Potato Cyst Nematode Eradication in Idaho

Total Page:16

File Type:pdf, Size:1020Kb

Potato Cyst Nematode Eradication in Idaho United States Department of Agriculture Potato Cyst Nematode Marketing and Regulatory Eradication in Idaho Programs Animal and Plant Health Inspection Service Amended Environmental Assessment, July 2007 Potato Cyst Nematode Eradication in Idaho Amended Environmental Assessment, July 2007 Agency Contact: Osama El-Lissy Director, Emergency Management Emergency and Domestic Programs Animal Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd. Unit 134 Riverdale, MD 20737 __________________________________________________________ The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. __________________________________________________________ Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. __________________________________________________________ This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. __________________________________________________________ CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Table of Contents I. Purpose and Need................................................................... 1 II. Background ............................................................................. 2 A. Biology of Potato Cyst Nematode ................................... 2 B. Affected Environment....................................................... 3 III. Alternatives.............................................................................. 4 A. No Action Alternative........................................................ 4 B. Treatment Alternative ....................................................... 4 IV. Environmental Impacts........................................................... 5 A. No Action Alternative........................................................ 5 B. Treatment Alternative ....................................................... 7 C. Cumulative Effects.......................................................... 18 D. Threatened and Endangered Species ........................... 22 V. Other Considerations ............................................................ 22 VI. Listing of Agencies and Persons Consulted...................... 24 VII. References ............................................................................ 26 Appendix A: Potential Host Plants for Globodera pallida…...29 I. Purpose and Need The U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), is proposing a treatment program to eradicate the potato cyst nematode (PCN), Globodera pallida. PCN is a devastating soil-borne pest to potato crops with the potential to impact related agricultural and nonagricultural plant species. Damage varies from small patches to complete crop failure. Infestations generally start out as isolated patches which become larger in subsequent years. If untreated, PCN can cause up to 80-percent yield loss in potato fields. The nematode is spread through the transport of soil via seed potatoes, nursery stock, flower bulbs, farm equipment, or soil-bearing surfaces. Although natural dispersion in soil is limited to a few millimeters, wind and water can aid in increasing the natural spread. PCN was first detected in Idaho during a Cooperative Agricultural Pest Survey in mid-April 2006. In June and July of 2006, two fields were confirmed positive for PCN. On August 29, 2006, APHIS and the Idaho State Department of Agriculture announced the establishment of a regulatory area covering approximately 10,000 acres near Shelly, Idaho. Five new fields tested positive after additional testing within the regulatory area. Surveys of seed potatoes yielded no positive detections of PCN. No additional positive PCN detections were found in surveys conducted throughout the 33 potato-producing States during the National Survey Plan for 2006. A total of 916 acres are currently known to be infected by PCN in seven fields in Bonneville and Bingham Counties, Idaho. At this time, no other infestations are known to occur in the United States. APHIS has the responsibility for taking actions to exclude, eradicate, and/or control plant pests under the Plant Protection Act (7 U.S.C. 7701 et seq.). It is important that APHIS take the steps necessary to eradicate PCN from areas in Idaho to prevent spread to potato crops in the United States. APHIS, in cooperation with the Idaho State Department of Agriculture, is proposing an eradication program of PCN from the infested areas in Idaho. The eradication program will continue for a period of 5 to 7 years to ensure elimination of the nematode. An environmental assessment (EA) was prepared in May 2007 to address the potential action of eradicating the PCN where it had been detected near Shelly, ID (USDA APHIS 2007). The EA was prepared consistent with the National Environmental Policy Act of 1969 (NEPA) and APHIS’ NEPA implementing procedures (7 CFR, part 372) for the purpose of evaluating how the proposed action, if implemented, may affect the quality of the human environment. 1 In the EA the treatment alternative consisted of using one, or a combination of fumigants. The fumigants proposed for use were methyl bromide, 1,3-dichloropropene (DCP), and dimethyl disulfide (DMDS). The May 2007 EA analyzed one application of DCP per growing season at an application rate of 177 lb active ingredient (ai) per acre (ac). Subsequently, experience in the field with methyl bromide applications indicated there was a need to have the option to be able to apply DCP, if needed, twice per year. In addition, higher application rates are desired to insure adequate efficacy during treatment. The current pesticide label for DCP, which is sold as Telone II®, does not allow for two applications at a rate above 177 lb ai/ac. However, a special local use need label under Section 24(c) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) is being considered for a new use pattern that allows for either one or two DCP applications per season at a rate of 177 to 354 lb ai/ac per application. This amended EA discusses how the proposed changes in DCP use may affect the quality of the human environment. II. Background A. Biology of Potato Cyst Nematode PCN refers to two commonly known species, Globodera rostochiensis and G. pallida, which belong to an important group of plant parasitic nematodes that affect agricultural crops. The nematode identified in the proposed eradication program is G. pallida. Typical of most nematode life cycles, G. pallida has four distinct juvenile stages and an adult stage. The second-stage juvenile hatches from the egg which is contained within a cyst formed from the cuticle of an adult female. Upon hatching, the second-stage juvenile is considered the active phase because it is the life stage that actively seeks host plants. Hatching occurs based on appropriate environmental factors and the presence of substances diffusing from the roots of host plants within the Solanaceae family, which includes the potato, tomato, and eggplant, as well as other nonagricultural hosts (appendix A). Extensive hatching will occur under optimal conditions; however, some juveniles will always remain dormant for several years, regardless of the conditions, to insure population viability (Turner and Evans, 1998). In cases where a host plant is not present, infestations can persist up to 30 years due to delayed hatching and the ability of the second-stage juvenile to become dormant within the cuticle cyst of the female (Turner, 1996; DEFRA, 1996). Once the second-stage juvenile encounters a host it will enter the root near the growing point, or a lateral root, and use its mouth, or stylet, to pierce a 2 cell wall. A feeding tube is then formed as a precursor to the formation of a synctium, or transfer cell, which is formed by the enlargement of root cells and breakdown of the cell walls. The synctium facilitates the passage of nutrients to the nematode. In cases where the nematodes are able to maintain the synctium, they will molt to the sedentary third and fourth stages and then molt to either male or female adults. In cases where the synctium cannot be maintained and there is a lack of available nutrients, more male nematodes will be produced. Emergent males do not feed
Recommended publications
  • National Regulatory Control System for Globodera Pallida and Globodera Rostochiensis
    Bulletin OEPP/EPPO Bulletin (2018) 48 (3), 516–532 ISSN 0250-8052. DOI: 10.1111/epp.12510 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 9/26 (1) National regulatory control systems Systemes de lutte nationaux re´glementaires PM 9/26 (1) National regulatory control system for Globodera pallida and Globodera rostochiensis Specific scope Specific approval This Standard describes a national regulatory control sys- First approved in 2000-09 tem for Globodera pallida and Globodera rostochiensis. pathogenicity for potato needs to be confirmed (Zasada Definitions et al., 2013). These are the only three species of Pathotypes: the term pathotype is used in this Standard to Globodera known to reproduce on potato. cover pathotypes, virulence groups or any population with a Globodera rostochiensis and G. pallida have been unique virulence phenotype. Several pathotypes of potato detected in areas of the EPPO region that are important for cyst nematodes (PCN) have been described. The existing the cultivation of potatoes. Official surveys of ware potato pathotyping schemes from Europe (Kort et al., 1977) and land have been conducted in the European Union since South America (Canto Saenz & de Scurrah, 1977) do not 2010 to determine the distribution of PCN. Data from these adequately determine the virulence of PCN (Trudgill, surveys and from results of official investigations on land 1985). used to produce seed potato suggests that one or both spe- The terms ‘outbreak’ and ‘incursion’ are defined in ISPM cies of PCN may still be absent from large areas but are 5 Glossary of phytosanitary terms: widely distributed in other areas.
    [Show full text]
  • Pest Management Strategic Plan for Organic Potato Production in the West
    Pest Management Strategic Plan for Organic Potato Production in the West Summary of workshops held on February 16, 2006 Buhl, Idaho and January 9, 2008 Portland, Oregon Issue Date December 19, 2008 Lead Authors: Jennifer Miller, Ronda Hirnyck, Lisa Downey-Blecker Editor: Diane Clarke This project was sponsored by the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture, Cooperative State Research, Education, and Extension Service. Additional funding was provided by the Organic Farming Research Foundation and the Bullitt Foundation. Table of Contents Work Group .........................................................................................................................3 Summary of the Most Critical Needs in Organic Potato Production in the West ................5 Introduction ..........................................................................................................................6 Production Overview .........................................................................................................11 California ...............................................................................................................11 Colorado .................................................................................................................12 Columbia Basin ......................................................................................................12 Idaho ......................................................................................................................13
    [Show full text]
  • PCN Guidelines, and Potato Cyst Nematodes (Globodera Rostochiensis Or Globodera Pallida) Were Not Detected.”
    Canada and United States Guidelines on Surveillance and Phytosanitary Actions for the Potato Cyst Nematodes Globodera rostochiensis and Globodera pallida 7 May 2014 Table of Contents 1. Introduction ...........................................................................................................................................................3 2. Rationale for phytosanitary actions ........................................................................................................................3 3. Soil sampling and laboratory analysis procedures .................................................................................................4 4. Phytosanitary measures ........................................................................................................................................4 5. Regulated articles .................................................................................................................................................5 6. National PCN detection survey..............................................................................................................................6 7. Pest-free places of production or pest-free production sites within regulated areas ...............................................6 8. Phytosanitary certification of seed potatoes ..........................................................................................................7 9. Releasing land from regulatory control ..................................................................................................................8
    [Show full text]
  • Plant-Mediated Interactions Between the Potato Cyst Nematode, Globodera Pallida and the Peach Potato Aphid, Myzus Persicae
    i Plant-mediated interactions between the potato cyst nematode, Globodera pallida and the peach potato aphid, Myzus persicae Grace Anna Hoysted Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Centre for Plant Sciences School of Biology September 2016 ii The candidate confirms that the work submitted is her own. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. © 2016 The University of Leeds, Grace Anna Hoysted iii Acknowledgements I would like to thank my supervisor Prof. Peter Urwin for not only giving me the opportunity to carry out this PhD but also for all of his support, encouragement and wise words over the last four years. Also, to my secondary supervisor Prof. Sue Hartley for her advice and encouragement with all things entomological and paper writing. I would like to thank Dr. Catherine Lilley for all of the time and effort she has invested these last few years while helping me through my project (and also for keeping my haribo drawer stocked). To all members (past and present) of the Plant Nematology Group at the University of Leeds for their constant support and training, in particular Jennie and Fiona for their amazing technical support. I’d also like to thank everyone for their love of Friday cakes and tea, the annual lab day out and not forgetting the endless supply of baby animal YouTube videos ;) To all of the wonderful friends I’ve made whilst in Leeds – thank you for all those crazy lunch time conversations, wild nights out and all of the other fun times from the Lake District to Budapest.
    [Show full text]
  • Potato Cyst Nematodes - a Technical Overview for England and Wales
    Potato cyst nematodes - a technical overview for England and Wales Dr. Sue Hockland CSL, Sand Hutton, York (Maturing females and cysts of Globodera pallida) (Maturing females and cysts of Globodera rostochiensis) August 2002 Contents Page • Executive Summary 1 • Introduction 2 • PCN: species and diagnosis 2 • Biology of PCN species 3 • Detection 4 • Host plants of PCN 4 • Symptoms 5 • Damage 5 • Pathotypes and Host Plant Resistance 5 • Distribution and spread in England and Wales 6 • Distribution in Europe and elsewhere 9 • Statutory Management of PCN 11 • Management of PCN in ware potatoes 13 • Chemical methods 14 • Non-chemical methods 14 • Conclusion 16 • Acknowledgements 17 Executive Summary The pests Potato cyst nematode (PCN) is the name commonly given to two species of cyst nematode that attack potato, namely Globodera pallida (Stone) Behrens and G. rostochiensis (Wollenweber) Behrens. They are two of the most important pests of potato in England and Wales, feeding on potato roots, causing losses of yield and costs that vary and are difficult to estimate. Published papers usually quote losses of about 9% of annual yield, estimated at about £43 million for the UK, based on the mean value of the crop from 1990-1995. Adaptations to a plant-parasitic life In both species the female forms a hard covering around her eggs when she dies, creating a ‘cyst’ which protects the eggs and developing juveniles from desiccation, predation and chemical control. Only a proportion of the eggs hatch from the cyst each year, and in G. pallida this occurs at a slower rate and with a later annual peak of hatching than G.
    [Show full text]
  • The Hidden Diversity of the Potato Cyst Nematode Globodera Pallida in The
    The hidden diversity of the potato cyst nematode Globodera pallida in the south of Peru Romain Thevenoux, Laurent Folcher, Magali Esquibet, Didier Fouville, Josselin Montarry, Eric Grenier To cite this version: Romain Thevenoux, Laurent Folcher, Magali Esquibet, Didier Fouville, Josselin Montarry, et al.. The hidden diversity of the potato cyst nematode Globodera pallida in the south of Peru. Evolutionary Applications, Blackwell, 2020, 13 (4), pp.727-737. 10.1111/eva.12896. hal-03132824 HAL Id: hal-03132824 https://hal.inrae.fr/hal-03132824 Submitted on 28 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Received: 18 September 2019 | Revised: 31 October 2019 | Accepted: 5 November 2019 DOI: 10.1111/eva.12896 ORIGINAL ARTICLE The hidden diversity of the potato cyst nematode Globodera pallida in the south of Peru Romain Thevenoux1,2 | Laurent Folcher2 | Magali Esquibet1 | Didier Fouville1 | Josselin Montarry1 | Eric Grenier1 1IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France Abstract 2Laboratoire de la santé des végétaux - Unité Our knowledge of the diversity of potato cyst nematodes in their native areas still de nématologie, ANSES – Agence nationale remains patchy and should be improved.
    [Show full text]
  • Molecular Characterization of Canadian Populations of Potato Cyst
    Can. J. Plant Pathol. (2010), 32(2): 252–263 Soilborne pathogens/Agents pathogènes telluriques MolecularTCJP characterization of Canadian populations of potato cyst nematodes, Globodera rostochiensis and G. pallida using ribosomal nuclear RNA and cytochrome b genes M.Potato cyst nematodes MADANI1, S. A. SUBBOTIN2, L. J. WARD1, X. LI1 AND S. H. DE BOER1 1Canadian Food Inspection Agency, Charlottetown Laboratory, 93 Mount Edward Road, Charlottetown, PE C1A 5T1, Canada 2Plant Pest Diagnostics Center, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, USA (Accepted 10 January 2010) Abstract: The mitochondrial cytochrome b gene (cytb), the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rRNA gene and D2-D3 expansion segments of the 28S rRNA gene were amplified, sequenced and used to characterize several populations of potato cyst nematodes, Globodera pallida and G. rostochiensis, collected from different areas in Canada. Diagnostic PCR-ITS-RFLP profiles with three restriction enzymes are provided for identification of both species. Sequences of ITS rRNA and cytb genes were compared with those in Genbank of other potato cyst nematode populations originating from Europe, South America, USA, Australia and New Zealand. The ITS rRNA sequences of Canadian G. rostochiensis were similar to those of all previously sequenced populations of this species. Sequence divergence of ITS rRNA for G. rostochiensis varied from 0 to 1.6%, whereas for G. pallida sequence divergence among populations reached 1.95%. Sequence and phylogenetic analysis of cytb and ITS rRNA genes using Bayesian inference revealed that Canadian G. pallida is almost identical to European and USA populations and formed a large clade with all these populations on the phylogenetic trees.
    [Show full text]
  • Globodera Alliance Newsletter
    September 2017, Issue 4 Globodera Alliance Newsletter Potato Cyst Nematodes Around the World: All you wanted to know about their distribution and evolution history Eric Grenier and Benjamin Mimee PCN Distribution Inside this issue: Potato cyst nematodes (PCN) are among the most highly specialized and success- PCN distribution 1 ful plant parasitic nematodes. They rank 2nd in the 'top 10' list of the plant para- Globodera diversity 2 sitic nematodes based on their scientific and economic importance. Like their G. rostochiensis origins 2 main host crop, potato, PCN have spread to almost all parts of the world, initially in soil adhering to tubers from infested land but also by any other means that G. pallida origins 3 transport soil containing cysts. Their pathways of distribution are still a matter of PCN in Idaho 3 speculation but PCN are believed to have originated in the Andean region of Peru Phylogeographic map of and Bolivia. Today, PCN occur on all continents, in temperate, tropical or south- G. pallida 4 ern tropical zones, both at sea level and at higher altitudes. Results suggest that About GLOBAL Project 5 Europe is a secondary distribution center, but one exception may be transport of PCN Field Tour 5 cysts from Peru to Japan in contaminated guano sacks. Upcoming Events 5 Nematodes - Globodera Alliance Newsletter September 2017, Issue 4 Page 2 Overview of Globodera diversity Potato cyst nematodes belong to the genus Globodera which comprises of species, with the exception of G. zeland- ica, parasitic to plants belonging to either the Solanaceae or Compositae. At least eight Globodera species parasitiz- ing Solanaceae have been identified.
    [Show full text]
  • Globodera Rostochiensis (Woll.) Heteroderidae)
    Agric. Sei. Finl. 1 (1992) ( ), Globodera rostochiensis (Woll.) Behrens Tylenchida, Heteroderidae the only potato cyst nematode species found in Finland Jari Heikkilä and Kari Tiilikkala Heikkilä, J. & Tiilikkala, K. 1992. Globodera rostochiensis (Woll.) Behrens (Tylen- chida, Heteroderidae), the only potato cyst nematode species found in Finland. Agric. Sei. Finl. 1; 519- 525. (Univ. Helsinki, Dept. Zoology, SF-00100 Helsinki, Agric. Res. Centre ofFinland, Inst. PI. Protect., SF-31600 Jokioinen, Finland.) About 10 000 soil samples, 519 thereof infected with potato cyst nematode (PCN), were studied during 1984-1988. Cysts from infected samples were tested by isoelectric focusing to identify PCN species. All the infected samples were also tested with Hl-resistant (Satuma) and susceptible (Bintje) potato cultivars to separate resistance breaking populations. Cysts from the roots of Satuma were tested by two-dimensional electrophoresis. The potato seed production area in Finland was found to be free ofPCN of any kind. In other parts ofFinland all tested samples revealed G. rostochiensis banding pattern, but no G. pallida was found. Except for the most common pathotype Rol-Ro4, we only found Ro2. Key words: potato cyst nematode, PCN, Globodera rostochiensis, Globoderapallida, isoelectric focusing, two-dimensional electrophoresis Introduction the early 1970 s (Sarakoski 1976a). Since the be- ginning ofthe 19705,PCN has been the most harm- In Finland, potatoes are grown commercially on ful pest ofpotatoes in Finland. about 41 000 hectares. The cultivated area extends Magnusson (1987) and Tiilikkala (1987, from the southern coast (60° 00’N) up to the north 1991) have studied the biological and physical fac- (69° 00’N).
    [Show full text]
  • Pale Cyst Nematode Globodera Pallida
    Michigan State University’s invasive species factsheets Pale cyst nematode Globodera pallida The pale cyst nematode is a serious pest of potatoes around the world and is a target of strict regulatory actions in the United States. An introduction to Michigan may adversely affect production and marketing of potatoes and other solanaceous crops. Michigan risk maps for exotic plant pests. Other common names potato cyst nematode, white potato cyst nematode, pale potato cyst nematode Systematic position Nematoda > Tylenchida > Heteroderidae > Globodera pallida (Stone) Behrens Global distribution Worldwide distribution in potato-producing regions. Mature females (white) and a cyst (brown) of potato cyst nematode attached to the roots. (Photo: B. Hammeraas, Bioforsk - Norwegian Institute for Agricultural Africa: Algeria, Tunisia; Asia: India, Pakistan, and Environmental Research, Bugwood.org) Turkey; Europe: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Cyprus, Faroe Islands, Finland, pale cyst nematode move to, penetrate and feed on host France, Germany, Greece, Hungary, Iceland, Ireland, roots. After mating, fertilized eggs develop inside females Italy, Luxembourg, Malta, Netherlands, Norway, Poland, that are attached to roots. When females die their skin Portugal, Romania, Spain, Sweden, Switzerland, United hardens and becomes a protective brown cover (cyst) Kingdom; Latin America: Argentina, Bolivia, Chile, around the eggs. Each cyst contains hundreds of eggs, and Colombia, Ecuador, Panama, Peru, Venezuela; Oceania: it can remain viable for many years in the absence of host New Zealand; North America: Idaho, Canada (a small plants. One generation normally occurs during one growing area of Newfoundland). season. Quarantine status Identification In 2006, the pale cyst nematode was detected at At flowering or later stages of a host plant, mature a potato processing facility in Idaho.
    [Show full text]
  • Hatch and Reproduction of Globodera Tabacum Tabacum in Response to Tobacco, Tomato, Or Black Nightshade J
    Journal of Nematology 27(3):382-386. 1995. © The Society of Nematologists 1995. Hatch and Reproduction of Globodera tabacum tabacum in Response to Tobacco, Tomato, or Black Nightshade J. A. LAMONDIA 1 Abstract: The effects of broadleaf tobacco, tomato, and black nightshade on juvenile hatch and reproduction of Globodera tabacum tabacum were determined in laboratory and greenhouse experi- ments. Root exudates from nightshade stimulated greater egg hatch than those from either 'Rutgers' tomato or '86-4' tobacco. Hatch was greater at higher proportions of root exudates for all three plant species. Root exudates from plants greater than 3 weeks old stimulated more hatch than younger plants. No regression relationships existed between plant age and nematode batch. In other exper- iments, hatch from eggs in cysts was higher for tomato and nightshade after 10 weeks in greenhouse pots compared to tobacco and bare soil. Numbers of second-stage juveniles in eggs in cysts produced from a previous generation on the same host were highest on nightshade and less on tomato and tobacco. Cysts of variable age recovered from field soil had increased hatch in both root exudates or water compared to recently produced cysts from plants in growth chambers. Globodera t. tabacum may be subject to both host and environmentally mediated diapause. Key words: hatch stimulation, Nicotiana tabacum, Lycopersicon esculentum, nematode, root exudates, Solanum nigrum, tobacco cyst nematode. The tobacco cyst nematode, Globodera experiments. G. t. tabacum, however, can tabacum tabacum (Lownsbery and Lowns- persist in soil for many years in the absence bery) Behrens, is an important parasite of of a host (1), suggesting some form of dor- shade (9,13) and broadleaf (11) tobacco in mancy with survival value.
    [Show full text]
  • Pale Cyst Nematode (Globodera Pallida)
    Globodera pallida Scientific Name Globodera pallida (Stone, 1973) Behrens, 1975 Synonyms: Heterodera pallida, Heterodera rostochiensis Common Name Pale cyst nematode, Pale potato cyst nematode, white potato cyst Figure 1. Anterior part of a second-stage nematode juvenile of Globodera pallida. Photo courtesy of Christopher Hogger, Swiss Federal Type of Pest Research Station for Agroecology and Nematode Agriculture, http://www.bugwood.org/. Taxonomic Position Class: Secernentea, Order: Tylenchida, Family: Heteroderidae (Siddiqi, 2000). Reason for Inclusion in Manual PPQ Program Pest; cyst nematode Pest Description Globodera pallida was first described in 1973. Before then, most records referred to Heterodera rostochiensis sensu lato, which included both G. pallida and G. rostochiensis. Because of this, it is difficult to determine which species is referred to in work prior to 1973 (CABI/EPPO, n.d.). Specific measurements of each of the life stages can be found in Stone (1972). Eggs: “Egg shell hyaline (colorless). “The eggs of G. pallida are retained within the body of the female where they develop and are not deposited in an egg sac. At its death, the female becomes a cyst filled with embryonated eggs, which contain second- stage juveniles folded four times (Friedman, 1985; taken from Stone, 1972). The surface of the eggshell is smooth; no microvilli are present. Measurements of the egg fall within the range: 108.3 ± 2.0 µm × 43.2 ± 3.2 µm” (CABI, 2013). Second-Stage Juveniles (J2s): “J2s (Fig. 1), in soil, are motile and vermiform (worm- shaped) and become sedentary and swollen once they penetrate inside the root. They have a body about 470 µm long, a mouth with a strong stylet, which is a hollow feeding structure used for ingesting cell content after puncturing their walls, and a pointed tail” (CABI/EPPO, n.d.).
    [Show full text]