Amoebozoa Possess Lineage-Specific Globin Gene Repertoires Gained by Individual Horizontal Gene Transfers

Total Page:16

File Type:pdf, Size:1020Kb

Amoebozoa Possess Lineage-Specific Globin Gene Repertoires Gained by Individual Horizontal Gene Transfers Int. J. Biol. Sci. 2014, Vol. 10 689 Ivyspring International Publisher International Journal of Biological Sciences 2014; 10(7): 689-701. doi: 10.7150/ijbs.8327 Research Paper Amoebozoa Possess Lineage-Specific Globin Gene Repertoires Gained by Individual Horizontal Gene Transfers Jasmin Dröge1, Dorota Buczek1,2, Yutaka Suzuki3, and Wojciech Makałowski1,3 1. Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Str. 14, 48149 Muenster, Germany 2. Institute of Molecular Biology and Biotechnology, A. Mickiewicz University, Poznan, Poland 3. Department of Medical Genomic Sciences, University of Tokyo, Tokyo, Japan Corresponding author: [email protected] © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.12.10; Accepted: 2014.03.24; Published: 2014.06.19 Abstract The Amoebozoa represent a clade of unicellular amoeboid organisms that display a wide variety of lifestyles, including free-living and parasitic species. For example, the social amoeba Dictyostelium discoideum has the ability to aggregate into a multicellular fruiting body upon starvation, while the pathogenic amoeba Entamoeba histolytica is a parasite of humans. Globins are small heme proteins that are present in almost all extant organisms. Although several genomes of amoebozoan species have been sequenced, little is known about the phyletic distribution of globin genes within this phylum. Only two flavohemoglobins (FHbs) of D. discoideum have been reported and characterized previously while the genomes of Entamoeba species are apparently devoid of globin genes. We investigated eleven amoebozoan species for the presence of globin genes by genomic and phy- logenetic in silico analyses. Additional FHb genes were identified in the genomes of four social amoebas and the true slime mold Physarum polycephalum. Moreover, a single-domain globin (SDFgb) of Hartmannella vermiformis, as well as two truncated hemoglobins (trHbs) of Acan- thamoeba castellanii were identified. Phylogenetic evidence suggests that these globin genes were independently acquired via horizontal gene transfer from some ancestral bacteria. Furthermore, the phylogenetic tree of amoebozoan FHbs indicates that they do not share a common ancestry and that a transfer of FHbs from bacteria to amoeba occurred multiple times. Key words: Amoebozoa, globin genes Introduction Globins (Gbs) are small heme proteins that have through H [8]. In contrast, the members of the T line- been found in all kingdoms of life in a wide range of age exhibit a 2/2 structure characterized by a short- different species [1-3]. Gbs are able to bind various ened or completely deleted A helix, a missing D helix, gaseous ligands, such as oxygen and nitric oxide, and and the substitution of the proximal F helix by a pol- have diverse functions, e.g. in respiration and nitric ypeptide segment [9]. The F globin family consists of oxide detoxification [4]. The globin superfamily can flavohemoglobins (FHbs), FHb-like globins with N- be divided into three lineages, namely the S, F, and T and C-terminal extensions, and related single-domain globins, which belong to two structural classes [5-7]. globins (SDFgbs). The chimeric FHb proteins possess The members of the F and S lineages possess the typ- an N-terminal globin domain and a C-terminal FAD- ical globin fold, i.e. a 3-over-3 (3/3) α-helical fold and NAD(P)H-binding reductase domain. Increasing consisting of seven or eight α-helices, designated A evidence indicates that FHbs protect bacteria and http://www.ijbs.com Int. J. Biol. Sci. 2014, Vol. 10 690 simple eukaryotes, including yeast, against the toxic liver abscess [32]. Likewise, also some members of the effects of nitric oxide likely via the nitroxylation of genus Acanthamoeba have been identified as origin of oxygen [10-13]. The S globin family comprises chi- amebic infections in humans [33]. meric globin-coupled sensors (GCSs), protoglobins The presented study aims to define the globin (Pgbs), and related single-domain globins (SDSgbs). gene repertoire of amoebozoan species. Eleven dif- The GCSs can be further categorized as either aero- ferent species of the subphyla Conosa (infraphyla tactic or gene regulating [14]. The globins of the T Mycetozoa, Archamoebae) and Lobosa (infraphyla lineage were named truncated hemoglobins (trHbs) Tubulinea, Acanthopodina) were scanned for the because of their shortened primary structure. Based presence of globin genes. We show that the examined on phylogenetic analyses and structural differences Amoebozoa possess lineage-specific globin gene rep- the trHbs can be further divided into three groups, i.e. ertoires, composed of either FHbs, SDFgbs, or trHbs group I (trHbN), II (trHbO), and III (trHbP) [15, 16]. that have been likely gained through multiple hori- Several distinct functions for the trHbs have been zontal gene transfer events from ancestral bacteria. proposed, including nitric oxide detoxification, oxy- gen/nitric oxide sensing, ligand/substrate storage, Methods etc. [15, 17]. Identification of amoebozoan globin genes A model of globin evolution has been suggested in which the three lineages descent from a single Initially, the two previously described FHbs of common ancestor that likely resembled an extant D. discoideum [34] were used to search the SDFgb [3, 7]. It is assumed that globins emerged only non-redundant protein database of NCBI for homol- in bacteria [7]. Later, the eukaryote and archaeal 3/3 ogous amoebozoan globin proteins employing the and 2/2 globin genes originated from horizontal gene BLASTp algorithm with default parameters [35]. The transfers (HGT) of bacterial SDFgb and trHb genes, retrieved sequences and the globin sequences of two respectively [5-7]. This is supported by several studies fungi, Schizophyllum commune and Saccharomyces cere- that demonstrate that HGT events shaped the phyletic visiae, were used to search the genomes of A. castel- distribution of globin genes in plants, fungi, and uni- lanii, D. discoideum, D. fasciculatum, D. purpureum, E. cellular eukaryotes [3, 5, 6, 16, 18-24]. Finally, it is dispar, E. histolytica, E. invadens, E. moshkovskii, P. pol- known that HGT events played a major role in the ycephalum and Polysphondylium pallidum for the pres- evolution of various species [25, 26]. ence of additional globin genes. This was done by a Although the evolution of globins has been in- tBLASTn search applying varying parameters: tensively studied in several species from all kingdoms e-value 0.1, 0.001, matrix: BLOSUM62, BLOSUM45, of life, only little is known about their origins and soft masking of query sequence. Likewise, a tBLASTn distribution in unicellular eukaryotes, such as the search was conducted against TBestDB [36]. Addi- Amoebozoa [27]. The Amoebozoa are a phylum of tionally, the transcriptome of A. castellanii was ana- amoeboid protozoa that move by the means of pseu- lyzed for the presence of globin sequences (Buczek et dopodia. They are closely related to Opisthokonts al., unpublished data). Subsequently, the similarity (Metazoa/fungi group) and can be divided into six search was repeated with the newly found sequences. monophyletic clades within two main groups, the The intron/exon structures of the novel genes were Lobosea and the Conosea [28, 29]. They adopted dif- manually annotated, guided by tBLASTn results, ferent habitats and life styles, such as free-living uni- GENSCAN [37], and NetGene2 predictions [38, 39]. cellular amoeba, obligate parasitic amoeba, social Intron positions with respect to the coding sequences amoeba, and true slime molds. The free-living were reported with reference to the secondary struc- Amoebozoa are common inhabitants of soils and wa- ture of the protein. This was done by aligning the ter, where they represent one of the main predators of amoebozoan globin proteins to myoglobin of the bacteria [30]. Acanthamoeba castellanii is the most fre- sperm whale (UniProtKB: P02185.2). FUGUE [40] and quently found amoeba in soil and plays an important SMART [41] were used to validate the annotated se- role in a variety of environments. One of the quences as globin genes. A table of sequences used in best-known amoebas is the social amoeba Dictyoste- the subsequent analyses is provided in the supple- lium discoideum that has been studied for decades. D. mentary materials (Table S1). All genes used in the discoideum is a solitary amoeba that can achieve mul- consecutive analyses were labeled with first two let- ticellularity under starvation by aggregation and ters of the binary species name and a suffix in cases morphogenesis into a fruiting body [31]. Some multiple copies are present in a single genome. amoebas are known to cause infectious diseases in Shared synteny is a reliable criterion to prove humans, for instance the intestinal parasite Entamoeba orthology between genomic segments and to trace histolytica which can induce amebic colitis and amebic back the evolution of those segments. The neighbor- http://www.ijbs.com Int. J. Biol. Sci. 2014, Vol. 10 691 ing genes of the FHbs from the social amoebas D. dis- were removed from the data set, e.g. highly similar coideum, D. purpureum, D. fasciculatum, and P. pallidum globins from different subspecies. Based on ubiqui- were identified using the genome browser and the tous clustering with high statistical support and short tBLASTn tool provided by dictyBase [42, 43]. Orthol- branches, sequences with identity equal or higher ogous genes were defined as reciprocal best hits than 85 percent were considered as redundant and (RBHs) via tBLASTn and BLASTp searches. Addi- consequently only one from a given cluster was used tionally, the direct neighbors of the trHbs of A. castel- for the phylogenetic inference. lanii were determined via GENSCAN and subsequent Next, the sequences were divided into two data BLASTp searches. We did not conduct a synteny sets, one comprising FHbs (66 sequences), the other analysis of the FHb genes of P.
Recommended publications
  • Quantitative Evolutionary Analysis of the Life Cycle of Social Amoebae Darja Dubravcic
    Quantitative evolutionary analysis of the life cycle of social amoebae Darja Dubravcic To cite this version: Darja Dubravcic. Quantitative evolutionary analysis of the life cycle of social amoebae. Agricultural sciences. Université René Descartes - Paris V, 2013. English. NNT : 2013PA05T033. tel-00914467 HAL Id: tel-00914467 https://tel.archives-ouvertes.fr/tel-00914467 Submitted on 5 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Descartes Ecole doctorale « Interdisciplinaire Européen Frontières de vivant » Laboratory « Ecology & Evolution » UMR7625 Laboratory of Interdisciplinary Physics UMR5588 Quantitative evolutionary analysis of the life cycle of social amoebae By Darja Dubravcic PhD Thesis in: Evolutionary Biology Directed by Minus van Baalen and Clément Nizak Presented on the 15th November 2013 PhD committee: Dr. M. van Baalen, PhD director Dr. C. Nizak, PhD Co-director Prof. V. Nanjundiah, Reviewer Prof. P. Rainey, Reviewer Prof. A. Gardner Prof. J-P. Rieu Prof. J-M Di Meglio Dr. S. de Monte, Invited 2 Abstract Social amoebae are eukaryotic organisms that inhabit soil of almost every climate zone. They are remarkable for their switch from unicellularity to multicellularity as an adaptation to starvation.
    [Show full text]
  • An Unusual Case of Amoebic Liver Abscess Presenting with Hepatic Encephalopathy: a Case Report
    Case Report An Unusual Case of Amoebic Liver Abscess Presenting with Hepatic Encephalopathy: A Case Report Anil Kumar SARDA, Rakesh MITTAL Submitted: 16 Sep 2010 Department of Surgery, Maulana Azad Medical College and Lok Nayak Accepted: 3 Jan 2011 Hospital, New Delhi 110 002, India Abstract Amoebic liver abscess (ALA) with jaundice and encephalopathy is a rare occurrence and has been recognised and studied more frequently in recent years. We present a case of massive ALA presenting with jaundice, hepatic encephalopathy, and septicaemia that was treated successfully with percutaneous drainage of the abscess, right-sided chest tube insertion, and anti-amoebic therapy. Keywords: amoebiasis, hepatic encephalopathy, hepatology, jaundice, liver abscess Introduction On chest examination, there was bilateral equal air entry. Upon investigation, haemoglobin was Amoebic liver abscess (ALA) is the most 11 g/dL, with a total leukocyte count of frequent extra-intestinal manifestation of 13 000 cells/mm3 (normal range is 4000– Entamoeba histolytica infection. It has been 11 000 cells/mm3). Liver function tests revealed reported that jaundice is uncommon and mild total serum bilirubin of 20 mg/dL, with direct in liver abscess, and some even consider the bilirubin of 15 mg/dL, serum glutamic-oxaloacetic presence of jaundice as a feature against the transaminase (SGOT) of 324 IU/L (normal level diagnosis of hepatic amoebiasis (1). The cause of is less than 40 IU/L), serum glutamic–pyruvic jaundice in a case of ALA has been hypothesised transaminase (SGPT) of 340 IU/L (normal level to result from either hepatocellular dysfunction or is less than 40 IU/L), and alkaline phosphatase intrahepatic biliary obstruction (2).
    [Show full text]
  • Protistology Mitochondrial Genomes of Amoebozoa
    Protistology 13 (4), 179–191 (2019) Protistology Mitochondrial genomes of Amoebozoa Natalya Bondarenko1, Alexey Smirnov1, Elena Nassonova1,2, Anna Glotova1,2 and Anna Maria Fiore-Donno3 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia 2 Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, 194064 Saint Petersburg, Russia 3 University of Cologne, Institute of Zoology, Terrestrial Ecology, 50674 Cologne, Germany | Submitted November 28, 2019 | Accepted December 10, 2019 | Summary In this mini-review, we summarize the current knowledge on mitochondrial genomes of Amoebozoa. Amoebozoa is a major, early-diverging lineage of eukaryotes, containing at least 2,400 species. At present, 32 mitochondrial genomes belonging to 18 amoebozoan species are publicly available. A dearth of information is particularly obvious for two major amoebozoan clades, Variosea and Tubulinea, with just one mitochondrial genome sequenced for each. The main focus of this review is to summarize features such as mitochondrial gene content, mitochondrial genome size variation, and presence or absence of RNA editing, showing if they are unique or shared among amoebozoan lineages. In addition, we underline the potential of mitochondrial genomes for multigene phylogenetic reconstruction in Amoebozoa, where the relationships among lineages are not fully resolved yet. With the increasing application of next-generation sequencing techniques and reliable protocols, we advocate mitochondrial
    [Show full text]
  • Amebiasis Annual Report 2017
    Amebiasis Annual Report 2017 Amebiasis Amebiasis is no longer a reportable disease in Louisiana. Outbreaks, however, should still be reported. Amebiasis (amoebiasis) is a parasitic infection caused by Entamoeba histolytica or Entamoeba dispar. The parasite is transmitted by the fecal-oral route, either through direct contact with feces or through the consumption of contaminated food or water. Between 80% and 90% of infected individuals develop no symptoms. For symptomatic cases, the incubation period between infection and illness can range from days to weeks. The symptoms are typically gastrointestinal issues, such as diarrhea or stomach pains. It is also possible for the parasite to spread to the liver and cause abscesses. Entamoeba histolytica can be found world-wide, but is more prevalent in tropical regions with poor sanitary conditions. In some areas with extremely adverse conditions, the prevalence can be as high as 50% in the population. There are no recent data on prevalence of amebiasis in the U.S. however, prevalence is estimated to be between 1% and 4% of the population. High risk groups are refugees, recent immigrants, travelers (particularly those who have spent long periods of time in an endemic area), institutionalized people (particularly developmentally or mentally-impaired people), and men who have sex with men. The number of cases reported within Louisiana is usually low. There are typically less than ten cases per year with a few exceptions (Figure 1). Figure 1: Amebiasis cases - Louisiana, 1970-2017 40 35 30 25 20 15 Number of Cases Number 10 5 0 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 Year Louisiana Office of Public Health – Infectious Disease Epidemiology Section Page 1 of 4 Amebiasis Annual Report 2017 Hospitalization Hospitalization surveillance is based on Louisiana Hospital Inpatient Discharge Data (LaHIDD).
    [Show full text]
  • Dictyostelid Cellular Slime Molds from Caves
    John C. Landolt, Steven L. Stephenson, and Michael E. Slay – Dictyostelid cellular slime molds from caves. Journal of Cave and Karst Studies, v. 68, no. 1, p. 22–26. DICTYOSTELID CELLULAR SLIME MOLDS FROM CAVES JOHN C. LANDOLT Department of Biology, Shepherd University, Shepherdstown, WV 2544 USA [email protected] STEVEN L. STEPHENSON Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701 USA [email protected] MICHAEL E. SLAY The Nature Conservancy, 601 North University Avenue, Little Rock, AR 72205 USA [email protected] Dictyostelid cellular slime molds associated with caves in Alabama, Arkansas, Indiana, Missouri, New York, Oklahoma, South Carolina, Tennessee, West Virginia, Puerto Rico, and San Salvador in the Bahamas were investigated during the period of 1990–2005. Samples of soil material collected from more than 100 caves were examined using standard methods for isolating dictyostelids. At least 17 species were recovered, along with a number of isolates that could not be identified completely. Four cos- mopolitan species (Dictyostelium sphaerocephalum, D. mucoroides, D. giganteum and Polysphondylium violaceum) and one species (D. rosarium) with a more restricted distribution were each recorded from more than 25 different caves, but three other species were present in more than 20 caves. The data gen- erated in the present study were supplemented with all known published and unpublished records of dic- tyostelids from caves in an effort to summarize what is known about their occurrence in this habitat. INTRODUCTION also occur on dung and were once thought to be primarily coprophilous (Raper, 1984). However, perhaps the most Dictyostelid cellular slime molds (dictyostelids) are single- unusual microhabitat for dictyostelids is the soil material celled, eukaryotic, phagotrophic bacterivores usually present found in caves.
    [Show full text]
  • Surveillance Study of Acute Gastroenteritis Etiologies in Hospitalized Children in South Lebanon (SAGE Study)
    pISSN: 2234-8646 eISSN: 2234-8840 https://doi.org/10.5223/pghn.2018.21.3.176 Pediatr Gastroenterol Hepatol Nutr 2018 July 21(3):176-183 Original Article PGHN Surveillance Study of Acute Gastroenteritis Etiologies in Hospitalized Children in South Lebanon (SAGE study) Ghassan Ghssein, Ali Salami, Lamis Salloum, Pia Chedid*, Wissam H Joumaa, and Hadi Fakih† Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, *Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, †Department of Pediatrics, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon Purpose: Acute gastroenteritis (AGE) is a major cause of morbidity and remains a major cause of hospitalization. Following the Syrian refugee crisis and insufficient clean water in the region, this study reviews the etiological and epidemiological data in Lebanon. Methods: We prospectively analyzed demographic, clinical and routine laboratory data of 198 children from the age of 1 month to 10 years old who were admitted with the diagnosis of AGE to a private tertiary care hospital located in the district of Nabatieh in south Lebanon. Results: Males had a higher incidence of AGE (57.1%). Pathogens were detected in 57.6% (n=114) of admitted pa- tients, among them single pathogens were found in 51.0% (n=101) of cases that consisted of: Entamoeba histolytica 26.3% (n=52), rotavirus 18.7% (n=37), adenovirus 6.1% (n=12) and mixed co-pathogens found in 6.6% (n=13). Breast-fed children were significantly less prone to rotavirus (p=0.041). Moreover, children who had received the rota- virus vaccine were significantly less prone to rotavirus (p=0.032).
    [Show full text]
  • The Social Amoeba Polysphondylium Pallidum Loses Encystation And
    Protist, Vol. 165, 569–579, September 2014 http://www.elsevier.de/protis Published online date 14 July 2014 ORIGINAL PAPER The Social Amoeba Polysphondylium pallidum Loses Encystation and Sporulation, but Can Still Erect Fruiting Bodies in the Absence of Cellulose 1 Qingyou Du, and Pauline Schaap College of Life Sciences, University of Dundee, MSI/WTB/JBC complex, Dow Street, Dundee, DD15EH, UK Submitted May 20, 2014; Accepted July 8, 2014 Monitoring Editor: Michael Melkonian Amoebas and other freely moving protists differentiate into walled cysts when exposed to stress. As cysts, amoeba pathogens are resistant to biocides, preventing treatment and eradication. Lack of gene modification procedures has left the mechanisms of encystation largely unexplored. Genetically tractable Dictyostelium discoideum amoebas require cellulose synthase for formation of multicellular fructifications with cellulose-rich stalk and spore cells. Amoebas of its distant relative Polysphondylium pallidum (Ppal), can additionally encyst individually in response to stress. Ppal has two cellulose syn- thase genes, DcsA and DcsB, which we deleted individually and in combination. Dcsa- mutants formed fruiting bodies with normal stalks, but their spore and cyst walls lacked cellulose, which obliterated stress-resistance of spores and rendered cysts entirely non-viable. A dcsa-/dcsb- mutant made no walled spores, stalk cells or cysts, although simple fruiting structures were formed with a droplet of amoeboid cells resting on an sheathed column of decaying cells. DcsB is expressed in prestalk and stalk cells, while DcsA is additionally expressed in spores and cysts. We conclude that cellulose is essential for encystation and that cellulose synthase may be a suitable target for drugs to prevent encystation and render amoeba pathogens susceptible to conventional antibiotics.
    [Show full text]
  • Activated Camp Receptors Switch Encystation Into Sporulation
    Activated cAMP receptors switch encystation into sporulation Yoshinori Kawabea, Takahiro Moriob, John L. Jamesa, Alan R. Prescottb, Yoshimasa Tanakab, and Pauline Schaapa,1 aCollege of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, United Kingdom; and bGraduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan Edited by Peter N. Devreotes, Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 12, 2009 (received for review February 13, 2009) Metazoan embryogenesis is controlled by a limited number of in the most derived group 4 (4). During D. discoideum devel- signaling modules that are used repetitively at successive devel- opment, the deeply conserved intracellular messenger cAMP opmental stages. The development of social amoebas shows sim- has multiple roles as a secreted signal, detected by 4 homologous ilar reiterated use of cAMP-mediated signaling. In the model cAMP receptors (cAR1–4) (5). cAMP pulses coordinate the Dictyostelium discoideum, secreted cAMP acting on 4 cAMP recep- aggregation of starving cells and organize the construction of tors (cARs1-4) coordinates cell movement during aggregation and fruiting bodies with a highly regulated pattern of spores and stalk fruiting body formation, and induces the expression of aggrega- cells. Secreted cAMP also up-regulates expression of aggrega- tion and sporulation genes at consecutive developmental stages. tion genes, induces expression of spore genes, and inhibits stalk To identify hierarchy in the multiple roles of cAMP, we investigated gene expression (6). cAR heterogeneity and function across the social amoeba phylog- Single cAR genes were previously detected in 3 more basal eny. The gene duplications that yielded cARs 2-4 occurred late in dictyostelid taxa, but were only expressed after aggregation.
    [Show full text]
  • Amoebic Colitis Presenting As Subacute Intestinal Obstruction with Perforation
    International Journal of TROPICAL DISEASE & Health 41(16): 58-62, 2020; Article no.IJTDH.61831 ISSN: 2278–1005, NLM ID: 101632866 Amoebic Colitis Presenting as Subacute Intestinal Obstruction with Perforation Renuka Verma1, Archana Budhwar1*, Priyanka Rawat1, Niti Dalal1, Anjali Bishlay1 and Sunita Singh1 1Pt. B. D. Sharma Post Graduate Institute of Medical Sciences, Rohtak-124001, Haryana, India. Authors’ contributions This work was carried out in collaboration among all authors. Authors RV and SS designed the study, reviewed the manuscript and edited it. Author Archana Budhwar wrote the protocol and wrote the first draft of the manuscript. Author PR managed the literature searches. Authors ND and Anjali Bishlay managed the analyses of the study. All authors read and approved the final manuscript. Article Information DOI: 10.9734/IJTDH/2020/v41i1630367 Editor(s): (1) Dr. Giuseppe Murdaca, University of Genoa, Italy. Reviewers: (1) Ammar M. Al-Aalim, Mosul University, Iraq. (2) Tarunbir Singh, Guru Angad Dev Veterinary & Animal Sciences University, Ludhiana. Complete Peer review History: http://www.sdiarticle4.com/review-history/61831 Received 10 August 2020 Case Study Accepted 16 October 2020 Published 12 November 2020 ABSTRACT Infestation with Entamoeba histolytica is worldwide, especially in developing areas. Presented case study included amoebic colitis in a 45 years old man complaining of abdominal distension and non- passage of stools since three days. Abdominal region was diffusely distended and tender in right iliac fossa. Plain abdominal radiography revealed prominent gut loops and minimal intergut free fluid. At laparotomy, malrotation of gut was present. Histopathological examination of intestinal samples confirmed final diagnosis of amoebic colitis post-operatively.
    [Show full text]
  • Genetic Heterogeneity in Wild Isolates of Cellular Slime Mold Social Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Microb Ecol (2010) 60:137–148 DOI 10.1007/s00248-010-9635-4 ORIGINAL ARTICLE Genetic Heterogeneity in Wild Isolates of Cellular Slime Mold Social Groups Santosh Sathe & Sonia Kaushik & Albert Lalremruata & Ramesh K. Aggarwal & James C. Cavender & Vidyanand Nanjundiah Received: 27 September 2009 /Accepted: 26 December 2009 /Published online: 24 February 2010 # Springer Science+Business Media, LLC 2010 Abstract This study addresses the issues of spatial distri- Introduction bution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil The existence and implication of spatial structuring in amoebae with an unusual life cycle that consists of microbial populations is a theme of long-standing interest in alternating solitary and social phases. Because the social ecology [36]. At one extreme, there is the hypothesis that— phase involves division of labor with what appears to be an as with large animals—populations tend to be more or less extreme form of “altruism”, the CSMs raise interesting viscous, and spatial structure is determined by patterns of evolutionary questions regarding the origin and maintenance dispersal. At the other extreme, there is the view that of sociality. Knowledge of the genetic structure of social dispersal is rampant (“everything is everywhere”) and what groups in the wild is necessary for answering these persists is determined by adaptations to local conditions. In questions. We confirm that CSMs are widespread in the case of social organisms, an important aspect of spatial undisturbed forest soil from South India.
    [Show full text]
  • Raper (Personal Communication) with More Extensive Ex- Perience Has Confirmed This Observation
    68 BOTANY: A. L. COHEN PROC. N. A. S. THE EFFECT OF AMMONIA ON MORPHOGENESIS IN THE A CRASIEAE* By ARTHUR L. COHEN OGLETHORPE UNIVERSITY, GEORGIA Communicated by F. W. Went, November 10, 1952 The peculiar separation of mass increase and morphogenesis in the Acrasieae has led to renewed interest by several workers, among them RaPer,1 2 Bonner,3 Gregg,4 and Sussman,5 all of whom have taken advan- tage of this fact. The remarkable life history is well given by Raper6 and by Bonnr.7 The present paper is the initial report of a program of studies on the influence of physicochemical factors in the morphogenesis of these organisms. The Acrasieae described by Olive8 in the most extensive monograph df the group show a well-graded series of increasing complexity as pointed out by Raper6 from the almost chance aggregation of cysts in Sappinia through sessile and stalked fruits in Guttulina and Guttulinopsis in which stalk and spore cells are indistinctly differentiated to the complex differentiation of stalk and spore mass in Dictyostelium and a regularly branching arrange- ment in Polysphondylium. It would therefore be worth while to get a range of these forms in culture for the study of the factors involved in in- creasing morphogenetic complexity. For ten years I have cultured soil samples as opportunity permitted in an attempt to obtain a series of forms. During the last two years a systematic selective culture of 79 soil samples from diverse habitats in Georgia, Florida, Massachusetts, and Michigan has yielded about as many strains of Dictyostelium and Polysphondylium species, but no member of the "lower Acrasieae." Raper (personal communication) with more extensive ex- perience has confirmed this observation.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]