Order-Quasiultrabarrelled Vector Lattices and Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Order-Quasiultrabarrelled Vector Lattices and Spaces Periodica Mathematica Hungarica YoL 6 (4), (1975), pp. 363--371. ~ ORDER-QUASIULTRABARRELLED VECTOR LATTICES AND SPACES by T. HUSAIN and S. M. KHALEELULLA (Hamilton) 1. Introduetion In this paper, we introduce and study a class of topological vector lattices (more generally, ordered topological vector spaces) which we call the class of order-quasiultrabarreUed vector lattices abbreviated to O. Q. U. vector lattices (respectively, O. Q. U. spaces). This class replaces that of order-infrabarrened Riesz spaces (respectively, order-infrabarrelled spaces) [8] in situations where local convexity is not assumed. We obtain an analogue of the Banach--Stein- haus theorem for lattice homom0rphisms on O. Q. U. vector lattices (respec- tively positive linear maps on O. Q. U. spaces) and the one for O. Q. U. spaces is s used successfully to obtain an analogue of the isomorphism theorem concerning O. Q.U. spaces and similar Schauder bases. Finally, we prove a closed graph theorem for O. Q. U, spaces, analogous to that for ultrabarrelled spa~s [6]. 2. Notations and preliminaries We abbreviate locally convex space, locally convex vector lattice, tope- logical vector space, and topological vector lattice to 1.c.s., 1.c.v.l., t.v.s., and t.v.l., respectively. We write (E, C) to denote a vector lattice (or ordered vector space) over the field of reals, with positive cone (or simply, cone) C. A subset B of a vector lattice (E, G) is solid if Ixl ~ ]y], yEB implies xEB; a vector subspace M of (~, C) which is also solid is called a lattice ideal. A linear map of a vector lattice (E, C) into a vector lattice (F, K) is a lattice homo- morphism if it preserves lattice operations. A linear mapfof an ordered vector space (E, C) into an ordered vector space (i~, K) is positive (order-bounded) if f(x)~K whenever x~C (f maps order-bounded sets into order-bounded sets). A subset B of an ordered vector space (E, C) is called order-bornivorous if it absorbs all order-bounded subsets of E. This research was supported by an N. R. C. grant. AMS (MOS) subject classifications (1970). Primary 46A40. 6* 364 HUSAI~, KHALEELULLA: V~CTOR LATTICES AND SPACES We write (E, C, u) to denote a topological vector lattice (or ordered t.v.s.) with cone C and topology u. An 1.c.v.1. (or ordered 1.c.s.) (E, C, u) is an order-infrabarrelled Riesz space (respectively, order-infrabarrelled space) if every order-bornivorous barrel is a neighbourhood of 0 in E. A sequence {xi} in an ordered t.v.s. (g, C, u) is a basis for E if for each xEE there cor- n responds a unique sequence (~l} C R such that x ~ lim~'~i in the topo- n i-----1 logy u. Each coefficient ~i determines a corresponding linear functional fi on E. In general, the coefficient functionals fl need not be continuous; if they are continuous, we call (~l} a Schauder basis. If (xt} c_ C and each fi is posi- tive (and continuous), we say that {xi} is a positive (Schauder) basis for E. A closed, circled subset B of a t.v.s. (E, u) is an ultrabarrel Ca bomivorous ultrabarrel) if there exists a sequence {Bn}, called defining. sequence for B, of circled absorbing (circled bomivorous) subsets of E such that B 1 -t- B1 c B and Bn§ W Bn+l ~ Bn for all n. A topological vector space (E, u) is called an ultrabarrelled space if any linear topology on E with a base of u-closed neighbourhoods of 0 is necessarily coarser than u iff every ultrabarrel is a neighbourhood of 0. A topological vector space (E, u) is quasiultrabarrelled if each bornivorotts, ultrabarrel is a neighbourhood of 0 in E [2]. 3. O.Q.U. vector lattices DEFINITION 3.1. Let (E,C, u) be an ordered t.v.s. (a t.v.1.). A closed, circled (closed, solid) subset B of E is said to be an order-bornivorous ultra- barrel (solid ultrabarrel)if there exists a sequence (Bn; n~N~ of circled, order-bornivorous (solid, absorbing) subsets of E such that B 1 ~- B 1 c B and Bn+l ~- Bn-1 c B, for all n. {Bn; ~cN} is called a defining sequence for B. DEFim~rm~ 3.2. A t.v.1. (E,C, u) is called an order-quasiultrabarrelled vector lattice (abbreviated to O. Q. U. vector lattice) if everyorder-bornivorous ultrabarrel in E is a neighbourhood of 0 in E. TH]~O~.M 3.3. A t.v.1. (E, C, u) is a~, O. Q. U. vector lattice iff each solid ultrabarrel is a neighbourhood of 0 in E. PROOF. Since a solid, absorbing set is always order-bornivorous and a solid set is circled, the "only if" part follows immediately. To prove the "if" part, let V be an order-bornivorous ultrabarrel with defiming sequence {Vn; hEN}. Consider the solid kernel K(V) of V defined by K(V) = [.Ixl, Ixl] c_ r}. .
Recommended publications
  • ORDER EXTREME POINTS and SOLID CONVEX HULLS 1. Introduction at the Very Heart of Banach Space Geometry Lies the Study of Three I
    ORDER EXTREME POINTS AND SOLID CONVEX HULLS T. OIKHBERG AND M.A. TURSI To the memory of Victor Lomonosov Abstract. We consider the \order" analogues of some classical notions of Banach space geometry: extreme points and convex hulls. A Hahn- Banach type separation result is obtained, which allows us to establish an \order" Krein-Milman Theorem. We show that the unit ball of any infinite dimensional reflexive space contains uncountably many order extreme points, and investigate the set of positive norm-attaining func- tionals. Finally, we introduce the \solid" version of the Krein-Milman Property, and show it is equivalent to the Radon-Nikod´ym Property. 1. Introduction At the very heart of Banach space geometry lies the study of three in- terrelated subjects: (i) separation results (starting from the Hahn-Banach Theorem), (ii) the structure of extreme points, and (iii) convex hulls (for instance, the Krein-Milman Theorem on convex hulls of extreme points). Certain counterparts of these notions exist in the theory of Banach lattices as well. For instance, there are positive separation/extension results; see e.g. [1, Section 1.2]. One can view solid convex hulls as lattice analogues of convex hulls; these objects have been studied, and we mention some of their properties in the paper. However, no unified treatment of all three phenomena listed above has been attempted. In the present paper, we endeavor to investigate the lattice versions of (i), (ii), and (iii) above. We introduce the order version of the classical notion of an extreme point: if A is a subset of a Banach lattice X, then a 2 A is called an order extreme point of A if for all x0; x1 2 A and t 2 (0; 1) the inequality a ≤ (1 − t)x0 + tx1 implies x0 = a = x1.
    [Show full text]
  • Locally Solid Riesz Spaces with Applications to Economics / Charalambos D
    http://dx.doi.org/10.1090/surv/105 alambos D. Alipr Lie University \ Burkinshaw na University-Purdue EDITORIAL COMMITTEE Jerry L. Bona Michael P. Loss Peter S. Landweber, Chair Tudor Stefan Ratiu J. T. Stafford 2000 Mathematics Subject Classification. Primary 46A40, 46B40, 47B60, 47B65, 91B50; Secondary 28A33. Selected excerpts in this Second Edition are reprinted with the permissions of Cambridge University Press, the Canadian Mathematical Bulletin, Elsevier Science/Academic Press, and the Illinois Journal of Mathematics. For additional information and updates on this book, visit www.ams.org/bookpages/surv-105 Library of Congress Cataloging-in-Publication Data Aliprantis, Charalambos D. Locally solid Riesz spaces with applications to economics / Charalambos D. Aliprantis, Owen Burkinshaw.—2nd ed. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 105) Rev. ed. of: Locally solid Riesz spaces. 1978. Includes bibliographical references and index. ISBN 0-8218-3408-8 (alk. paper) 1. Riesz spaces. 2. Economics, Mathematical. I. Burkinshaw, Owen. II. Aliprantis, Char­ alambos D. III. Locally solid Riesz spaces. IV. Title. V. Mathematical surveys and mono­ graphs ; no. 105. QA322 .A39 2003 bib'.73—dc22 2003057948 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • When Is the Core Equivalence Theorem Valid?
    DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 WHEN IS THE CORE EQUIVALENCE THEOREM VALID? Charalambos D. Aliprantis California Institute of Technology Indiana University - Purdue Univeristy at Indianapolis Owen Burkinshaw Indiana University - Purdue University at Indianapolis SOCIAL SCIENCE WORKING PAPER 707 September 1989 WHEN IS THE CORE EQUIVALENCE THEOREM VALID? Charalambos D. Aliprantis and Owen Burkinshaw ABSTRACT In 1983 L. E. Jones exhibited a surprising example of a weakly Pareto optimal al­ location in a two consumer pure exchange economy that failed to be supported by prices. In this example the price space is not a vector lattice (Riesz space). Inspired by Jones' example, A. Mas-Colell and S. F. Richard proved that this pathological phenomenon cannot happen when the price space is a vector lattice. In particu­ lar, they established that (under certain conditions) in a pure exchange economy the lattice structure of the price space is sufficient to guarantee the supportability of weakly Pareto optimal allocations by prices-i.e., they showed that the second welfare theorem holds true in an exchange economy whose price space is a vector lattice. In addition, C. D. Aliprantis, D. J. Brown and 0. Burkinshaw have shown that when the price space of an exchange economy is a certain vector lattice, the Debreu-Scarf core equivalence theorem holds true, i.e., the sets of Walrasian equilib­ ria and Edgeworth equilibria coincide. (An Edgeworth equilibrium is an allocation that belongs to the core of every replica economy of the original economy.) In other words, the lattice structure of the price space is a sufficient condition for avoiding the pathological situation occuring in Jones' example.
    [Show full text]
  • Version of 4.9.09 Chapter 35 Riesz Spaces the Next Three Chapters Are
    Version of 4.9.09 Chapter 35 Riesz spaces The next three chapters are devoted to an abstract description of the ‘function spaces’ described in Chapter 24, this time concentrating on their internal structure and relationships with their associated measure algebras. I find that any convincing account of these must involve a substantial amount of general theory concerning partially ordered linear spaces, and in particular various types of Riesz space or vector lattice. I therefore provide an introduction to this theory, a kind of appendix built into the middle of the volume. The relation of this chapter to the next two is very like the relation of Chapter 31 to Chapter 32. As with Chapter 31, it is not really meant to be read for its own sake; those with a particular interest in Riesz spaces might be better served by Luxemburg & Zaanen 71, Schaefer 74, Zaanen 83 or my own book Fremlin 74a. I begin with three sections in an easy gradation towards the particular class of spaces which we need to understand: partially ordered linear spaces (§351), general Riesz spaces (§352) and Archimedean Riesz spaces (§353); the last includes notes on Dedekind (σ-)complete spaces. These sections cover the fragments of the algebraic theory of Riesz spaces which I will use. In the second half of the chapter, I deal with normed Riesz spaces (in particular, L- and M-spaces)(§354), spaces of linear operators (§355) and dual Riesz spaces (§356). Version of 16.10.07 351 Partially ordered linear spaces I begin with an account of the most basic structures which involve an order relation on a linear space, partially ordered linear spaces.
    [Show full text]
  • Locally Convex Spaces Manv 250067-1, 5 Ects, Summer Term 2017 Sr 10, Fr
    LOCALLY CONVEX SPACES MANV 250067-1, 5 ECTS, SUMMER TERM 2017 SR 10, FR. 13:15{15:30 EDUARD A. NIGSCH These lecture notes were developed for the topics course locally convex spaces held at the University of Vienna in summer term 2017. Prerequisites consist of general topology and linear algebra. Some background in functional analysis will be helpful but not strictly mandatory. This course aims at an early and thorough development of duality theory for locally convex spaces, which allows for the systematic treatment of the most important classes of locally convex spaces. Further topics will be treated according to available time as well as the interests of the students. Thanks for corrections of some typos go out to Benedict Schinnerl. 1 [git] • 14c91a2 (2017-10-30) LOCALLY CONVEX SPACES 2 Contents 1. Introduction3 2. Topological vector spaces4 3. Locally convex spaces7 4. Completeness 11 5. Bounded sets, normability, metrizability 16 6. Products, subspaces, direct sums and quotients 18 7. Projective and inductive limits 24 8. Finite-dimensional and locally compact TVS 28 9. The theorem of Hahn-Banach 29 10. Dual Pairings 34 11. Polarity 36 12. S-topologies 38 13. The Mackey Topology 41 14. Barrelled spaces 45 15. Bornological Spaces 47 16. Reflexivity 48 17. Montel spaces 50 18. The transpose of a linear map 52 19. Topological tensor products 53 References 66 [git] • 14c91a2 (2017-10-30) LOCALLY CONVEX SPACES 3 1. Introduction These lecture notes are roughly based on the following texts that contain the standard material on locally convex spaces as well as more advanced topics.
    [Show full text]
  • Operators and the Space of Integrable Scalar Functions with Respect to a Frechet-Valued Measure
    J. Austral. Math. Soc. (Series A) 65 (1998), 176-193 OPERATORS AND THE SPACE OF INTEGRABLE SCALAR FUNCTIONS WITH RESPECT TO A FRECHET-VALUED MEASURE ANTONIO FERNANDEZ and FRANCISCO NARANJO (Received 21 May 1997; revised 10 October 1997) Communicated by P. G. Dodds Abstract We consider the space L' (v, X) of all real functions that are integrable with respect to a measure v with values in a real Frechet space X. We study L-weak compactness in this space. We consider the problem of the relationship between the existence of copies of t°° in the space of all linear continuous operators from a complete DF-space Y to a Frechet lattice E with the Lebesgue property and the coincidence of this space with some ideal of compact operators. We give sufficient conditions on the measure v and the space X that imply that L' (v, X) has the Dunford-Pettis property. Applications of these results to Frechet AL-spaces and Kothe sequence spaces are also given. 1991 Mathematics subject classification (Amer. Math. Soc): primary 46A04, 46A40,46G10,47B07. Keywords and phrases: Frechet lattice, L-weak compactness, Dunford-Pettis property, L-weakly compact operators, generalized AL-spaces, Kothe sequences spaces. 1. Introduction In this paper we study operators with values in, or defined on, spaces of scalar-valued integrable functions with respect to a vector measure with values in a real Frechet space. This kind of integration was introduced by Lewis in [19] and developed essentially by Kluvanek and Knowles in [18] for locally convex spaces. Let us recall briefly the basic definitions (see [19] and [18]).
    [Show full text]
  • Functional Properties of Hörmander's Space of Distributions Having A
    Functional properties of Hörmander’s space of distributions having a specified wavefront set Yoann Dabrowski, Christian Brouder To cite this version: Yoann Dabrowski, Christian Brouder. Functional properties of Hörmander’s space of distributions having a specified wavefront set. 2014. hal-00850192v2 HAL Id: hal-00850192 https://hal.archives-ouvertes.fr/hal-00850192v2 Preprint submitted on 3 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Communications in Mathematical Physics manuscript No. (will be inserted by the editor) Functional properties of H¨ormander’s space of distributions having a specified wavefront set Yoann Dabrowski1, Christian Brouder2 1 Institut Camille Jordan UMR 5208, Universit´ede Lyon, Universit´eLyon 1, 43 bd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France 2 Institut de Min´eralogie, de Physique des Mat´eriaux et de Cosmochimie, Sorbonne Univer- sit´es, UMR CNRS 7590, UPMC Univ. Paris 06, Mus´eum National d’Histoire Naturelle, IRD UMR 206, 4 place Jussieu, F-75005 Paris, France. Received: date / Accepted: date ′ Abstract: The space Γ of distributions having their wavefront sets in a closed cone Γ has become importantD in physics because of its role in the formulation of quantum field theory in curved spacetime.
    [Show full text]
  • Mackey +0-Barrelled Spaces Stephen A
    Advances in Mathematics 145, 230238 (1999) Article ID aima.1998.1815, available online at http:ÂÂwww.idealibrary.com on Mackey +0-Barrelled Spaces Stephen A. Saxon* Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, Florida 32611-8105 E-mail: saxonÄmath.ufl.edu and Ian Tweddle* Department of Mathematics, University of Strathclyde, Glasgow G11XH, Scotland, United Kingdom E-mail: i.tweddleÄstrath.ac.uk CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - PublisherReceived Connector March 25, 1998; accepted December 14, 1998 In the context of ``Reinventing weak barrelledness,'' the best possible versions of the RobertsonSaxonRobertson Splitting Theorem and the SaxonTweddle Fit and Flat Components Theorem are obtained by weakening the hypothesis from ``barrelled'' to ``Mackey and +0-barreled.'' An example showing that the latter does not imply the former validates novelty, answers an old question, and completes a robust linear picture of ``Mackey weak barrelledness'' begun several decades ago. 1999 Academic Press Key Words: weak barrelledness; Mackey topology; splitting theorem. 1. INTRODUCTION Barrelled spaces have occupied an important place in the theory of locally convex spaces since its earliest days. This is probably due to the fact that they provide a vehicle for generalizing certain important properties of Banach spaces; for example, they form the class of domain spaces for a natural generalization of Banach's closed graph theorem and, in their dual characterization, they embody the conclusion of the BanachSteinhaus theorem for continuous linear functionals. Unlike Banach spaces, they are closed under the taking of inductive limits, countable-codimensional subspaces, products, etc. A barrel in a locally convex space is a closed * We are grateful for support and hospitality from EPSRC GRÂL67257 and Strathclyde University, and for helpful discussions with Professors J.
    [Show full text]
  • Quasi-Barrelled Locally Convex Spaces 811
    i960] quasi-barrelled locally convex spaces 811 Bibliography 1. R. E. Lane, Absolute convergence of continued fractions, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 904-913. 2. R. E. Lane and H. S. Wall, Continued fractions with absolutely convergent even and odd parts, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 368-380. 3. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172. 4. H. S. Wall, Analytic theory of continued fractions, New York, D. Van Nostrand Company, Inc., 1948. The University of Texas and University of Houston QUASI-BARRELLED LOCALLY CONVEX SPACES MARK MAHOWALD AND GERALD GOULD 1. Introduction and preliminary definitions. The main object of this paper is to answer some problems posed by Dieudonné in his paper Denumerability conditions in locally convex vector spaces [l]. His two main results are as follows: Proposition 1. If Eis a barrelled space on which there is a countable fundamental system of convex compact subsets, [Definition 1.2] then it is the strong dual of a Fréchet-Montel Space. Proposition 2. If E is either bornological or barrelled, and if there is a countable fundamental system of compact subsets, then E is dense in the strong dual of a Fréchet-Montel Space. Two questions raised by Dieudonné in connection with these results are: (a) If E is either bornological or barrelled then it is certainly quasi- barrelled [l, Chapter 3, §2, Example 12]. Can one substitute this weaker condition on E in Proposition 2? (b) Is there is an example of a quasi-barrelled space which is neither barrelled nor bornological? We shall show that the answer to (a) is "Yes," and that the answer to (b) is also "Yes," so that the generalization is in fact a real one.
    [Show full text]
  • Canonical Metric on Moduli Spaces of Log Calabi-Yau Varieties Hassan Jolany
    Canonical metric on moduli spaces of log Calabi-Yau varieties Hassan Jolany To cite this version: Hassan Jolany. Canonical metric on moduli spaces of log Calabi-Yau varieties . 2017. hal-01413746v3 HAL Id: hal-01413746 https://hal.archives-ouvertes.fr/hal-01413746v3 Preprint submitted on 14 Feb 2017 (v3), last revised 20 Jun 2017 (v4) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Canonical metric on moduli spaces of log Calabi-Yau varieties Hassan Jolany February 14, 2017 Abstract In this paper, we give a short proof of closed formula [9],[18] of loga- rithmic Weil-Petersson metric on moduli space of log Calabi-Yau varieties (if exists!) of conic and Poincare singularities and its connection with Bismut-Vergne localization formula. Moreover we give a relation between logarithmic Weil-Petersson metric and the logarithmic version of semi Ricci flat metric on the family of log Calabi-Yau pairs with conical sin- gularities. In final we consider the semi-positivity of singular logarithmic Weil-Petersson metric on the moduli space of log-Calabi-Yau varieties. Moreover, we show that Song-Tian-Tsuji measure is bounded along Iitaka fibration if and only if central fiber has log terminal singularities and we consider the goodness of fiberwise Calabi-Yau metric in the sense of Mumford and goodness of singular Hermitian metric corresponding to Song-Tian-Tsuji measure.
    [Show full text]
  • Applications of Convergence Spaces to Vector Lattice Theory
    Volume 41, 2013 Pages 311{331 http://topology.auburn.edu/tp/ Applications of Convergence Spaces to Vector Lattice Theory by Jan Harm van der Walt Electronically published on October 3, 2012 Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: [email protected] ISSN: 0146-4124 COPYRIGHT ⃝c by Topology Proceedings. All rights reserved. http://topology.auburn.edu/tp/ TOPOLOGY PROCEEDINGS Volume 41 (2013) Pages 311-331 E-Published on October 3, 2012 APPLICATIONS OF CONVERGENCE SPACES TO VECTOR LATTICE THEORY JAN HARM VAN DER WALT Abstract. We introduce the concept of a locally solid convergence vector lattice as a generalization of locally solid Riesz spaces. This notion provides an appropriate context for a number of natural modes of convergence that cannot be described in terms of the usual Hausdorff-Kuratowski-Bourbaki (HKB) notion of topology. We discuss the dual and completion of a locally solid convergence vector lattice. As applications of this new concept we present a Closed Graph Theorem for linear operators on a class of vector lattices, and a duality result for locally convex, locally solid Riesz spaces. 1. Introduction Many of the most important spaces that arise in analysis are vector lattices. Recall [1, page 3] that a subset A of a vector lattice L is called solid whenever 8 f 2 A; g 2 L : (1.1) jgj ≤ jfj ) g 2 A: A vector space topology on L is called locally solid if it has a basis at 0 consisting of solid sets [1, Definition 5.1].
    [Show full text]
  • Canonical Metric on a Mildly Singular Kähler Varieties with an Intermediate Log Kodaira Dimension Hassan Jolany
    Canonical metric on a mildly singular Kähler varieties with an intermediate log Kodaira dimension Hassan Jolany To cite this version: Hassan Jolany. Canonical metric on a mildly singular Kähler varieties with an intermediate log Kodaira dimension. 2017. hal-01413751v2 HAL Id: hal-01413751 https://hal.archives-ouvertes.fr/hal-01413751v2 Preprint submitted on 21 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Canonical metric on a mildly singular Kahler¨ varieties with an intermediate log Kodaira dimension HASSAN JOLANY Existence of canonical metric on a canonical model of projective singular variety was a long standing conjecture and the major part of this conjecture is about varieties which do not have definite first Chern class(most of the varieties do not have definite first Chern class). There is a program which is known as Song-Tian program for finding canonical metric on canonical model of a projective variety by using Minimal Model Program. In this paper, we apply Song-Tian program for mildly singular pair (X; D) via Log Minimal Model Program where D is a simple normal crossing divisor on X with conic singularities.
    [Show full text]