention from scientists and the SON (1979). Some additional biological notes on Odonto- general public, the larval phases of ants are typically un- machus larvae are given by COLOMBEL (1971, 1974, 1978) known and unstudied; this is illustrated by the tiny frac- (on larval instars, artificial rearing, and the production of tion (0.4%, ca. 64) of total ant species which have had gynes), WHEELER (1918) (briefly on larval feeding), HART their larval stages described in any detail (see a tentative & TSCHINKEL (2012) (on seasonal brood production), and list in SOLIS & al. 2010a; estimated total number of ant BOTTCHER & OLIVEIRA (2014) (briefly on larval nutrition). species based on ANTWEB 2016). Therefore, the present study is part of a recent effort to Ants in the genus Odontomachus LATREILLE, 1804 (67 expand available information on ant larvae. Larval mor- described species) are relatively large and common ants phology of three species – Odontomachus bauri (EMERY, from the tropics and subtropics that possess elongate spring- 1892), Odontomachus brunneus (PATTON, 1894), and Odon- loaded mandibles used to capture prey or initiate escape tomachus meinerti (FOREL, 1905) – was evaluated using jumps (DEYRUP & al. 1985, LARABEE & SUAREZ 2014, light and scanning electron microscopy. Intraspecific varia- tions are reported from comparing a large number of spe- above listed Florida populations and established in the la- cimens (> 20 for each species), including unprecedented boratory without brood. Worker-laid male larvae were ob- aberrations. Observations of larvae inside laboratory cul- tained from these colonies which were kept under con- tures of live colonies are also presented and discussed, trolled lab conditions of 27 ºC and relative humidity 40 - given the paucity of published information for this genus. 50%, held in plastic Petri dish nest chambers with mois- tened dental plaster substrate. Obtained specimens were Material and methods all stored directly in 70% ethanol. Sample collection: Worker larvae. Nest fragments of Odon- Larval instars: The number of larval instars was pri- tomachus meinerti and O. bauri were obtained from the marily estimated following the principle of Dyar's rule as urban municipality of Rio de Janeiro, Rio de Janeiro, Bra- discussed in PARRA & HADDAD (1989) and adapted by zil, with further specimens of O. bauri collected from a SOLIS & al. (2010a), as follows: "The maximum head widths single nest in the campus of Joint Research Unit Ecology of the larvae were measured […] and plotted in a fre- of Guianan Forests (EcoFoG) in Kourou, French Guiana. quency distribution graph, wherein every distinct peak was Obtained specimens were fixed and stored in 70% ethanol. considered to correspond to a different larval instar; the A total of nine whole queenright colonies of O. brunneus obtained number of larval instars was then tested against were collected from the following Florida, United States Dyar's rule." populations: MacArthur Agro-ecology Research Centre For Odontomachus meinerti workers we had sufficient in Lake Placid, Apalachicola National Forest in Tallahas- samples to allow for bracketing growth limits, as described see, and Pine Jog Environmental Education Centre in West by SOLIS & al. (2010a): "The first larval instar and the Palm Beach. These colonies were queenright and out of last larval instar can be explicitly identified and used as the reproductive phase given the total absence of alates, reference to bracket others. First instar larvae are equiva- either as pupae or adults. Queenright ant colonies out of lent to the mature embryo, which can be measured inside the reproductive phase are expected to produce almost ex- the egg through transparency, and last instar larvae have clusively worker brood (HÖLLDOBLER & WILSON 1990). the developing pupa showing from within (also termed Moreover, according with COLOMBEL (1971, 1978) there "prepupae")." Prepupae can be removed from cocoons to is strong inhibition upon the production of gynes in the confirm measurements from last larval instars. Because of presence of the queen, where "the aptitude of larvae to reduced sample size, the same limits could not be reli- become winged females is totally inhibited (...)" (COLOM- ably established for O. bauri, for which the few embryos BEL 1978). Colombel remarked obtaining gynes was quite obtained were used for light microscopy (i.e., head width hard, reporting ca. 1% success in artificial rearing and a is altered) and the few cocoons carried only fully-formed feeble 15% under ideal conditions with orphaned colo- pupae. For these species all measurements were taken from nies. On top of that, the presence of reproductive brood is fixed larvae as in SOLIS & al. (2010a). deemed obvious as the larva mature, given reproductive For Odontomachus brunneus, given the samples origin- prepupae and pupae acquire a characteristic morphology. ated from > 20 small colonies, the individuals were meas- Therefore, as our small colonies contained only even-sized ured with special care to
Recommended publications
  • Hymenoptera: Formicidae)
    Myrmecological News 20 25-36 Online Earlier, for print 2014 The evolution and functional morphology of trap-jaw ants (Hymenoptera: Formicidae) Fredrick J. LARABEE & Andrew V. SUAREZ Abstract We review the biology of trap-jaw ants whose highly specialized mandibles generate extreme speeds and forces for predation and defense. Trap-jaw ants are characterized by elongated, power-amplified mandibles and use a combination of latches and springs to generate some of the fastest animal movements ever recorded. Remarkably, trap jaws have evolved at least four times in three subfamilies of ants. In this review, we discuss what is currently known about the evolution, morphology, kinematics, and behavior of trap-jaw ants, with special attention to the similarities and key dif- ferences among the independent lineages. We also highlight gaps in our knowledge and provide suggestions for future research on this notable group of ants. Key words: Review, trap-jaw ants, functional morphology, biomechanics, Odontomachus, Anochetus, Myrmoteras, Dacetini. Myrmecol. News 20: 25-36 (online xxx 2014) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 2 September 2013; revision received 17 December 2013; accepted 22 January 2014 Subject Editor: Herbert Zettel Fredrick J. Larabee (contact author), Department of Entomology, University of Illinois, Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. E-mail: [email protected] Andrew V. Suarez, Department of Entomology and Program in Ecology, Evolution and Conservation Biology, Univer- sity of Illinois, Urbana-Champaign, 320 Morrill Hall, 505 S.
    [Show full text]
  • Ant Venoms. Current Opinion in Allergy and Clinical
    CE: Namrta; ACI/5923; Total nos of Pages: 5; ACI 5923 Ant venoms Donald R. Hoffman Brody School of Medicine at East Carolina University, Purpose of review Greenville, North Carolina, USA The review summarizes knowledge about ants that are known to sting humans and their Correspondence to Donald R. Hoffman, PhD, venoms. Professor of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, Recent findings 600 Moye Blvd, Greenville, NC 27834, USA Fire ants and Chinese needle ants are showing additional spread of range. Fire ants are Tel: +1 252 744 2807; e-mail: [email protected] now important in much of Asia. Venom allergens have been characterized and Current Opinion in Allergy and Clinical studied for fire ants and jack jumper ants. The first studies of Pachycondyla venoms Immunology 2010, 10:000–000 have been reported, and a major allergen is Pac c 3, related to Sol i 3 from fire ants. There are very limited data available for other ant groups. Summary Ants share some common proteins in venoms, but each group appears to have a number of possibly unique components. Further proteomic studies should expand and clarify our knowledge of these fascinating animals. Keywords ant, fire ant, jack jumper ant, phospholipase, sting, venom Curr Opin Allergy Clin Immunol 10:000–000 ß 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins 1528-4050 east [4] and P. sennaarensis in the middle east [5]. These Introduction two species are commonly referred to as Chinese needle Ants are among the most biodiverse organisms on earth. ants and samsum ants.
    [Show full text]
  • For Submission As a Note Green Anole (Anolis Carolinensis) Eggs
    For submission as a Note Green Anole (Anolis carolinensis) Eggs Associated with Nest Chambers of the Trap Jaw Ant, Odontomachus brunneus Christina L. Kwapich1 1Department of Biological Sciences, University of Massachusetts Lowell One University Ave., Lowell, Massachusetts, USA [email protected] Abstract Vertebrates occasionally deposit eggs in ant nests, but these associations are largely restricted to neotropical fungus farming ants in the tribe Attini. The subterranean chambers of ponerine ants have not previously been reported as nesting sites for squamates. The current study reports the occurrence of Green Anole (Anolis carolinensis) eggs and hatchlings in a nest of the trap jaw ant, Odontomachus brunneus. Hatching rates suggest that O. brunneus nests may be used communally by multiple females, which share spatial resources with another recently introduced Anolis species in their native range. This nesting strategy is placed in the context of known associations between frogs, snakes, legless worm lizards and ants. Introduction Subterranean ant nests are an attractive resource for vertebrates seeking well-defended cavities for their eggs. To access an ant nest, trespassers must work quickly or rely on adaptations that allow them to overcome the strict odor-recognition systems of ants. For example the myrmecophilous frog, Lithodytes lineatus, bears a chemical disguise that permits it to mate and deposit eggs deep inside the nests of the leafcutter ant, Atta cephalotes, without being bitten or harassed. Tadpoles inside nests enjoy the same physical and behavioral protection as the ants’ own brood, in a carefully controlled microclimate (de Lima Barros et al. 2016, Schlüter et al. 2009, Schlüter and Regös 1981, Schlüter and Regös 2005).
    [Show full text]
  • Formicidae, Ponerinae), a Predominantly Nocturnal, Canopy-Dwelling
    Behavioural Processes 109 (2014) 48–57 Contents lists available at ScienceDirect Behavioural Processes jo urnal homepage: www.elsevier.com/locate/behavproc Visual navigation in the Neotropical ant Odontomachus hastatus (Formicidae, Ponerinae), a predominantly nocturnal, canopy-dwelling predator of the Atlantic rainforest a,1 b,∗ Pedro A.P. Rodrigues , Paulo S. Oliveira a Graduate Program in Ecology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil b Departamento de Biologia Animal, C.P. 6109, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil a r t a b i s c l e i n f o t r a c t Article history: The arboreal ant Odontomachus hastatus nests among roots of epiphytic bromeliads in the sandy forest Available online 24 June 2014 at Cardoso Island (Brazil). Crepuscular and nocturnal foragers travel up to 8 m to search for arthropod prey in the canopy, where silhouettes of leaves and branches potentially provide directional information. Keywords: We investigated the relevance of visual cues (canopy, horizon patterns) during navigation in O. hastatus. Arboreal ants Laboratory experiments using a captive ant colony and a round foraging arena revealed that an artificial Atlantic forest canopy pattern above the ants and horizon visual marks are effective orientation cues for homing O. has- Canopy orientation tatus. On the other hand, foragers that were only given a tridimensional landmark (cylinder) or chemical Ponerinae marks were unable to home correctly. Navigation by visual cues in O. hastatus is in accordance with other Trap-jaw ants diurnal arboreal ants. Nocturnal luminosity (moon, stars) is apparently sufficient to produce contrasting Visual cues silhouettes from the canopy and surrounding vegetation, thus providing orientation cues.
    [Show full text]
  • Camponotus Vittatus (HYMENOPTERA, FORMICINAE)
    UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA DETECÇÃO DE GENES DIFERENCIALMENTE EXPRESSOS NA FORMIGA URBANA Camponotus vittatus (HYMENOPTERA, FORMICINAE) CYNARA DE MELO RODOVALHO UBERLÂNDIA – MG 2006 UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA DETECÇÃO DE GENES DIFERENCIALMENTE EXPRESSOS NA FORMIGA URBANA Camponotus vittatus (HYMENOPTERA, FORMICINAE) CYNARA DE MELO RODOVALHO Orientador: Dr. Malcon Antônio Manfredi Brandeburgo Dissertação apresentada à Universidade Federal de Uberlândia como parte dos requisitos para obtenção do Título de Mestre em Genética e Bioquímica (Área Genética) UBERLÂNDIA – MG 2006 FICHA CATALOGRÁFICA Elaborada pelo Sistema de Bibliotecas da UFU / Setor de Catalogação e Classificação R695d Rodovalho, Cynara de Melo, 1981 - Detecção de genes diferencialmente expressos na formiga urbana Camponotus vittatus (Hymenoptera, Formicinae) / Cynara de Melo Ro- dovalho. - Uberlândia, 2006. 42f. : il. Orientador: Malcon Antônio Manfredi Brandeburgo. Dissertação (mestrado) - Universidade Federal de Uberlândia, Progra- ma de Pós-Graduação em Genética e Bioquímica. Inclui bibliografia. 1. Formiga - Teses. 2. Formiga - Genética - Teses. I. Brandeburgo, Malcon Antônio Manfredi. II. Universidade Federal de Uberlândia. Pro- grama de Pós-Graduação em Genética e Bioquímica. III.Título. CDU: 595.796 ii UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA DETECÇÃO DE GENES DIFERENCIALMENTE EXPRESSOS NA FORMIGA URBANA Camponotus vittatus (HYMENOPTERA, FORMICINAE) CYNARA DE MELO RODOVALHO COMISSÃO EXAMINADORA Presidente: Dr. Malcon Antônio Manfredi Brandeburgo (Orientador) Examinadores: Dr. Odair Corrêa Bueno Dra. Silvia das Graças Pompolo Data da Defesa: 28 / 02 / 2006 As sugestões da Comissão Examinadora e as Normas PGGB para o formato da Dissertação foram contempladas ____________________________________ Dr.
    [Show full text]
  • Sistemática Y Ecología De Las Hormigas Predadoras (Formicidae: Ponerinae) De La Argentina
    UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS PRISCILA ELENA HANISCH Directores de tesis: Dr. Andrew Suarez y Dr. Pablo L. Tubaro Consejero de estudios: Dr. Daniel Roccatagliata Lugar de trabajo: División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires, Marzo 2018 Fecha de defensa: 27 de Marzo de 2018 Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Resumen Las hormigas son uno de los grupos de insectos más abundantes en los ecosistemas terrestres, siendo sus actividades, muy importantes para el ecosistema. En esta tesis se estudiaron de forma integral la sistemática y ecología de una subfamilia de hormigas, las ponerinas. Esta subfamilia predomina en regiones tropicales y neotropicales, estando presente en Argentina desde el norte hasta la provincia de Buenos Aires. Se utilizó un enfoque integrador, combinando análisis genéticos con morfológicos para estudiar su diversidad, en combinación con estudios ecológicos y comportamentales para estudiar la dominancia, estructura de la comunidad y posición trófica de las Ponerinas. Los resultados sugieren que la diversidad es más alta de lo que se creía, tanto por que se encontraron nuevos registros durante la colecta de nuevo material, como porque nuestros análisis sugieren la presencia de especies crípticas. Adicionalmente, demostramos que en el PN Iguazú, dos ponerinas: Dinoponera australis y Pachycondyla striata son componentes dominantes en la comunidad de hormigas. Análisis de isótopos estables revelaron que la mayoría de las Ponerinas ocupan niveles tróficos altos, con excepción de algunas especies arborícolas del género Neoponera que dependerían de néctar u otros recursos vegetales.
    [Show full text]
  • Insect Parasitoids
    Insect Parasitoids Parasitoid—An animal that feeds in or on another living animal for a relavely long 4me, consuming all or most of its 4ssues and eventually killing it. Insect parasitoids account for 7% of described species. Most parasitoids are found in 3 orders: Hymenoptera (76%) 1 evolu4onary lineage Diptera (22%) 21 evolu4onary lineages Coleoptera (2%) 14 evolu4onary lineages Parasitoids of Ants Family Species Order (Tribe) Richness Natural History Strepsiptera Myrmecolacidae ~100 Males are parasitoids of adult worker ants; females are parasitoids of mantids and orthopterans Hymenoptera Braconidae 35 Parasitoids of adult worker ants (Neoneurinae) Chalicididae 6 Parasitoids of worker larvae-pupae (Smicromorphinae) Diapriidae >25 Parasitoids of worker larvae-pupae Eucharitidae ~500 Parasitoids of worker larvae-pupae Ichneumonidae 16 Parasitoids of worker larvae-pupae (Paxylommatinae) Diptera Phoridae ~900 Parasitoids of adult worker ants Tachinidae 1 Endoparasitoid of founding queens of Lasius Parasitoids of Ants Family Species Order (Tribe) Richness Natural History Strepsiptera Myrmecolacidae ~100 Males are parasitoids of adult worker ants; females are parasitoids of mantids and orthopterans Hymenoptera Braconidae 35 Parasitoids of adult worker ants (Neoneurinae) Chalicididae 6 Parasitoids of worker larvae-pupae (Smicromorphinae) Diapriidae >10 Parasitoids of worker larvae-pupae Eucharitidae ~500 Parasitoids of worker larvae-pupae Ichneumonidae 16 Parasitoids of worker larvae-pupae (Paxylommatinae) Diptera Phoridae ~900 Parasitoids
    [Show full text]
  • Odontomachus Bauri
    Research, Society and Development, v. 10, n. 8, e13010817119, 2021 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i8.17119 Cuticular hydrocarbons from ants (Hymenoptera: Formicidae) Odontomachus bauri (Emery) from the tropical forest of Maranguape, Ceará, Brazil Hidrocarbonetos cuticulares de formigas (Hymenoptera: Formicidae) Odontomachus bauri (Emery) da floresta tropical de Maranguape, Ceará, Brasil Hidrocarburos cuticulares de hormigas (Hymenoptera: Formicidae) Odontomachus bauri (Emery) del bosque tropical de Maranguape, Ceará, Brasil Received: 06/12/2021 | Reviewed: 06/19/2021 | Accept: 06/23/2021 | Published: 07/08/2021 Paulo Aragão de Azevedo Filho ORCID: https://orcid.org/0000-0002-4824-8588 Universidade Estadual do Ceará, Brasil E-mail: [email protected] Fábio Roger Vasconcelos ORCID: https://orcid.org/0000-0001-6080-6370 Universidade Federal do Ceará, Brasil E-mail: [email protected] Rayanne Castro Gomes dos Santos ORCID: https://orcid.org/0000-0002-2264-710X Universidade Estadual do Ceará, Brasil E-mail: [email protected] Selene Maia de Morais ORCID: https://orcid.org/0000-0002-2766-3790 Universidade Estadual do Ceará, Brasil E-mail: [email protected] Abstract Semiochemicals, 5-methyl-nonacosane, Alkanes, Chromatography.Ants are eusocial organisms with great relative abundance and species richness. Studies on these organisms are scarce, especially in the high altitude humid forest environments of the state of Ceará. In view of this condition, an evaluation of the chemical composition of cuticular hydrocarbons (CHCs) of the species Odontomachus bauri found and recorded for the first time in this study in the tropical forest of Maranguape was carried out, based on the hypothesis that different nests have different compositions of CHCs.
    [Show full text]
  • The Evolution of Genome Size in Ants Neil D Tsutsui*1, Andrew V Suarez2,3, Josephcspagna2,4 and J Spencer Johnston5
    BMC Evolutionary Biology BioMed Central Research article Open Access The evolution of genome size in ants Neil D Tsutsui*1, Andrew V Suarez2,3, JosephCSpagna2,4 and J Spencer Johnston5 Address: 1Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA 94720, USA, 2Department of Animal Biology and Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA, 3Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA, 4Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA and 5Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA Email: Neil D Tsutsui* - [email protected]; Andrew V Suarez - [email protected]; Joseph C Spagna - [email protected]; J Spencer Johnston - [email protected] * Corresponding author Published: 26 February 2008 Received: 2 November 2007 Accepted: 26 February 2008 BMC Evolutionary Biology 2008, 8:64 doi:10.1186/1471-2148-8-64 This article is available from: http://www.biomedcentral.com/1471-2148/8/64 © 2008 Tsutsui et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae) remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta), and the two published estimates for this species differ by 146.7 Mb (0.15 pg).
    [Show full text]
  • Sitemate Recognition: the Case of Anochetus Traegordhi (Hymenoptera; Formicidae) Preying on Nasutitermes (Isoptera: Termitidae) by B
    569 Sitemate Recognition: the Case of Anochetus traegordhi (Hymenoptera; Formicidae) Preying on Nasutitermes (Isoptera: Termitidae) by B. Schatz', J. Orivel2, J.P. Lachaud", G. Beugnon' & A. Dejean4 ABSTRACT Workers of the ponerine ant Anochetus traegordhi are specialized in the capture of Nasutitermes sp. termites. Both species were found to live in the same logs fallen on the ground of the African tropical rain forest. A. traegordhi has a very marked preference for workers over termite soldiers. The purpose of the capture of soldiers, rather than true predation, was to allow the ants easier access to termite workers. During the predatory sequence, termite workers were approached from behind, then seized and stung on the gaster, while soldiers were attacked head on and stung on the thorax. When originating from a different nest-site log than their predator ant, termites were detected from a greater distance and even workers were attacked more cau- tiously. Only 33.3% of these termite workers were retrieved versus 75% of the attacked same-site termite workers. We have demonstrated that hunting workers can recognize the nature of the prey caste (workers versus termite soldiers) and the origin of the termite colony (i.e. sharing or not the log where the ants were nesting), supporting the hypothesis that hunting ants can learn the colony odor of their prey. This, in addition to the nest-site selection of A. traegordhi in logs occupied by Nasutitermes can be considered as a first step in termitolesty. Key words: Anochetus, Nasutitermes prey recognition, predatory behavior. INTRODUCTION During their 100 million years of coexistence, ants and termites have been engaged in a coevolutionary arms race, with ants acting as the aggressor and employing many predatory strategies while termites are the prey presenting several defensive reactions (1-11511dobler & Wil- 'LEPA, CNRS-UMR 5550, Universite Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France (e-mail: schatz©cict.fr)(correspondence author: B.
    [Show full text]
  • Hymenoptera: Formicidae: Ponerinae)
    Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) Item Type text; Electronic Dissertation Authors Schmidt, Chris Alan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 23:29:52 Link to Item http://hdl.handle.net/10150/194663 1 MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF PONERINE ANTS (HYMENOPTERA: FORMICIDAE: PONERINAE) by Chris A. Schmidt _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Chris A. Schmidt entitled Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/3/09 David Maddison _______________________________________________________________________ Date: 4/3/09 Judie Bronstein
    [Show full text]
  • The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior
    Zootaxa 3817 (1): 001–242 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3817.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A3C10B34-7698-4C4D-94E5-DCF70B475603 ZOOTAXA 3817 The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior C.A. SCHMIDT1 & S.O. SHATTUCK2 1Graduate Interdisciplinary Program in Entomology and Insect Science, Gould-Simpson 1005, University of Arizona, Tucson, AZ 85721-0077. Current address: Native Seeds/SEARCH, 3584 E. River Rd., Tucson, AZ 85718. E-mail: [email protected] 2CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. Current address: Research School of Biology, Australian National University, Canberra, ACT, 0200 Magnolia Press Auckland, New Zealand Accepted by J. Longino: 21 Mar. 2014; published: 18 Jun. 2014 C.A. SCHMIDT & S.O. SHATTUCK The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior (Zootaxa 3817) 242 pp.; 30 cm. 18 Jun. 2014 ISBN 978-1-77557-419-4 (paperback) ISBN 978-1-77557-420-0 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]