Orbital Contribution to the Magnetic Moment There Are Many Coordination Compounds, with Unpaired D-Electrons (These Are Paramagnetic)

Orbital Contribution to the Magnetic Moment There Are Many Coordination Compounds, with Unpaired D-Electrons (These Are Paramagnetic)

Magnetochemie Conventional Magnets - Fe, Co, Ni -CrO2, Fe3O4 - Alloys spincarriers: atoms digital „0“ and „1“ bulk magnet Magnetochemie Magnetic properties of the d-block elements I. Magnetism of Octahedral transition metal complexes • Spin-only Paramagnetism • High-spin / Low-spin Complexes (Octahedral) II. Orbital contribution to the magnetic moment There are many coordination compounds, with unpaired d-electrons (these are paramagnetic) 2– 9 [CuCl4] (d ) + 7 [Co(NH3)4(SO4)] (d ) Plastocyanin 3+ 6 2+ 9 [Co(NH3)5(H2O)] (d ) (Cu , d ) 2– 8 [NiCl4] (d ) 1 3 [VO(H2O)5]SO4 (d ) [CrCl3] (d ) General remarks This lecture deals only with paramagnetic coordination compounds. Complicated mathematics will be avoided, where possible! TMn+ ions have pure d-electron configurations (recall: s electrons are lost first, as the diffuse s-orbitals are destablized in complexes) Cr2+: d4 Fe3+: d5 Ni2+: d8 metal organic compounds have also dn 2+ 6 6 Fe , Cr(CO)6, Cr(η -C6H6)2 d 3+ 6 5 Fe , V(CO)6, V(η -C6H6)2 d General remarks Constants and units 3 –1 χm molar magnetic suceptibility [cm ·mol ] (cgs/emu) [emu·mol–1] „ [m3·mol–1] (SI) –6 Conversion factor: χm(cgs) × 4π10 = χm (SI) µeff / µB = 2.828 ⋅ χT K [Fe(CN) ] χ = -122.7×10–6 emu/mol 3kB mol 3 6 m = 2.828( ) χ = -1.542×10–9 m /mol 2 3 m 3 NµB cm K ---------------------------------------------------------------------------------------------------------- N = 6.023×1023 mol–1 –20 µB = 0.92731×10 erg/Gauss; –24 µB = 9.27×10 J/T –23 kB = 1.38×10 J/K 2 3 NµB /(3kB) = 0.125 cm /(K·mol) cgs units, N = 6.023×1023 mol–1 –20 –24 µB = 0.92731×10 erg/Gauss; 9.27×10 J/T Literature A. F. Orchard, Magnetochemistry, Oxford Chemistry Primer, 2007; Chapter 5 F. E. Mabbs, D.J. Machin, „Magnetism and Transition Metal Chemistry“, Chapman and Hall, London 1973 R. Ribas, Coordination Chemistry, Wiley-VCH, Chap. 9 Magnetic Properties of Some Iron Compounds Compound Magnetism Remarks Fe metal ferromagnet TC = 1043 K (msat = 2.22 µB) FeO antiferromagnet TN = 716 K FeCl3 paramagnet µeff = 5.73 µB y-Fe3O4 ferrimagnet TfN = 856 K 4– [Fe(CN)6] diamagnetic ─ 3– [Fe(CN)6] paramagnetic µeff = µeff = 2.25 µB (300 K) Fe(Cp)2 diamagnetic ─ Fe(CO)5 diamagnetic ─ Haemoglobin paramagnetic µeff ~ 4.95 µB 1. Spin-Only-Paramagnetism Effective magnetic moment, µeff, of 3d metal complexes can be estimated to a first approximation with the spin-only formula µeff = ge S(S +1)µB iS neff µeff neff = = ge S(S +1) 1 ½ 1.73 µB 2 1 2.83 –24 µB = Bohr Magneton = eħ/(2me) =9.27408×10 J/T µ = effective magnetic moment eff 3 3/2 3.88 neff = effective magnetic moment in units of µB g = 2.00232 e 4 2 4.90 S = Σsi (Total spin quantum number) s = spin quantum number (+1/2 or -1/2) i 5 5/2 5.92 Note: in the OCP text book µeff is represented as meff Spin-Only-Formula neff(theor.) 3 III III IV II • spin-state of complex and d : Cr , Mo , Mn , V : 3.88 µB • number of unpaired electrons can be determined 5 II III d : Mn , Fe : 5.92 µB 3 5 neff data (~ 300 K) for selected compounds of d and d ions d3 CrCl3 3.90 K3[Cr(ox)3].3H203.62 [Cr(NH3)6]Br3 3.77 KCr(SO4)2.12H2O3.84 [Cr(en)3]Br3 3.82 K3[MoCl6]3.79 [Cr(bpy)3]Cl3 3.81 K2[MnCl6]3.84 K3[Cr(CN)6]3.87[V(en)3]Br2 3.81 K3[Cr(NCS)6].4H2O3.79[V(bpy)3]Cl2 3.67 K3[Mo(NCS)6].4H2O 3.70 [Mo(bpy)3]Cl3 3.66 n (N Bu4)3[Cr(N3)6]3.76K4[V(CN)6]3.78 d5 MnCl2 5.79 FeCl3 5.73 MnBr2 5.82 (Et4N)[FeCl4]5.88 (NH4)2Mn(SO4)2.6H2O5.88(NH4)Fe(SO4)2.12H2O5.89 [Mn(NH3)6]Cl2 5.92 K3[Fe(ox)3].3H2O5.90 (Et4N)2[MnCl4]5.94 Ligands and Abbreviations O O- -O oxalate N O rhodanide (ox) N C S- N H N 2 NH 2 azide 2,2'-Bipyridin ethylene diamine - + - (bpy) N N N (en) bidentate ligand 2+ NH 2 monodentate Cl lignd H2N Co NMe3 H2N Chelate ring NH2 donor atom Spin-Only-Formula 3 III III IV II • spin-state and d : Cr , Mo , Mn , V : 3.88 µB • number of unpaired electrons can be determined 5 II III d : Mn , Fe : 5.92 µB this is true also for more exotic compounds ferrocene vandocene IV 3 [nBu4]2[Mn(CH3)6] 3.90 µB → Mn , d II 3 V(Cp)2, Vanadocene 3.78 µB → V , d Fe V II 5 Mn(Cp)2, Manganocene 5.86 µB → Mn , d 2− CH3 spectrochemical series: CH3 - - 2- - - - - - Mn I < Br < S < SCN- < Cl < N3 < F < OH < O2 < OH2 < H3C Mn CH3 - - - - NCS < NH3 ~ py < en < bpy < NO2 < CH3 < CN < CO H3C CH3 manganocene Spin-Only Formula only valid for the following conditions: • room temperature (295 K) IV • for 3d TM ions (i.e. K2[Re Cl6] = 3.25 µB (expected = 3.88 µB) • for mononuclear complexes (polynulcear complexes may show cooperative phenomena (antiferro- or ferromagnetic interactions)) • for totally quenched orbital momentum (= TM ions with E or A ground terms) Orbital contributions to the magnetic moment • do explain the deviations from the spin-only values • the orbital contribution to the magnetic moment is not totally quenched Two prominent examples: CoCl2 5.47 µB 2─ CoCl4 4.67 µB II 7 expected 3.88 µB → h.s.-Co has d (3 unp. electrons) general trends: d6 to d9: larger values than calculated d1 to d4: smaller values than calculated L L only d5 is well behaved S S This is readily explained a) by the fact that λ > 0 for d1-d4 and λ < 0 for d6-d9 λ = spin-orbit coupling constant 3+ 5 b) Fe (S= /2), L = ML = Σml = 0 Spin-orbit coupling can cause temperature dependent magnetic moments (Ti3+, d1) Orbital contribution to the magnetic moment Orbital contribution to the magnetic moment Spin-only formula µeff = ge S(S +1)µB the orbital angular momentum L has also a magnetic moment associated with it, for free ions with L and S, 2 µeff = L(L + 1) + ge S(S + 1)µB orbit spin Orbital momentum in transition metal ions and complexes In coordination compounds orbital momentum means: electron can move from one d orbital to another degenerate d orbital. However, dxy, dxz, dyz, and dzz, dx2-y2 are no longer degenerate in a complex. In an octahedral complex, e– canonlymovewithinan open t2g shell (first order orbital momentum => of importance in magnetochemistry) d1, d2, (l.s.)-d4, (l.s.)-d5, etc have first order orbital momentum (T ground terms), d3, d4 have no first order orbital momentum (A, E ground terms) dxy Terms with T symmetry exhibit orbital angular momentum dx2-y2 (leer) can show spin-orbit coupling This rule is only applicable in Oh Symmetry. Terms with T symmetry EJ = -1/2Aλ[J(J+1)-L(L+1)-S(S+1) exhibit L = 1, For (t )n less than half occupied: λ positive 2g HSO = -AλLS more than half occupied: λ negative Quenching of the orbital contribution, T-term and A, E-term ions Quenching of the orbital contribution, to the magnetic moment, due to ligand field Octahedral symmetry n m n ground t2g eg ligand field quenching term term 2 12 1 Dt2g T2g No 3 23 2 Ft2g T1g No 4 34 3 Ft2g A2g Yes These ions 5 3 15 4 Dt2g eg Eg Yes actually 43 t2g T1g No have L = 1 6 3 26 5 St2g eg A1g Yes 52 t2g T2g No and thus a 5 4 25 6 Dt2g eg T2g No „residual“ 61 t2g A1g Yes contribution 4 5 24 7 Ft2g eg T1g No (not full 6 12 t2g eg Eg Yes contribution) 3 6 23 8 Ft2g eg A2g Yes to the 2 6 32 9 Dt2g eg Eg Yes spin moment 3+ 1 3+ 2 3+ 4 3+ 5 Typical Ions: Ti (d ), V (d ), l.s-Mn (d ), l.s.-Fe (d , i.e. K3[Fe(CN)6]) h.s-Fe2+ (d6), h.s.-Co(2+) Magnetic moment depends also on C.N. Nickel(II), d8 Orbital momentum 3 quenched octahedral ( A2g) 2.9 – 3.4 µB 3 not quenched tetrahedral ( T1) 3.2 – 4.0 µB trigonal bipyramidal 3.2 – 3.8 µB or 0 square pyramidal 3.2 – 3.4 µB or 0 square planar 0 2− 2− Cl CN CoII, tetr. 4.4-4.8 4A NC Ni CN Ni 2 Cl CoII, oct., 4.8-5.3 4T NC Cl 1g Cl tetr. [NiX ]2- (X = Cl, Br, I) 2+ − 4 2─ tetr. [Ni(SPh)4] N [Ni(PPh ) Br ] 3.27 µ N 3 2 2 B H2N Ni NH2 Spin equilibria H N NH2 2 Ni N II II N H Ni (tetr.) ↔ Ni (sq.pl) (in solution) N 2 Cl H H2 High-spin and low-spin complexes 4 7 possible for d -d electronic configurations (in octahedral complexes) AsPh2 possible for d3-d6 electronic configurations (in tetrahedral complexes) AsPh2 diars Examples (all are low-spin): 4 2+ 4– 3– 4 d [Cr(bpy)3] , [Cr(CN)6] , [Mn(CN)6] t2g S = 1 3.20 µB 5 3– 3+ 4– 5 d [Fe(CN)6] , [Fe(en)3] , [Mn(CN)6] t2g S = 1/2 2.25 µB 2.40 µB 2.18 µB 6 4– 3+ 6 d [Fe(CN)6] , [Co(NH3)6] , [Cr(CO)6] t2g S = 0 7 2+ 4– 3– 6 d [Co(diars)3] , [Co(NO2)6] , [NiF6] t2g eg1 S = ½ 1.84 µB the deviations from the ideal values are again attributable to orbital contributions to the magnetic moment High-spin → low-spin transitions, spincrossover 4 7 Become feasible for d to d in octahedral case, if ∆o(h.s.) ~ ∆o(l.s.) • h.s.->l.s transitions can be affected by variation of temperature or pressure • At lower temperature the l.s-form always dominates • l.s.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    25 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us