Beta (Β)-Oxidation of Fatty Acid and Its Associated Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fatty Acid Biosynthesis
BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing -
Insights Into the Hexose Liver Metabolism—Glucose Versus Fructose
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Insights into the Hexose Liver Metabolism-Glucose versus Fructose Geidl-Flueck, Bettina ; Gerber, Philipp A Abstract: High-fructose intake in healthy men is associated with characteristics of metabolic syndrome. Extensive knowledge exists about the differences between hepatic fructose and glucose metabolism and fructose-specific mechanisms favoring the development of metabolic disturbances. Nevertheless, the causal relationship between fructose consumption and metabolic alterations is still debated. Multiple effects of fructose on hepatic metabolism are attributed to the fact that the liver represents the major sink of fructose. Fructose, as a lipogenic substrate and potent inducer of lipogenic enzyme expression, enhances fatty acid synthesis. Consequently, increased hepatic diacylglycerols (DAG) are thought to directly interfere with insulin signaling. However, independently of this effect, fructose may also counteract insulin-mediated effects on liver metabolism by a range of mechanisms. It may drive gluconeogenesis not only as a gluconeogenic substrate, but also as a potent inducer of carbohydrate responsive element binding protein (ChREBP), which induces the expression of lipogenic enzymes as well as gluconeogenic enzymes. It remains a challenge to determine the relative contributions of the impact of fructose on hepatic transcriptome, proteome and allosterome changes and consequently on the regulation of plasma glucose metabolism/homeostasis. Mathematical models exist modeling hepatic glucose metabolism. Fu- ture models should not only consider the hepatic adjustments of enzyme abundances and activities in response to changing plasma glucose and insulin/glucagon concentrations, but also to varying fructose concentrations for defining the role of fructose in the hepatic control of plasma glucose homeostasis. -
Regulation of Ketone Body and Coenzyme a Metabolism in Liver
REGULATION OF KETONE BODY AND COENZYME A METABOLISM IN LIVER by SHUANG DENG Submitted in partial fulfillment of the requirements For the Degree of Doctor of Philosophy Dissertation Adviser: Henri Brunengraber, M.D., Ph.D. Department of Nutrition CASE WESTERN RESERVE UNIVERSITY August, 2011 SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of __________________ Shuang Deng ____________ _ _ candidate for the ________________________________degree Doctor of Philosophy *. (signed) ________________________________________________ Edith Lerner, PhD (chair of the committee) ________________________________________________ Henri Brunengraber, MD, PhD ________________________________________________ Colleen Croniger, PhD ________________________________________________ Paul Ernsberger, PhD ________________________________________________ Janos Kerner, PhD ________________________________________________ Michelle Puchowicz, PhD (date) _______________________June 23, 2011 *We also certify that written approval has been obtained for any proprietary material contained therein. I dedicate this work to my parents, my son and my husband TABLE OF CONTENTS Table of Contents…………………………………………………………………. iv List of Tables………………………………………………………………………. viii List of Figures……………………………………………………………………… ix Acknowledgements………………………………………………………………. xii List of Abbreviations………………………………………………………………. xiv Abstract…………………………………………………………………………….. xvii CHAPTER 1: KETONE BODY METABOLISM 1.1 Overview……………………………………………………………………….. 1 1.1.1 General introduction -
CHAPTER-IV LIPID METABOLISM BETA-OXIDATION Beta-Oxidation Is
CHAPTER-IV LIPID METABOLISM BETA-OXIDATION Beta-oxidation is the process by which fatty acids, in the form of acyl-CoA molecules, are broken down in mitochondria and/or peroxisomes to generate acetyl-CoA, the entry molecule for the citric acid cycle. The beta oxidation of fatty acids involve three stages: 1. Activation of fatty acids in the cytosol 2. Transport of activated fatty acids into mitochondria (carnitine shuttle) 3. Beta oxidation proper in the mitochondrial matrix Fatty acids are oxidized by most of the tissues in the body. However, some tissues such as the adrenal medulla do not use fatty acids for their energy requirements and instead use carbohydrates. Energy yield The ATP yield for every oxidation cycle is 14 ATP (according to the P/O ratio), broken down as follows: Source ATP Total [citation needed] 1 FADH2 x 1.5 ATP = 1.5 ATP (some sources say 2 ATP) 1 NADH x 2.5 ATP = 2.5 ATP (some sources say 3 ATP) 1 acetyl CoA x 10 ATP = 10 ATP (some sources say 12 ATP) TOTAL = 14 ATP For an even-numbered saturated fat (C2n), n - 1 oxidations are necessary, and the final process yields an additional acetyl CoA. In addition, two equivalents of ATP are lost during the activation of the fatty acid. Therefore, the total ATP yield can be stated as: (n - 1) * 14 + 10 - 2 = total ATP For instance, the ATP yield of palmitate (C16, n = 8) is: (8 - 1) * 14 + 10 - 2 = 106 ATP Represented in table form: Source ATP Total 7 FADH2 x 1.5 ATP = 10.5 ATP 7 NADH x 2.5 ATP = 17.5 ATP 8 acetyl CoA x 10 ATP = 80 ATP Activation = -2 ATP NET = 106 ATP For sources that use the larger ATP production numbers described above, the total would be 129 ATP ={(8-1)*17+12-2} equivalents per palmitate. -
Mitochondrial B-Oxidation
Eur. J. Biochem. 271, 462–469 (2004) Ó FEBS 2004 doi:10.1046/j.1432-1033.2003.03947.x MINIREVIEW Mitochondrial b-oxidation Kim Bartlett1 and Simon Eaton2 1Department of Child Health, Sir James Spence Institute of Child Health, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne; 2Surgery Unit and Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, University College London, UK Mitochondrial b-oxidation is a complex pathway involving, chondrial control at multiple sites. However, at least in the in the case of saturated straight chain fatty acids of even liver, carnitine palmitoyl transferase I exerts approximately carbon number, at least 16 proteins which are organized into 80% of control over pathway flux under normal conditions. two functional subdomains; one associated with the inner Clearly, when one or more enzyme activities are attenuated face of the inner mitochondrial membrane and the other in because of a mutation, the major site of flux control will the matrix. Overall, the pathway is subject to intramito- change. Introduction acids are also b-oxidized by a peroxisomal pathway, this pathway is quantitatively minor, and, although inherited The b-oxidation of long-chain fatty acids is central to the disorders of the peroxisomal system result in devastating provision of energy for the organism and is of particular disease, is not considered further. Similarly, the auxiliary importance for cardiac and skeletal muscle. However, a systems required for the metabolism of polyunsaturated and number of other tissues, primarily the liver, but also the branched-chain long-chain fatty acids are not discussed kidney, small intestine and white adipose tissue, can utilize and the interested reader is referred to recent reviews. -
The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival
cells Review The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival Matheus Pinto De Oliveira 1,2,3 and Marc Liesa 1,2,3,* 1 Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; [email protected] 2 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA 3 Molecular Biology Institute at UCLA, Los Angeles, CA 90095, USA * Correspondence: [email protected]; Tel.: +1-310-206-7319 Received: 3 October 2020; Accepted: 2 December 2020; Published: 4 December 2020 Abstract: Tumors remodel their metabolism to support anabolic processes needed for replication, as well as to survive nutrient scarcity and oxidative stress imposed by their changing environment. In most healthy tissues, the shift from anabolism to catabolism results in decreased glycolysis and elevated fatty acid oxidation (FAO). This change in the nutrient selected for oxidation is regulated by the glucose-fatty acid cycle, also known as the Randle cycle. Briefly, this cycle consists of a decrease in glycolysis caused by increased mitochondrial FAO in muscle as a result of elevated extracellular fatty acid availability. Closing the cycle, increased glycolysis in response to elevated extracellular glucose availability causes a decrease in mitochondrial FAO. This competition between glycolysis and FAO and its relationship with anabolism and catabolism is conserved in some cancers. Accordingly, decreasing glycolysis to lactate, even by diverting pyruvate to mitochondria, can stop proliferation. Moreover, colorectal cancer cells can effectively shift to FAO to survive both glucose restriction and increases in oxidative stress at the expense of decreasing anabolism. -
Fatty Acid Catabolism Part II
Topic: Fatty acid Catabolism Part II B.Sc (H) Zoology Sem IV Paper: Biochemistry of Metabolic Processes Teacher: Dr. Renu Solanki Oxidation of Fatty acids • Fatty acid oxidation takes place in three steps: Stages of fatty acid oxidation. Stage 1: A long-chain fatty acid is oxidized to yield acetyl residues in the form of acetyl-CoA. This process is called beta oxidation. Stage 2: The acetyl groups are oxidized to CO2 via the citric acid cycle. Stage 3: Electrons derived from the oxidations of stages 1 and 2 pass to O2 via the mitochondrial respiratory chain, providing the energy for ATP synthesis by oxidative phosphorylation. • In the first stage—beta oxidation—fatty acids undergo oxidative re- moval of successive two-carbon units in the form of acetyl-CoA, starting from the carboxyl end of the fatty acyl chain. For example, the 16-carbon palmitic acid (palmitate at pH 7) undergoes seven passes through the oxidative sequence, in each pass losing two carbons as acetyl-CoA. At the end of seven cycles the last two car- bons of palmitate (originally C-15 and C-16) remain as acetyl-CoA. The overall result is the conversion of the 16-carbon chain of palmitate to eight two-carbon acetyl groups of acetyl-CoA molecules. Formation of each acetyl-CoA reQuires removal of four hydrogen atoms (two pairs of electrons and four H+) from the fatty acyl moiety by dehydrogenases. • In the second stage of fatty acid oxidation, the acetyl groups of acetyl- CoA are oxidized to CO2 in the citric acid cycle, which also takes place in the mitochondrial matrix. -
Fatty Acid Oxidation- Notes
Fatty acid oxidation- Notes See how fatty acids are broken down and used to generate ATP . Fatty acids provide highly efficient energy storage, delivering more energy per gram than carbohydrates like glucose. In tissues with high energy requirement, such as heart, up to 50– 70% of energy, in the form of ATP production, comes from fatty acid (FA) beta-oxidation. During fatty acid β-oxidation long chain acyl-CoA molecules – the main components of FAs – are broken to acetyl-CoA molecules. Fatty acid transport into mitochondria Fatty acids are activated for degradation by conjugation with coenzyme A (CoA) in the cytosol. The long-chain fatty-acyl-CoA is then modified by carnitine palmitoyltransferase 1 (CPT1) to acylcarnitine and transported across the inner mitochondrial membrane by carnitine translocase (CAT). CPT2 then coverts the long chain acylcarnitine back to long- chain acyl-CoA before beta-oxidation. Breakdown of fats yields fatty acids and glycerol. Glycerol can be readily converted to DHAP for oxidation in glycolysis or synthesis into glucose in gluconeogenesis. Fatty acids are broken down in two carbon units of acetyl-CoA. To be oxidized, they must be transported through the cytoplasm attached to coenzyme A and moved into mitochondria. The latter step requires removal of the CoA and attachment of the fatty acid to a molecule of carnitine. The carnitine complex is transported across the inner membrane of the mitochondrion after which the fatty acid is reattached to coenzyme A in the mitochondrial matrix. Dr Anjali Saxena Page 1 Figure- Movement of Acyl-CoAs into the Mitochondrial Matrix The process of fatty acid oxidation, called beta oxidation, is fairly simple. -
A Review of Odd-Chain Fatty Acid Metabolism and the Role of Pentadecanoic Acid (C15:0) and Heptadecanoic Acid (C17:0) in Health and Disease
Molecules 2015, 20, 2425-2444; doi:10.3390/molecules20022425 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review A Review of Odd-Chain Fatty Acid Metabolism and the Role of Pentadecanoic Acid (C15:0) and Heptadecanoic Acid (C17:0) in Health and Disease Benjamin Jenkins, James A. West and Albert Koulman * MRC HNR, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK; E-Mails: [email protected] (B.J.); [email protected] (J.A.W.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-(0)-1223-426-356. Academic Editor: Derek J. McPhee Received: 11 December 2014 / Accepted: 23 January 2015 / Published: 30 January 2015 Abstract: The role of C17:0 and C15:0 in human health has recently been reinforced following a number of important biological and nutritional observations. Historically, odd chain saturated fatty acids (OCS-FAs) were used as internal standards in GC-MS methods of total fatty acids and LC-MS methods of intact lipids, as it was thought their concentrations were insignificant in humans. However, it has been thought that increased consumption of dairy products has an association with an increase in blood plasma OCS-FAs. However, there is currently no direct evidence but rather a casual association through epidemiology studies. Furthermore, a number of studies on cardiometabolic diseases have shown that plasma concentrations of OCS-FAs are associated with lower disease risk, although the mechanism responsible for this is debated. One possible mechanism for the endogenous production of OCS-FAs is α-oxidation, involving the activation, then hydroxylation of the α-carbon, followed by the removal of the terminal carboxyl group. -
Regulation of Fatty Acid Metabolism and Gluconeogenesis by Growth Hormone and Insulin in Sheep Hepatocyte Cultures
Biochem. J. (1991) 274, 21-26 (Printed in Great Britain) 21 Regulation of fatty acid metabolism and gluconeogenesis by growth hormone and insulin in sheep hepatocyte cultures Effects of lactation and pregnancy Neil EMMISON,* Loranne AGIUSt and Victor A. ZAMMIT*$ *Hannah Research Institute, Ayr, Scotland KA6 5HL, and tDepartment of Medicine, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, U.K. Primary monolayer hepatocyte cultures derived from non-mated, pregnant and lactating sheep were used to investigate the interactions between the effects of growth hormone and insulin on (i) the partitioning of fatty acid metabolism between oxidation and esterification, and (ii) the rate of gluconeogenesis. In hepatocytes from lactating sheep the rates of gluconeogenesis, ketogenesis and very-low-density lipoprotein secretion were approx. 2-fold higher than in cells from non- mated or pregnant animals. There was no apparent difference in the rates of fatty acid uptake between the three groups of sheep cells. Growth hormone stimulated gluconeogenesis only in hepatocytes from non-mated sheep. It had no effect on the flux of fatty acid towards ketone body formation. Growth hormone inhibited intracellular accumulation of acylglycerol from exogenous fatty acid. Insulin alone had no such effect, but it blunted the effect of growth hormone when the two hormones were present together. The data suggest that major differences may exist between ruminants and non- ruminants in the responses of liver metabolism both to lactation per se and to the effects of growth hormone and insulin. INTRODUCTION hepatic metabolism, such as the occurrence of fatty liver. This condition occurs frequently in early-lactating high-yielding cows There is increased interest in the metabolic effects of growth [13-18]. -
Details About Three Fatty Acid Oxidation Pathways Occurring in Man
Supplement information Details about three fatty acid oxidation pathways occurring in man Alpha oxidation Definition: Oxidation of the alpha carbon of the fatty acid, chain shortened by 1 carbon atom. Localization: Peroxisomes1 Substrates: Phytanic acid, 3-methyl fatty acids and their alcohol and aldehyde derivatives, metabolites of farnesol, geranylgeraniol, and dolichols2, 3. Steps in the pathway: Activation requires ATP and CoA. Hydroxylation requires iron, ascorbate and alpha-keto-glutarate as cofactors and secondary substrates. Lysis requires thymine pyrophosphate and magnesium ions. Dehydrogenation requires NADP. End products are transported into mitochondria for further oxidation. Enzymes and genes involved: Very long-chain acyl-CoA synthetase (E.C. 6.2.1.-) (SLC27A2, GeneID: 11001)4, phytanoyl-CoA dioxygenase (E.C. 1.14.11.18, PHYH, GeneID: 5264), 2-hydrosyphytanoyl-coA lyase (E.C. 4.1.-.-, HACL1, GeneID: 26061), and aldehyde dehydrogenase (E.C. 1.2.1.3, ALDH3A2, GeneID: 224). Disorders associated: Zellweger syndrome including RCDP type 1, where PTS2 receptor is defective and PHYH is unable to enter peroxisomes, and Refsum’s disease. Special features/ purpose: At the sub cellular level, the activation step can occur in the mitochondrion, endoplasmic reticulum, and peroxisome. Formic acid is the main byproduct of this pathway as opposed to carbon dioxide. Phytanic acid usually undergoes alpha oxidation; however, under conditions of enzyme deficiency, it undergoes omega oxidation and 3- methyladipic acid is produced as the end product5. Omega oxidation Definition: Oxidation of omega carbon of the fatty acid for generation of mono- and di- carboxylic acids. No chain shortening occurs. Localization: Fatty acid shuttles between cytosol and microsomes before entering the peroxisomes6. -
Fatty Acid Metabolism, Energy Expenditure and Insulin Resistance in Muscle
N TURNER and others Fatty acids and insulin action 220:2 T61–T79 Thematic Review Fatty acid metabolism, energy expenditure and insulin resistance in muscle Nigel Turner1,2, Gregory J Cooney3,4, Edward W Kraegen2,3 and Clinton R Bruce5 1Department of Pharmacology and 2School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Correspondence 3Diabetes and Obesity Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, should be addressed New South Wales 2010, Australia to G J Cooney 4St Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia Email 5Department of Physiology, Monash University, Clayton, Victoria 3800, Australia [email protected] Abstract Fatty acids (FAs) are essential elements of all cells and have significant roles as energy Key Words substrates, components of cellular structure and signalling molecules. The storage of excess " fatty acid metabolism energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting " fatty acids and energy against starvation, but in much of today’s world, humans are faced with an unlimited expenditure availability of food, and the excessive accumulation of fat is now a major risk for human " muscle insulin resistance health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin Journal of Endocrinology action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose.