Order-Quasiultrabarrelled Vector Lattices and Spaces
Periodica Mathematica Hungarica YoL 6 (4), (1975), pp. 363--371. ~ ORDER-QUASIULTRABARRELLED VECTOR LATTICES AND SPACES by T. HUSAIN and S. M. KHALEELULLA (Hamilton) 1. Introduetion In this paper, we introduce and study a class of topological vector lattices (more generally, ordered topological vector spaces) which we call the class of order-quasiultrabarreUed vector lattices abbreviated to O. Q. U. vector lattices (respectively, O. Q. U. spaces). This class replaces that of order-infrabarrened Riesz spaces (respectively, order-infrabarrelled spaces) [8] in situations where local convexity is not assumed. We obtain an analogue of the Banach--Stein- haus theorem for lattice homom0rphisms on O. Q. U. vector lattices (respec- tively positive linear maps on O. Q. U. spaces) and the one for O. Q. U. spaces is s used successfully to obtain an analogue of the isomorphism theorem concerning O. Q.U. spaces and similar Schauder bases. Finally, we prove a closed graph theorem for O. Q. U, spaces, analogous to that for ultrabarrelled spa~s [6]. 2. Notations and preliminaries We abbreviate locally convex space, locally convex vector lattice, tope- logical vector space, and topological vector lattice to 1.c.s., 1.c.v.l., t.v.s., and t.v.l., respectively. We write (E, C) to denote a vector lattice (or ordered vector space) over the field of reals, with positive cone (or simply, cone) C. A subset B of a vector lattice (E, G) is solid if Ixl ~ ]y], yEB implies xEB; a vector subspace M of (~, C) which is also solid is called a lattice ideal.
[Show full text]