Renewable Energy Opportunities for Islands Tourism

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy Opportunities for Islands Tourism IRENA International Renewable Energy Agency RENEWABLE ENERGY OPPORTUNITIES FOR ISLAND TOURISM AUGUST 2014 Copyright © IRENA 2014 Unless otherwise indicated, material in this publication may be used freely, shared or reprinted, so long as IRENA is acknowledged as the source. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future, and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements This report has been made possible by a Voluntary Contribution from the Government of the Federal Republic of Germany. This report was produced in collaboration with Andrea Bassi, KnowlEdge Srl, contracted as a consultant by IRENA. The report has benefitted from inputs from the participants in the IRENA event on renewable energy for island tourism, which took place in Cyprus on 29 and 30 May 2014, hosted in co-operation with the Government of the Republic of Cyprus. Peer reviewers provided invaluable feedback to enhance and enrich this report. In particular, many thanks go to Mario Gamberale (AzzeroCO2 and Exalto), United Nations World Tourism Organisation (UNWTO), Adriana Maria Valencia Jaramillo (Inter-American Development Bank - IDB), Cipriano Marin (Renewable Energy Futures for UNESCO Sites - RENFORUS/UNESCO), Les Nelson (International Association of Plumbing and Mechanical Officials - IAPMO), Giuseppe Sauli (Nidec ASI S.p.A.), Brett Shapiro (editorial consultant) and Riccardo Toxiri (Gestore dei Servizi Energetici S.p.A). The report also benefitted from internal review with inputs from Jeffrey Skeer and overall guidance from Dolf Gielen. Authors: Emanuele Taibi and Peter Journeay-Kaler (IRENA) Andrea Bassi (KnowlEdge srl) For further information or to provide feedback, please contact: Emanuele Taibi, IRENA Innovation and Technology Centre E-mail: [email protected] or [email protected].. Disclaimer While this publication promotes the adoption and use of renewable energy, the International Renewable Energy Agency does not endorse any particular project, product or service provider. Renewable Energy Opportunities for Island Tourism International Renewable Energy Agency ii Renewable Energy Opportunities for Island Tourism CONTENTS LIST OF FIGURES �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������V LIST OF TABLES ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������VI LIST OF BOXES ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������VI EXECUTIVE SUMMARY �������������������������������������������������������������������������������������������������������������������������������������������������������������������1 1 INTRODUCTION ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������3 1�1 Energy trends in the tourism sector and in Small Island Developing States������������������������������������������� 4 1�2 An opportunity for the tourism sector to increase profitability and reduce socio-economic vulnerability ����������������������������������������������������������������������������������������������������������������������������������������������������������������������� 9 2 TECHNOLOGY ASSESSMENT: INVESTMENTS, AVOIDED COSTS AND ADDED BENEFITS �����������������������11 2�1 Solar water heating systems ��������������������������������������������������������������������������������������������������������������������������������������14 2�2 Solar Air Conditioning systems �������������������������������������������������������������������������������������������������������������������������������� 17 2�3 Sea Water Air Conditioning systems ���������������������������������������������������������������������������������������������������������������������20 2�4 Solar Photovoltaic systems ���������������������������������������������������������������������������������������������������������������������������������������23 3 BARRIERS, ENABLING CONDITIONS AND BEST PRACTICES ������������������������������������������������������������������������������31 3�1 Barriers to technology deployment �����������������������������������������������������������������������������������������������������������������������32 3�2 Enabling policies ������������������������������������������������������������������������������������������������������������������������������������������������������������33 3�3 Review of best practices ��������������������������������������������������������������������������������������������������������������������������������������������38 4 MODELING THE OUTCOMES OF RET ADOPTION IN ISLAND TOURISM ���������������������������������������������������������43 4�1 Model specifications �����������������������������������������������������������������������������������������������������������������������������������������������������43 4�2 Main results ����������������������������������������������������������������������������������������������������������������������������������������������������������������������45 5 RELEVANT CASE STUDIES �������������������������������������������������������������������������������������������������������������������������������������������������47 5�1 Turtle Beach Resort, Barbados ��������������������������������������������������������������������������������������������������������������������������������47 5�2 Intercontinental Bora Bora Resort & Thalasso Spa �����������������������������������������������������������������������������������������48 5�3 Turtle Island Resort, Fiji �����������������������������������������������������������������������������������������������������������������������������������������������49 5�4 Rethymno Village Hotel, Crete ���������������������������������������������������������������������������������������������������������������������������������50 6 CONCLUSIONS ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������51 Renewable Energy Opportunities for Island Tourism iii ANNEX I: TECHNOLOGY DETAILS �����������������������������������������������������������������������������������������������������������������������������������������53 Solar water heating (SWH) systems ��������������������������������������������������������������������������������������������������������������������������������53 Solar air conditioning (SAC) systems ������������������������������������������������������������������������������������������������������������������������������55 Sea water air conditioning (SWAC) systems ����������������������������������������������������������������������������������������������������������������55 Solar photovoltaic (PV) systems ���������������������������������������������������������������������������������������������������������������������������������������56 ANNEX II: REVIEW OF RENEWABLE ENERGY POLICIES IN SIDS ����������������������������������������������������������������������������59 REFERENCES �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������61 iv Renewable Energy Opportunities for Island Tourism List of Figures Figure 1� Inbound tourism by mode of transport� Global average (left), SIDS (right) ..........................................5 Figure 2� Breakdown of energy use for an average hotel� ����������������������������������������������������������������������������������������������5 Figure 3� Breakdown of electricity consumption in the hotel sector of Barbados, by hotel size� ������������������� 6 Figure 4� International tourism receipts in SIDS (% of total export and GDP)�.........................................................7 Figure 5� Tourist arrivals in SIDS, total and as share of world tourist arrivals� ��������������������������������������������������������7 Figure 6� Average renewable energy consumption in SIDS, including hydro (% of TFEC)� ...............................8 Figure 7� Typical Levelized Cost of Electricity ranges with weighted average for 2013� Graphs assume a 10% cost of capital� ..............................................................................................................................10 Figure 8� Range of LCOE estimations for PV, SWH, SAC and SWAC, under different CAPEX assumptions, compared to the business-as-usual solutions ����������������������������������13 Figure 9� Range of LCOE estimations for PV, SWH, SAC and SWAC, under different Weighted Average Cost of Capital (WACC) assumptions, compared
Recommended publications
  • 2015-SVTC-Solar-Scorecard.Pdf
    A PROJECT OF THE SILICON VALLEY TOXICS COALITION 2015 SOLAR SCORECARD ‘‘ www.solarscorecard.com ‘‘ SVTC’s Vision The Silicon Valley Toxics Coalition (SVTC) believes that we still have time to ensure that the PV sector is safe The PV industry’s rapid growth makes for the environment, workers, and communities. SVTC it critical that all solar companies envisions a safe and sustainable solar PV industry that: maintain the highest sustainability standards. 1) Takes responsibility for the environmental and health impacts of its products throughout their life- cycles, including adherence to a mandatory policy for ‘‘The Purpose responsible recycling. The Scorecard is a resource for consumers, institutional purchasers, investors, installers, and anyone who wants 2) Implements and monitors equitable environmental to purchase PV modules from responsible product and labor standards throughout product supply chains. stewards. The Scorecard reveals how companies perform on SVTC’s sustainability and social justice benchmarks 3) Pursues innovative approaches to reducing and to ensure that the PV manufacturers protect workers, work towards eliminating toxic chemicals in PV mod- communities, and the environment. The PV industry’s ule manufacturing. continued growth makes it critical to take action now to reduce the use of toxic chemicals, develop responsible For over three decades, SVTC has been a leader in recycling systems, and protect workers throughout glob- encouraging electronics manufacturers to take lifecycle al PV supply chains. Many PV companies want to pro- responsibility for their products. This includes protecting duce truly clean and green energy systems and are taking workers from toxic exposure and preventing hazardous steps to implement more sustainable practices.
    [Show full text]
  • Solar Heating and Cooling & Solar Air-Conditioning Position Paper
    Task 53 New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems) Solar Heating and Cooling & Solar Air-Conditioning Position Paper November 2018 Contents Executive Summary ............................................................. 3 Introduction and Relevance ................................................ 4 Status of the Technology/Industry ...................................... 5 Technical maturity and basic successful rules for design .............. 7 Energy performance for PV and Solar thermally driven systems ... 8 Economic viability and environmental benefits .............................. 9 Market status .................................................................................... 9 Potential ............................................................................. 10 Technical potential ......................................................................... 10 Costs and economics ..................................................................... 11 Market opportunities ...................................................................... 12 Current Barriers ................................................................. 12 Actions Needed .................................................................. 13 This document was prepared by Daniel Neyer1,2 and Daniel Mugnier3 with support by Alexander Thür2, Roberto Fedrizzi4 and Pedro G. Vicente Quiles5. 1 daniel neyer brainworks, Oberradin 50, 6700 Bludenz, Austria 2 University of Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria
    [Show full text]
  • Solar Air-Conditioning and Refrigeration - Achievements and Challenges
    Solar air-conditioning and refrigeration - achievements and challenges Hans-Martin Henning Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg/Germany EuroSun 2010 September 28 – October 2, 2010 Graz - AUSTRIA © Fraunhofer ISE Outline Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Overall approach to energy efficient buildings Assure indoor comfort with a minimum energy demand 1. Reduction of energy demand Building envelope; ventilation 2. Use of heat sinks (sources) in Ground; outside air (T, x) the environment directly or indirectly; storage mass 3. Efficient conversion chains HVAC; combined heat, (minimize exergy losses) (cooling) & power (CH(C)P); networks; auxiliary energy 4. (Fractional) covering of the Solar thermal; PV; (biomass) remaining demand using renewable energies © Fraunhofer ISE Solar thermal cooling - basic principle Basic systems categories Closed cycles (chillers): chilled water Open sorption cycles: direct treatment of fresh air (temperature, humidity) © Fraunhofer ISE Open cycles – desiccant air handling units Solid sorption Liquid sorption Desiccant wheels Packed bed Coated heat exchangers Plate heat exchanger Silica gel or LiCl-matrix, future zeolite LiCl-solution: Thermochemical storage possible ECOS (Fraunhofer ISE) in TASK 38 © Fraunhofer ISE Closed cycles – water chillers or ice production Liquid sorption: Ammonia-water or Water-LiBr (single-effect or double-effect) Solid sorption: silica gel – water, zeolite-water Ejector systems Thermo-mechanical systems Turbo Expander/Compressor AC-Sun, Denmark in TASK 38 © Fraunhofer ISE System overview Driving Collector type System type temperature Low Open cycle: direct air treatment (60-90°C) Closed cycle: high temperature cooling system (e.g.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Fabrication of Solar Energy for Air Conditioning System
    Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396 FABRICATION OF SOLAR ENERGY FOR AIR CONDITIONING SYSTEM Mohankumar.G 1, Vijay.A2, Sasikumar R3, Kanagaraj.M4 1,2,3,4 PG Scholars, Department of Mechanical Engineering, Gnanamani College of Technology, Namakkal, Tamilnadu, India. ABSTRACT Air-conditioning is one of the major consumers of electrical energy in many parts of the world today and already today air- conditioning causes energy shortage in for example China. The demand can be expected to increase because of changing working times, increased comfort expectations and global warming. Air-conditioning systems in use are most often built around a vapor compression systems driven by grid-electricity. However, most ways of generating the electricity today, as well as the refrigerants being used in traditional vapor compression systems, have negative impact on the environment.Solar air-conditioning might be a way to reduce the demand for electricity. In addition many solar air-conditioning systems are constructed in ways that eliminate the need for CFC, HCFC or HFC refrigerants. An aim of the report is to describe and explain the working principles of the components and subsystem in such general terms that the report is usable not only to those specifically interested in solar air conditioning, but to anyone interested in air conditioning, heat driven air-conditioning and solar energy. The last section of the report briefly deals with how the components can be combined to form a complete solar air-conditioning system. Keyword: Air conditioning, Renewable energy, solar energy. 1.INTRODUCTION: Energy is the primary and most universal measure of all kinds of work by human beings and nature.
    [Show full text]
  • Solar Cooling Used for Solar Air Conditioning - a Clean Solution for a Big Problem
    Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Editor Werner Lang Aurora McClain csd Center for Sustainable Development II-Strategies Technology 2 2.10 Solar Cooling for Solar Air Conditioning Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Based on a presentation by Dr. Jan Cremers Figure 1: Vacuum Tube Collectors Introduction taics convert the heat produced by solar energy into electrical power. This power can be “The global mission, these days, is an used to run a variety of devices which for extensive reduction in the consumption of example produce heat for domestic hot water, fossil energy without any loss in comfort or lighting or indoor temperature control. living standards. An important method to achieve this is the intelligent use of current and Photovoltaics produce electricity, which can be future solar technologies. With this in mind, we used to power other devices, such as are developing and optimizing systems for compression chillers for cooling buildings. architecture and industry to meet the high While using the heat of the sun to cool individual demands.” Philosophy of SolarNext buildings seems counter intuitive, a closer look AG, Germany.1 into solar cooling systems reveals that it might be an efficient way to use the energy received When sustainability is discussed, one of the from the sun. On the one hand, during the time first techniques mentioned is the use of solar that heat is needed the most - during the energy. There are many ways to utilize the winter months - there is a lack of solar energy.
    [Show full text]
  • PDF Download
    International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031 www.ijlret.com || Volume 02 - Issue 12 || December 2016 || PP. 58-68 DESIGN AND OPERATION OF SOLAR PHOTOVOLTAIC VAPOUR COMPRESSION AIR-CONDITIONING SYSTEM SrinivasaRao Pavuluri1, Syama Sunder Sagi2, Phanindra Arvapalli3 1(Engineering Facilities & Plant Maintenance,Air India Ltd., India) 2(Energy Department, Cyient Ltd., India) 3(SPV Design Engineer, PuREnergy., India) Abstract: Energy is a crucial input in the process of economic, social and industrial development. Energy consumption in the developing countries is increasing at a faster rate. With the increasing human demand for energy, fossil energy reserves are getting exhausted. The use of fossil fuels has brought serious consequences to the human environment. As conventional energy sources are depleting day by day in a faster rate, utilization of alternative (renewable) sources is the only solution. Amongst the renewable sources of energy, solar energy is freely available, pollution free and inexhaustible. Photovoltaic systems use solar energy which presents various environmental benefits. Air conditioning system is almost a must in every building if we want to have a good indoor comfort inside the building. In recent years, progress on solar-powered air conditioning has increased. With increasing power tariffs, power cuts and decreasing solar panel prices, there is a lot of interest in people to adopt solar PV technologies. Air Conditioners are high wattage appliances. When a compressor of an air conditioner is running it needs high current. Conventional air conditioners running at the hottest points of the day contribute to power grid demands that often lead to outages.
    [Show full text]
  • Bryan Whitcomb General Manager, Solar Star Project October 18, 2016 Topics Covered
    Solar Power and the Future Bryan Whitcomb General Manager, Solar Star Project October 18, 2016 Topics Covered • Berkshire Hathaway Energy (BHE) introduction • Solar Technologies – Photovoltaic (PV) and Concentrated PV – Concentrated – Emerging technologies • Solar Star – Large utility-scale solar PV project • Energy Trends • Solar energy trends 2 Berkshire Hathaway Energy • 11.5 million customers worldwide • 21,000 employees worldwide • $85.0 billion in assets • $18.1 billion in revenue • 32,600 miles of transmission lines • 16,400 miles of natural gas pipeline • More than 33,000 MW owned/contracted generation capacity • 34% renewable or noncarbon • Largest regulated owner of wind (5500 MW) in US BHE Renewables Unregulated Independent Power Producer (IPP) Geothermal Wind Solar Hydro Imperial Valley Projects: 338 MW Bishop Hill II: 81 MW Agua Caliente: 290 MW Wailuku: 10 MW Pinyon Pines: 300 MW Topaz Solar Farms: 550 MW Philippines: 128 MW Jumbo Road: 300 MW Solar Star: 586 MW Grande Prairie: 400 MW Marshall: 72 MW 338 MW geothermal 1,153 MW wind 1,278 MW solar 138 MW hydro 4 Solar Technology – Photovoltaic 5 Solar Technology – Concentrated Photovoltaic 6 Solar PV Plant Overview Power Conversion Station (PCS) – each PCS has 2 inverters and 1 transformer Common electrical hardware for all electrical energy technologies 7 Concentrated Solar Power 8 Concentrated Solar Power 9 Concentrated Solar – Ivanpah (Primm, NV) 10 Emerging Solar Technologies • Concentrator PV • Floatovoltaics • Energy Storage – Electrochemical (batteries) – Mechanical
    [Show full text]
  • Thin-Film Cigs on Flexible Plastic Substrate
    THIN-FILM CIGS ON FLEXIBLE PLASTIC SUBSTRATE Victor Lee, President & CEO COPYRIGHT © 2017 Ascent Solar Technologies, Inc. 12/1/2017 CONFIDENTIAL 1 Safe Harbor Statement In addition to historical information, this presentation contains forward–looking statements that are based on assumptions made by management regarding future circumstances over which the company may have little or no control and involve risks, uncertainties and other factors that may cause actual results to be materially different from any future results expressed or implied by such forward–looking statements. Please note that these forward- looking statements reflect our opinions only as of the date of this publication and we undertake no obligation to revise or publicly release the results of any revision to these forward-looking statements in light of new information or future events. Please refer to our SEC filings for a more detailed description of the risk factors that may affect our results. These documents are available at our website, www.ascentsolar.com, and at the SEC’s website, www.sec.gov. COPYRIGHT © 2017 Ascent Solar Technologies, Inc. 12/1/2017 CONFIDENTIAL 2 Who Are We? . Leading provider of flexible & lightweight thin-film solar modules specially designed for the Space/Near-space, Drone/UAV, Military, Transportation, Off-grid and Consumer Markets . Corporate Vision: To deliver Clean and Innovative Power Solution for Everyone Everywhere . Revolutionary and Proprietary flexible solar technology based on CIGS (Copper-Indium- Gallium-Selenium) on Plastic substrate COPYRIGHT © 2017 Ascent Solar Technologies, Inc. 12/1/2017 CONFIDENTIAL 3 Company Snapshot . Founded: Incorporated in 2005; IPO in July 2006 . Headquarters: Thornton, Colorado (~139,000 sf of production, warehouse and office space) .
    [Show full text]
  • An Overview of Solar Assisted Air-Conditioning System Application in Small Office Buildings in Malaysia
    Proceedings of the 4th IASME / WSEAS International Conference on ENERGY & ENVIRONMENT (EE'09) An Overview of Solar Assisted Air-Conditioning System Application in Small Office Buildings in Malaysia LIM CHIN HAW 1*, KAMARUZZAMAN SOPIAN 2, YUSOF SULAIMAN 3 Solar Energy Research Institute, University Kebangsaan Malaysia, MALAYSIA. [email protected]*, [email protected] , [email protected] Abstract:- In many regions of the world especially tropical weather in Malaysia, the demand for cooling of indoor air is growing due to increasing comfort expectations and increasing cooling loads. Air-conditioning, the most common cooling mechanism for providing indoor cooling in buildings has become a necessity in most buildings. However, air-conditioning is the dominant energy consuming appliances in most of today office buildings. Today most of the small office buildings deployed conventional cooling technologies which typically uses an electrically driven compressor system that exhibits several clear disadvantages such as high energy consumption, high electricity peak loads demand and in general it employ refrigerants which have several negative impacts on the environment. Because of the high energy cost, the decrease of fossil fuel resources and the rise of environmental pollution, the utilization of low level renewable energy sources such as solar energy in refrigeration systems has become a way to address these problems. The solar assisted air-conditioning system uses the heat from the solar radiation to drive a thermally-driven chiller such as absorption chiller. Solar assisted air conditioning system produces cooling with considerably less electricity demand than conventional air-conditioning systems. With current solar collector technology like evacuated tube solar collector which able to produce high temperature approximately 88°C, it has made heat source from solar energy viable to drive the absorption chiller to produce chilled water for indoor cooling purposes.
    [Show full text]
  • Topic: Application & Development of Solar Cooling in Hong Kong
    Recent Development of Solar Cooling in Hong Kong Louis LEUNG Graduate Member of The Hong Kong Institution of Engineers Abstract With the gradual reduction of available fossil fuel reserves and the impact on the environment of fossil fuel use, renewable energy is becoming increasingly important. Unlike fossil fuels, such as coal and oil, renewable energy will never be run out. It is abundant in the environment and can come from the sun, wind, running water, waves and biomass. Many places worldwide have established government policy in promoting the use of renewable energy. Solar and wind energy, in particular, hold much promise in Hong Kong. Comparing with other renewable energy, solar energy utilization is often the prior across the various measures. It is because the cooling demand of a building is higher when the sunshine is stronger. Solar cooling is able to reduce summer peak electricity demand and to improve the quality of life at the remote area where electricity supply is inadequate. In the tropical area of the Asia Pacific like Hong Kong, air-conditioning is in need all the year round, the use of solar cooling up to now is very occasional. Indeed, solar refrigeration technology with the use of absorption chiller had been developed since 1970s', the technology has been extended to multi-stage systems. Solar energy research and applications have been receiving increasing attention throughout the world as solar energy is playing a much greater role in the Hong Kong. In this paper, new development, application as well as challenges in solar cooling will also be discussed.
    [Show full text]
  • | 360 W Residential Solar Panel
    | 360 W Residential Solar Panel SunPower Maxeon panels combine high efficiency with the strongest durability and warranty available in the market today, resulting in more long-term energy and savings. 1,2 Maximum Power. Minimalist Design. High efficiency means more power and savings per available space. With fewer panels required, less is truly more. More Lifetime Energy and Savings Designed to deliver 45% more energy in the same space over 25 years in real-world conditions like partial shade and high 2 temperatures. 140% 130% 120% 110% SunPower Up to Maxeon Panels 45% 100% More 90% Lifetime Fundamentally Different. Energy Conventional Panel And Better. 80% 70% 25-year Energy Yield per Watt 0 5 10 15 20 25 Years of Operation Better Reliability, Better Warranty The SunPower Maxeon® Solar Cell With more than 25 million panels deployed around Enables highest efficiency panels the world, SunPower technology is proven to last. 2 available That’s why we stand behind our panel with an 3 Unmatched reliability exceptional 25-year Combined Power and Product Patented solid metal foundation Warranty, including the highest Power Warranty in prevents breakage and corrosion solar. 100% 98% 96% 94% 92% SunPower 90% 12% 88% Maxeon Panels More 86% Conventional Panel Power As Sustainable As Its Energy 84% in Year Ranked #1 in Silicon Valley Toxics 82% 25 Warranted Panel Power 80% Coalition Solar Scorecard 4 0 5 10 15 20 25 First solar panels to achieve Cradle to Years of Operation Cradle Certified™ Silver recognition 5, pending Contributes to more
    [Show full text]