Orbital Contribution to the Magnetic Moment There Are Many Coordination Compounds, with Unpaired D-Electrons (These Are Paramagnetic)

Total Page:16

File Type:pdf, Size:1020Kb

Orbital Contribution to the Magnetic Moment There Are Many Coordination Compounds, with Unpaired D-Electrons (These Are Paramagnetic) Magnetochemie Conventional Magnets - Fe, Co, Ni -CrO2, Fe3O4 - Alloys spincarriers: atoms digital „0“ and „1“ bulk magnet Magnetochemie Magnetic properties of the d-block elements I. Magnetism of Octahedral transition metal complexes • Spin-only Paramagnetism • High-spin / Low-spin Complexes (Octahedral) II. Orbital contribution to the magnetic moment There are many coordination compounds, with unpaired d-electrons (these are paramagnetic) 2– 9 [CuCl4] (d ) + 7 [Co(NH3)4(SO4)] (d ) Plastocyanin 3+ 6 2+ 9 [Co(NH3)5(H2O)] (d ) (Cu , d ) 2– 8 [NiCl4] (d ) 1 3 [VO(H2O)5]SO4 (d ) [CrCl3] (d ) General remarks This lecture deals only with paramagnetic coordination compounds. Complicated mathematics will be avoided, where possible! TMn+ ions have pure d-electron configurations (recall: s electrons are lost first, as the diffuse s-orbitals are destablized in complexes) Cr2+: d4 Fe3+: d5 Ni2+: d8 metal organic compounds have also dn 2+ 6 6 Fe , Cr(CO)6, Cr(η -C6H6)2 d 3+ 6 5 Fe , V(CO)6, V(η -C6H6)2 d General remarks Constants and units 3 –1 χm molar magnetic suceptibility [cm ·mol ] (cgs/emu) [emu·mol–1] „ [m3·mol–1] (SI) –6 Conversion factor: χm(cgs) × 4π10 = χm (SI) µeff / µB = 2.828 ⋅ χT K [Fe(CN) ] χ = -122.7×10–6 emu/mol 3kB mol 3 6 m = 2.828( ) χ = -1.542×10–9 m /mol 2 3 m 3 NµB cm K ---------------------------------------------------------------------------------------------------------- N = 6.023×1023 mol–1 –20 µB = 0.92731×10 erg/Gauss; –24 µB = 9.27×10 J/T –23 kB = 1.38×10 J/K 2 3 NµB /(3kB) = 0.125 cm /(K·mol) cgs units, N = 6.023×1023 mol–1 –20 –24 µB = 0.92731×10 erg/Gauss; 9.27×10 J/T Literature A. F. Orchard, Magnetochemistry, Oxford Chemistry Primer, 2007; Chapter 5 F. E. Mabbs, D.J. Machin, „Magnetism and Transition Metal Chemistry“, Chapman and Hall, London 1973 R. Ribas, Coordination Chemistry, Wiley-VCH, Chap. 9 Magnetic Properties of Some Iron Compounds Compound Magnetism Remarks Fe metal ferromagnet TC = 1043 K (msat = 2.22 µB) FeO antiferromagnet TN = 716 K FeCl3 paramagnet µeff = 5.73 µB y-Fe3O4 ferrimagnet TfN = 856 K 4– [Fe(CN)6] diamagnetic ─ 3– [Fe(CN)6] paramagnetic µeff = µeff = 2.25 µB (300 K) Fe(Cp)2 diamagnetic ─ Fe(CO)5 diamagnetic ─ Haemoglobin paramagnetic µeff ~ 4.95 µB 1. Spin-Only-Paramagnetism Effective magnetic moment, µeff, of 3d metal complexes can be estimated to a first approximation with the spin-only formula µeff = ge S(S +1)µB iS neff µeff neff = = ge S(S +1) 1 ½ 1.73 µB 2 1 2.83 –24 µB = Bohr Magneton = eħ/(2me) =9.27408×10 J/T µ = effective magnetic moment eff 3 3/2 3.88 neff = effective magnetic moment in units of µB g = 2.00232 e 4 2 4.90 S = Σsi (Total spin quantum number) s = spin quantum number (+1/2 or -1/2) i 5 5/2 5.92 Note: in the OCP text book µeff is represented as meff Spin-Only-Formula neff(theor.) 3 III III IV II • spin-state of complex and d : Cr , Mo , Mn , V : 3.88 µB • number of unpaired electrons can be determined 5 II III d : Mn , Fe : 5.92 µB 3 5 neff data (~ 300 K) for selected compounds of d and d ions d3 CrCl3 3.90 K3[Cr(ox)3].3H203.62 [Cr(NH3)6]Br3 3.77 KCr(SO4)2.12H2O3.84 [Cr(en)3]Br3 3.82 K3[MoCl6]3.79 [Cr(bpy)3]Cl3 3.81 K2[MnCl6]3.84 K3[Cr(CN)6]3.87[V(en)3]Br2 3.81 K3[Cr(NCS)6].4H2O3.79[V(bpy)3]Cl2 3.67 K3[Mo(NCS)6].4H2O 3.70 [Mo(bpy)3]Cl3 3.66 n (N Bu4)3[Cr(N3)6]3.76K4[V(CN)6]3.78 d5 MnCl2 5.79 FeCl3 5.73 MnBr2 5.82 (Et4N)[FeCl4]5.88 (NH4)2Mn(SO4)2.6H2O5.88(NH4)Fe(SO4)2.12H2O5.89 [Mn(NH3)6]Cl2 5.92 K3[Fe(ox)3].3H2O5.90 (Et4N)2[MnCl4]5.94 Ligands and Abbreviations O O- -O oxalate N O rhodanide (ox) N C S- N H N 2 NH 2 azide 2,2'-Bipyridin ethylene diamine - + - (bpy) N N N (en) bidentate ligand 2+ NH 2 monodentate Cl lignd H2N Co NMe3 H2N Chelate ring NH2 donor atom Spin-Only-Formula 3 III III IV II • spin-state and d : Cr , Mo , Mn , V : 3.88 µB • number of unpaired electrons can be determined 5 II III d : Mn , Fe : 5.92 µB this is true also for more exotic compounds ferrocene vandocene IV 3 [nBu4]2[Mn(CH3)6] 3.90 µB → Mn , d II 3 V(Cp)2, Vanadocene 3.78 µB → V , d Fe V II 5 Mn(Cp)2, Manganocene 5.86 µB → Mn , d 2− CH3 spectrochemical series: CH3 - - 2- - - - - - Mn I < Br < S < SCN- < Cl < N3 < F < OH < O2 < OH2 < H3C Mn CH3 - - - - NCS < NH3 ~ py < en < bpy < NO2 < CH3 < CN < CO H3C CH3 manganocene Spin-Only Formula only valid for the following conditions: • room temperature (295 K) IV • for 3d TM ions (i.e. K2[Re Cl6] = 3.25 µB (expected = 3.88 µB) • for mononuclear complexes (polynulcear complexes may show cooperative phenomena (antiferro- or ferromagnetic interactions)) • for totally quenched orbital momentum (= TM ions with E or A ground terms) Orbital contributions to the magnetic moment • do explain the deviations from the spin-only values • the orbital contribution to the magnetic moment is not totally quenched Two prominent examples: CoCl2 5.47 µB 2─ CoCl4 4.67 µB II 7 expected 3.88 µB → h.s.-Co has d (3 unp. electrons) general trends: d6 to d9: larger values than calculated d1 to d4: smaller values than calculated L L only d5 is well behaved S S This is readily explained a) by the fact that λ > 0 for d1-d4 and λ < 0 for d6-d9 λ = spin-orbit coupling constant 3+ 5 b) Fe (S= /2), L = ML = Σml = 0 Spin-orbit coupling can cause temperature dependent magnetic moments (Ti3+, d1) Orbital contribution to the magnetic moment Orbital contribution to the magnetic moment Spin-only formula µeff = ge S(S +1)µB the orbital angular momentum L has also a magnetic moment associated with it, for free ions with L and S, 2 µeff = L(L + 1) + ge S(S + 1)µB orbit spin Orbital momentum in transition metal ions and complexes In coordination compounds orbital momentum means: electron can move from one d orbital to another degenerate d orbital. However, dxy, dxz, dyz, and dzz, dx2-y2 are no longer degenerate in a complex. In an octahedral complex, e– canonlymovewithinan open t2g shell (first order orbital momentum => of importance in magnetochemistry) d1, d2, (l.s.)-d4, (l.s.)-d5, etc have first order orbital momentum (T ground terms), d3, d4 have no first order orbital momentum (A, E ground terms) dxy Terms with T symmetry exhibit orbital angular momentum dx2-y2 (leer) can show spin-orbit coupling This rule is only applicable in Oh Symmetry. Terms with T symmetry EJ = -1/2Aλ[J(J+1)-L(L+1)-S(S+1) exhibit L = 1, For (t )n less than half occupied: λ positive 2g HSO = -AλLS more than half occupied: λ negative Quenching of the orbital contribution, T-term and A, E-term ions Quenching of the orbital contribution, to the magnetic moment, due to ligand field Octahedral symmetry n m n ground t2g eg ligand field quenching term term 2 12 1 Dt2g T2g No 3 23 2 Ft2g T1g No 4 34 3 Ft2g A2g Yes These ions 5 3 15 4 Dt2g eg Eg Yes actually 43 t2g T1g No have L = 1 6 3 26 5 St2g eg A1g Yes 52 t2g T2g No and thus a 5 4 25 6 Dt2g eg T2g No „residual“ 61 t2g A1g Yes contribution 4 5 24 7 Ft2g eg T1g No (not full 6 12 t2g eg Eg Yes contribution) 3 6 23 8 Ft2g eg A2g Yes to the 2 6 32 9 Dt2g eg Eg Yes spin moment 3+ 1 3+ 2 3+ 4 3+ 5 Typical Ions: Ti (d ), V (d ), l.s-Mn (d ), l.s.-Fe (d , i.e. K3[Fe(CN)6]) h.s-Fe2+ (d6), h.s.-Co(2+) Magnetic moment depends also on C.N. Nickel(II), d8 Orbital momentum 3 quenched octahedral ( A2g) 2.9 – 3.4 µB 3 not quenched tetrahedral ( T1) 3.2 – 4.0 µB trigonal bipyramidal 3.2 – 3.8 µB or 0 square pyramidal 3.2 – 3.4 µB or 0 square planar 0 2− 2− Cl CN CoII, tetr. 4.4-4.8 4A NC Ni CN Ni 2 Cl CoII, oct., 4.8-5.3 4T NC Cl 1g Cl tetr. [NiX ]2- (X = Cl, Br, I) 2+ − 4 2─ tetr. [Ni(SPh)4] N [Ni(PPh ) Br ] 3.27 µ N 3 2 2 B H2N Ni NH2 Spin equilibria H N NH2 2 Ni N II II N H Ni (tetr.) ↔ Ni (sq.pl) (in solution) N 2 Cl H H2 High-spin and low-spin complexes 4 7 possible for d -d electronic configurations (in octahedral complexes) AsPh2 possible for d3-d6 electronic configurations (in tetrahedral complexes) AsPh2 diars Examples (all are low-spin): 4 2+ 4– 3– 4 d [Cr(bpy)3] , [Cr(CN)6] , [Mn(CN)6] t2g S = 1 3.20 µB 5 3– 3+ 4– 5 d [Fe(CN)6] , [Fe(en)3] , [Mn(CN)6] t2g S = 1/2 2.25 µB 2.40 µB 2.18 µB 6 4– 3+ 6 d [Fe(CN)6] , [Co(NH3)6] , [Cr(CO)6] t2g S = 0 7 2+ 4– 3– 6 d [Co(diars)3] , [Co(NO2)6] , [NiF6] t2g eg1 S = ½ 1.84 µB the deviations from the ideal values are again attributable to orbital contributions to the magnetic moment High-spin → low-spin transitions, spincrossover 4 7 Become feasible for d to d in octahedral case, if ∆o(h.s.) ~ ∆o(l.s.) • h.s.->l.s transitions can be affected by variation of temperature or pressure • At lower temperature the l.s-form always dominates • l.s.
Recommended publications
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Lecture #4, Matter/Energy Interactions, Emissions Spectra, Quantum Numbers
    Welcome to 3.091 Lecture 4 September 16, 2009 Matter/Energy Interactions: Atomic Spectra 3.091 Periodic Table Quiz 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Name Grade /10 Image by MIT OpenCourseWare. Rutherford-Geiger-Marsden experiment Image by MIT OpenCourseWare. Bohr Postulates for the Hydrogen Atom 1. Rutherford atom is correct 2. Classical EM theory not applicable to orbiting e- 3. Newtonian mechanics applicable to orbiting e- 4. Eelectron = Ekinetic + Epotential 5. e- energy quantized through its angular momentum: L = mvr = nh/2π, n = 1, 2, 3,… 6. Planck-Einstein relation applies to e- transitions: ΔE = Ef - Ei = hν = hc/λ c = νλ _ _ 24 1 18 Bohr magneton µΒ = eh/2me 9.274 015 4(31) X 10 J T 0.34 _ _ 27 1 19 Nuclear magneton µΝ = eh/2mp 5.050 786 6(17) X 10 J T 0.34 _ 2 3 20 Fine structure constant α = µ0ce /2h 7.297 353 08(33) X 10 0.045 21 Inverse fine structure constant 1/α 137.035 989 5(61) 0.045 _ 2 1 22 Rydberg constant R¥ = mecα /2h 10 973 731.534(13) m 0.0012 23 Rydberg constant in eV R¥ hc/{e} 13.605 698 1(40) eV 0.30 _ 10 24 Bohr radius a0 = a/4πR¥ 0.529 177 249(24) X 10 m 0.045 _ _ 4 2 1 25 Quantum of circulation h/2me 3.636 948 07(33) X 10 m s 0.089 _ 11 1 26 Electron specific charge -e/me -1.758 819 62(53) X 10 C kg 0.30 _ 12 27 Electron Compton wavelength λC = h/mec 2.426 310 58(22) X 10 m 0.089 _ 2 15 28 Electron classical radius re = α a0 2.817 940 92(38) X 10 m 0.13 _ _ 26 1 29 Electron magnetic moment` µe 928.477 01(31) X 10 J T 0.34 _ _ 3 30 Electron mag.
    [Show full text]
  • 1. Physical Constants 1 1
    1. Physical constants 1 1. PHYSICAL CONSTANTS Table 1.1. Reviewed 1998 by B.N. Taylor (NIST). Based mainly on the “1986 Adjustment of the Fundamental Physical Constants” by E.R. Cohen and B.N. Taylor, Rev. Mod. Phys. 59, 1121 (1987). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard- deviation uncertainties in the last digits; the corresponding uncertainties in parts per million (ppm) are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). Since the 1986 adjustment, new experiments have yielded improved values for a number of constants, including the Rydberg constant R∞, the Planck constant h, the fine- structure constant α, and the molar gas constant R,and hence also for constants directly derived from these, such as the Boltzmann constant k and Stefan-Boltzmann constant σ. The new results and their impact on the 1986 recommended values are discussed extensively in “Recommended Values of the Fundamental Physical Constants: A Status Report,” B.N. Taylor and E.R. Cohen, J. Res. Natl. Inst. Stand. Technol. 95, 497 (1990); see also E.R. Cohen and B.N. Taylor, “The Fundamental Physical Constants,” Phys. Today, August 1997 Part 2, BG7. In general, the new results give uncertainties for the affected constants that are 5 to 7 times smaller than the 1986 uncertainties, but the changes in the values themselves are smaller than twice the 1986 uncertainties.
    [Show full text]
  • Magnetism in Transition Metal Complexes
    Magnetism for Chemists I. Introduction to Magnetism II. Survey of Magnetic Behavior III. Van Vleck’s Equation III. Applications A. Complexed ions and SOC B. Inter-Atomic Magnetic “Exchange” Interactions © 2012, K.S. Suslick Magnetism Intro 1. Magnetic properties depend on # of unpaired e- and how they interact with one another. 2. Magnetic susceptibility measures ease of alignment of electron spins in an external magnetic field . 3. Magnetic response of e- to an external magnetic field ~ 1000 times that of even the most magnetic nuclei. 4. Best definition of a magnet: a solid in which more electrons point in one direction than in any other direction © 2012, K.S. Suslick 1 Uses of Magnetic Susceptibility 1. Determine # of unpaired e- 2. Magnitude of Spin-Orbit Coupling. 3. Thermal populations of low lying excited states (e.g., spin-crossover complexes). 4. Intra- and Inter- Molecular magnetic exchange interactions. © 2012, K.S. Suslick Response to a Magnetic Field • For a given Hexternal, the magnetic field in the material is B B = Magnetic Induction (tesla) inside the material current I • Magnetic susceptibility, (dimensionless) B > 0 measures the vacuum = 0 material response < 0 relative to a vacuum. H © 2012, K.S. Suslick 2 Magnetic field definitions B – magnetic induction Two quantities H – magnetic intensity describing a magnetic field (Système Internationale, SI) In vacuum: B = µ0H -7 -2 µ0 = 4π · 10 N A - the permeability of free space (the permeability constant) B = H (cgs: centimeter, gram, second) © 2012, K.S. Suslick Magnetism: Definitions The magnetic field inside a substance differs from the free- space value of the applied field: → → → H = H0 + ∆H inside sample applied field shielding/deshielding due to induced internal field Usually, this equation is rewritten as (physicists use B for H): → → → B = H0 + 4 π M magnetic induction magnetization (mag.
    [Show full text]
  • Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016
    . Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016 Table of Contents Page 1-Mathematics Department Mathematics Programs 1 Diplomas Professional Diploma in Applied Statistics 2 Professional Diploma in Bioinformatics 3 M.Sc. Degree M.Sc. Degree in Pure Mathematics 4 M.Sc. Degree in Applied Mathematics 5 M.Sc. Degree in Mathematical Statistics 6 M.Sc. Degree in Computer Science 7 M.Sc. Degree in Scientific Computing 8 Ph.D. Degree Ph. D. Degree in Pure Mathematics 9 Ph. D Degree in Applied Mathematics 10 Ph. D. Degree in Mathematical Statistics 11 Ph. D Degree in Computer Science 12 Ph. D Degree in Scientific Computing 13 2- Physics Department Physics Programs 14 Diplomas Diploma in Medical Physics 15 M.Sc. Degree M.Sc. Degree in Solid State Physics 16 M.Sc. Degree in Nanomaterials 17 M.Sc. Degree in Nuclear Physics 18 M.Sc. Degree in Radiation Physics 19 M.Sc. Degree in Plasma Physics 20 M.Sc. Degree in Laser Physics 21 M.Sc. Degree in Theoretical Physics 22 M.Sc. Degree in Medical Physics 23 Ph.D. Degree Ph.D. Degree in Solid State Physics 24 Ph.D. Degree in Nanomaterials 25 Ph.D. Degree in Nuclear Physics 26 Ph.D. Degree in Radiation Physics 27 Ph.D. Degree in Plasma Physics 28 Ph.D. Degree in Laser Physics 29 Ph.D. Degree in Theoretical Physics 30 3- Chemistry Department Chemistry Programs 31 Diplomas Professional Diploma in Biochemistry 32 Professional Diploma in Quality Control 33 Professional Diploma in Applied Forensic Chemistry 34 Professional Diploma in Applied Organic Chemistry 35 Environmental Analytical Chemistry Diploma 36 M.Sc.
    [Show full text]
  • CHEMISTRY MODULE No.31 : Magnetic Properties of Transition
    Web links http://en.wikipedia.org/wiki/Magnetism http://wwwchem.uwimona.edu.jm/courses/magnetism.html https://www.boundless.com/chemistry/textbooks/boundless-chemistry-textbook/transition- metals-22/bonding-in-coordination-compounds-crystal-field-theory-160/magnetic-properties- 616-6882/ http://en.wikipedia.org/wiki/Transition_metal http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Crystal_Field_Theory/Crystal_Field_Theo ry/Magnetic_Properties_of_Coordination_Complexes Suggested Readings Miessler, G. L.; Tarr, D. A. (2003). Inorganic Chemistry (3rd ed.). Pearson Prentice Hall. ISBN 0-13-035471-6 Drago, R. S.Physical Methods In Chemistry. W.B. Saunders Company. ISBN 0721631843 (ISBN13: 9780721631844) Huheey, J. E.; Keiter, E.A. ; Keiter, R. L. ; Medhi O. K. Inorganic Chemistry: Principles of Structure and Reactivity.Pearson Education India, 2006 - Chemistry, Inorganic CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No.31 : Magnetic properties of transition metal ions Carlin, R. L. Magnetochemistry. SPRINGER VERLAG GMBH. ISBN 10: 3642707351 / ISBN 13: 9783642707353 SELWOOD, P. W. MAGNETOCHEMISIRY. Swinburne Press. ISBN 1443724890. Earnshaw, A. Introduction to Magnetochemistry Academic Press. ISBN 10: 1483255239 / ISBN 13: 9781483255231 Lacheisserie É, D. T. De; Gignoux, D., Schlenker, M. Magnetism Time-Lines Timeline Image Description s 1600 Dr. William Gilbert published the first systematic experiments on magnetism in "De Magnete". Source: http://en.wikipedia.org/wiki/William_Gilbert_(astronomer) CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No.31 : Magnetic properties of transition metal ions 1777 Charles-Augustin de Coulomb showed that the magnetic repulsion or attraction between magnetic poles varies inversely with the square of the http://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb distance r.
    [Show full text]
  • Department of Chemistry Faculty of Science
    M.Phil./Ph.D. Syllabus DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE THE UNIVERSITY OF RAJSHAHI Syllabus for The Degree of Master of Philosophy (M.Phil.)/ Doctor of Philosophy (Ph.D.) in Chemistry Session: 2017-2018 Department of Chemistry, University of Rajshahi January, 2018 DEPARTMENT OF CHEMISTRY Syllabus for M. Phil / Ph.D. Courses The following courses each of 100 marks are designed for M..Phil / Ph.D. students as per ordinance passed by the Academic Council held on 17-18/10-98 (decision no. 37 of 196th Academic Council) and approved by the Syndicate at its 351st meeting held on 22/10/98. Course Number Course Title Chem 611 Physical Chemistry - X Chem 612 Physical Chemistry - XI Chem 613 Physical Chemistry - XII Chem 621 Organic Chemistry - VIII Chem 622 Organic Chemistry - IX Chem 623 Industrial Chemistry - II Chem 631 Inorganic Chemistry - IX Chem 632 Inorganic Chemistry - X Chem 633 Analytical Chemistry – II Chem 634 Bioinorganic Chemistry * Marks Distribution: (a) Close Book Examination : 75 (b) Class Assessment : 25 A student must complete two courses out of the above ten courses. The courses will be assigned to a research fellow on the recommendation of supervisor(s) and approved by the departmental Chairman / Academic Committee. 1 Course : Chem 611 Physical Chemistry-X Examination : 4 hours Full marks : 100 1. Physical Properties of Gases: Kinetic molecular theory, equation of states and transport phenomena of gases. 2. Chemical Thermodynamics: Thermochemistry, statistical thermodynamics, non-equilibrium or reversible thermodynamics. 3. Chemical Equilibria, Phase Rule and Distribution law. 4. Electrochemistry:Electrolytic conductance, electrolytic transference and Ionic equilibria. 5.
    [Show full text]
  • Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6
    Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand Olivier Galangau, J González, Vincent Montigaud, Vincent Dorcet, Boris Le Guennic, Olivier Cador, Fabrice Pointillart To cite this version: Olivier Galangau, J González, Vincent Montigaud, Vincent Dorcet, Boris Le Guennic, et al.. Dys- prosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand. Magnetochemistry, MDPI, 2020, 6 (2), pp.19. 10.3390/magnetochemistry6020019. hal-02957777 HAL Id: hal-02957777 https://hal.archives-ouvertes.fr/hal-02957777 Submitted on 5 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License magnetochemistry Article Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand Olivier Galangau , Jessica Flores Gonzalez, Vincent Montigaud, Vincent Dorcet, Boris le Guennic , Olivier Cador and Fabrice Pointillart * Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France; [email protected]
    [Show full text]
  • 31295015501306.Pdf (1.378Mb)
    A STUDY OF TK3 MGN3TIC PROPERTIES OF FERROCYAKTDij^S AND FERRICYANIDES by JACK ED7ARD RANDORFF, B. S. A THESIS IN PHYSICS Submitted to the Graduate Faculty of Texas Technological College in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCISIICE Approved Accented June, 1967 f^(A^fjin Cop. a ACKNO/JLEDGS-IENTS I am deeply appreciative of Dr. Billy J. I4arshall for his direction of this thesis; to the Robert A. Welch Foundation of Texas for financial support given to this project; to Dr. V/, 0, Milligan, research director of the forementioned Foundatior^ for the helpful and stimulating discussion with regard to this work and to his research group at Baylor University for the preparation of samples; and to the U. S. Department of Health, Education and V'elfrro for tho presentation of an N,D,E,A. Title IV Fellowship as financial support to pursue this study. ii TABLE OF COirrSxNTS ACKNO'WLEDG&IEOTS ii TABLE OF CONTENTS iii LIST OF TABLES iv LIST OF FIGURES v I, INTRODUCnON 1 II. EXPERIMEOTAL TECHMIQUE 3 Sample Preparation 3 Apparatus 3 Temperature Control and Detection 5 Calibrations and Corrections 6 Set-up Procedure 8 III, RESULTS Aim Discussion l6 IV. FUTURE WORK 33 LIST OF REFERENCES 34 APPENDIX I 35 APPENDIX II 42 APPENDIX III 43 iii LIST OF TABLES Table 1, The values of susceptibility and temperature.,, 19 Table 2, Effective number of Bohr Diagnetons per atom or per molecule, 20 iv LIST OF FIGURES Figure 1, Apparatus Assembly. 9 Figure lA. Internal view of Cahn RM Automatic Electrobalance, 10 Figure 2.
    [Show full text]
  • Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A
    Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre Botas, Dominique Luneau, Yannick Guari, Luis D. Carlos, Joulia Larionova To cite this version: Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre Botas, Dominique Luneau, et al.. Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet. Magnetochemistry, MDPI, 2016, 2 (4), pp.41. 10.3390/magnetochemistry2040041. hal-01399122 HAL Id: hal-01399122 https://hal.archives-ouvertes.fr/hal-01399122 Submitted on 13 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. magnetochemistry Article Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova 1, Jérôme Long 1,*, Rute A. S. Ferreira 2, Alexandre M. P. Botas 2,3, Dominique Luneau 4, Yannick Guari 1, Luis D. Carlos 2 and Joulia Larionova 1 1 Institut Charles Gerhardt Montpellier, UMR 5253, Ingénierie Moléculaire et Nano-Objects, Université de Montpellier,
    [Show full text]
  • Lecture 41 (Spatial Quantization & Electron Spin)
    Lecture 41 (Spatial Quantization & Electron Spin) Physics 2310-01 Spring 2020 Douglas Fields Quantum States • Breaking Symmetry • Remember that degeneracies were the reflection of symmetries. What if we break some of the symmetry by introducing something that distinguishes one direction from another? • One way to do that is to introduce a magnetic field. • To investigate what happens when we do this, we will briefly use the Bohr model in order to calculate the effect of a magnetic field on an orbiting electron. • In the Bohr model, we can think of an electron causing a current loop. • This current loop causes a magnetic moment: • We can calculate the current and the area from a classical picture of the electron in a circular orbit: • Where the minus sign just reflects the fact that it is negatively charged, so that the current is in the opposite direction of the electron’s motion. Bohr Magneton • Now, we use the classical definition of angular momentum to put the magnetic moment in terms of the orbital angular momentum: • And now use the Bohr quantization for orbital angular momentum: • Which is called the Bohr magneton, the magnetic moment of a n=1 electron in Bohr’s model. Back to Breaking Symmetry • It turns out that the magnetic moment of an electron in the Schrödinger model has the same form as Bohr’s model: • Now, what happens again when we break a symmetry, say by adding an external magnetic field? Back to Breaking Symmetry • Thanks, yes, we should lose degeneracies. • But how and why? • Well, a magnetic moment in a magnetic field feels a torque: • And thus, it can have a potential energy: • Or, in our case: Zeeman Effect • This potential energy breaks the degeneracy and splits the degenerate energy levels into distinct energies.
    [Show full text]
  • Chapter 1 MAGNETIC NEUTRON SCATTERING
    Chapter 1 MAGNETIC NEUTRON SCATTERING. And Recent Developments in the Triple Axis Spectroscopy Igor A . Zaliznyak'" and Seung-Hun Lee(2) (')Department of Physics. Brookhaven National Laboratory. Upton. New York 11973-5000 (')National Institute of Standards and Technology. Gaithersburg. Maryland 20899 1. Introduction..................................................................................... 2 2 . Neutron interaction with matter and scattering cross-section ......... 6 2.1 Basic scattering theory and differential cross-section................. 7 2.2 Neutron interactions and scattering lengths ................................ 9 2.2.1 Nuclear scattering length .................................................. 10 2.2.2 Magnetic scattering length ................................................ 11 2.3 Factorization of the magnetic scattering length and the magnetic form factors ............................................................................................... 16 2.3.1 Magnetic form factors for Hund's ions: vector formalism19 2.3.2 Evaluating the form factors and dipole approximation..... 22 2.3.3 One-electron spin form factor beyond dipole approximation; anisotropic form factors for 3d electrons..................... 27 3 . Magnetic scattering by a crystal ................................................... 31 3.1 Elastic and quasi-elastic magnetic scattering............................ 34 3.2 Dynamical correlation function and dynamical magnetic susceptibility ............................................................................................
    [Show full text]