Septal Pore Apparatus and Nuclear Division of Auriscalpium Vulgare

Total Page:16

File Type:pdf, Size:1020Kb

Septal Pore Apparatus and Nuclear Division of Auriscalpium Vulgare Mycologia, 99(5), 2007, pp. 644–654. # 2007 by The Mycological Society of America, Lawrence, KS 66044-8897 Septal pore apparatus and nuclear division of Auriscalpium vulgare Gail J. Celio1 fungal systematics, although their usefulness varies Mahajabeen Padamsee among taxonomic levels and clades (Bracker 1967, Bryn T.M. Dentinger Kimbrough 1994, McLaughlin et al 1995b, Lutzoni et Department of Plant Biology, University of Minnesota, al 2004). Improvements in chemical fixation methods Saint Paul, Minnesota 55108 for fungal ultrastructure resulted in better visualiza- Kelly A. Josephsen tion of nuclear division and the spindle pole body (SPB) (see Girbardt 1978). Freeze substitution (FS) Imaging Center, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota 55108 protocols were particularly helpful for observing the condition of the nuclear envelope during stages of Thomas S. Jenkinson division (Heath and Rethoret 1982; Kanbe and Esther G. McLaughlin Tanaka 1985; Tanaka and Kanbe 1986; Berbee and David J. McLaughlin Wells 1988; Berbee et al 1991; Swann and Mims 1991; Department of Plant Biology, University of Minnesota, O’Donnell 1992, 1994; Lu¨ and McLaughlin 1994; Saint Paul, Minnesota 55108 Frieders and McLaughlin 1996; Swann et al 1999). Such characters have supplemented or been used as the basis of phylogenetic analyses (Heath 1986, Abstract: Ultrastructure of the septal pore apparatus McLaughlin et al 1995a, Swann et al 1999). and nuclear division of Auriscalpium vulgare (Russu- The Structural and Biochemical (SB) Database for lales) was examined with freeze substitution and is the Fungi (http://aftol.umn.edu) (Celio et al 2006) presented for inclusion in the AFTOL Structural and associated with the Assembling the Fungal Tree of Biochemical Database (http://aftol.umn.edu). Pre- Life (AFTOL) project is a searchable database viously unreported septal characters for the Russu- containing data primarily from previous ultrastruc- lales (Agaricomycotina) were observed: Septa of the tural studies that have been coded for phylogenetic hymenophore had bell-shaped perforated septal pore analyses. Many traits were selected for inclusion in the caps that may extend along the septum and a zone of SB Database, with data on septum/septal pore organelle exclusion surrounded the septal pore apparatus and nuclear division, including spindle apparatus. Metaphase I of meiosis and metaphase of pole body forms and cycles, among the first to be mitosis were similar. Globular spindle pole bodies entered. The distribution of ultrastructural studies is with electron-opaque inclusions were set within polar uneven across taxonomic groups, hindering investiga- fenestrae of the nuclear envelope. The nuclear tions of evolutionary relationships and character envelope was mostly intact with occasional gaps. evolution. To fill in gaps we investigated taxa and Fragments of endoplasmic reticulum were present collected data from clades and cell types that are near the spindle pole bodies but did not form a polar poorly represented within the SB Database. This study cap. Structural characters may distinguish one or presents septal pore and nuclear division data from more clades of the Agaricomycotina and provide Auriscalpium vulgare in the Russulales (Agaricomyco- additional signal in phylogenetic analyses. tina), a species that fruits in the laboratory. This taxon Key words: basidiocarp, basidium, cytology, is represented in the AFTOL Molecular Database informatics, phylogeny, sporocarp (http://www.aftol.org) by sequence data for the nuclear internal transcribed spacer regions and the INTRODUCTION large and small subunits of the ribosomal DNA. Ultrastructural images of septa of some species in the Many ultrastructural characters have been useful in Russulales have been published (Besson and Froment systematic studies of the Fungi, including septal and 1968, Flegler et al 1976, Patrignani and Pellgrini 1986, nucleus-associated characters. Septa and the organi- Keller 1997); however low magnification and/or zation of the surrounding cytoplasm and structures nonmedian sections prevented data entry for many have been observed with the electron microscope septal characters. In the Russulales only Hericium since the late 1950s (Girbardt 1958, Shatkin and coralloides (Flegler et al 1976) and Artomyces pyxidatus Tatum 1959) and have been helpful in developing (5 Clavicorona pyxidata) (M Berbee unpubl) have character states entered in the database for more than Accepted for publication 29 July 2007. 50% of the characters that apply to nonbasidial cells 1 Corresponding author. E-mail: [email protected] in taxa of the Basidiomycota. Also A. pyxidatus is the 644 CELIO ET AL:ULTRASTRUCTURE OF AURISCALPIUM VULGARE 645 only russuloid species with data on nuclear division anhydride) with an accelerator (2,4,6–tri[dimethylami- (Berbee and Wells 1989). The results presented here noethyl]phenol) equal to 1% of the total solution weight illustrate the extent of data needed to document (Abad et al 1988). The samples then were microwave septal structure and nuclear division. Even within embedded in a vacuum under 20–25 mm mercury pressure presumably well studied groups such as the Agarico- at 42 C for 2 min. The resin was replaced with fresh infiltration solution, and this process was repeated twice. mycotina we report a novel septal character state. The Single spines were separated from pileal tissue under organization of the spindle pole region during a dissecting scope and placed on glass slides coated with nuclear division might provide a morphological Crown dry film lubricant (Crown Industrial Products Co., feature characteristic of the Russulales. Hebron, Illinois). Flat embedding was achieved as described in Kleven and McLaughlin (1989) with glass slides instead of cover slips. The resin-infiltrated specimens were poly- MATERIALS AND METHODS merized in a 74 C oven for 48 h. Cells were selected with Light microscopy.—Sporocarps of Auriscalpium vulgare Gray a Zeiss Axioscope at 12503 with an Optivar and a Zeiss were collected on 16 Sep 1978 at Sand Dunes State Forest, diamond scribe in the ocular position, cut from the slides Zimmerman, Minnesota (voucher collection RJ Meyer 211, and mounted on resin blocks for sectioning. Ultrathin Herbarium, University of Minnesota) and were incubated in sections were cut with a Reichart-Jung Ultracut E ultrami- a moist chamber for 3 d. Specimens then were fixed in 3% crotome equipped with a diamond knife and collected on glutaraldehyde in 0.1 M phosphate buffer (pH 7) at room slot grids using the procedure of Rowley and Moran (1975). temperature approximately 1 h then stored at 4 C until Sections were poststained in 3% uranyl acetate followed by embedded. Material was rinsed in 0.1 M sodium cacodylate Sato’s triple-lead stain (Sato 1968) and examined with buffer (pH 7.2), dehydrated in an ethanol series and a Philips CM 12 transmission electron microscope operating embedded in plastic with a JB-4 embedding kit (Poly- at 60 kV. Detailed protocols for specimen fixation and sciences Inc., Warrington, Pennsylvania). embedding are at http://aftol.umn.edu/. Two micrometer-thick sections were cut with a glass knife on a JB-4 microtome, collected on glass slides and stained in RESULTS 0.05% toluidine blue O in borate buffer (pH 9) either at room temperature for 10 min or while heated by passing Septum and septal pore characters.—Plunge freezing the slide 6–83 over an alcohol flame, then rinsed with tap followed by FS of Auriscalpium vulgare resulted in water. Sections were air dried and cover slips mounted in good fixation, and organelle and plasma membranes Eukitt (Calibrated Instruments Inc., Ardsley, New York). appeared intact. Septa from the trama had a simple Digital micrographs were processed in Adobe PhotoshopH pore with swollen margins approximately 230 nm CS2 (Adobe Systems Inc., San Jose, California) with the Smart Sharpen filter at the default setting. high and the plasma membrane was continuous through the pore (FIGS. 1, 4). Pores were approxi- Electron microscopy.—Sporocarps of Auriscalpium vulgare, mately 130 nm wide and appeared unoccluded. No DJM 225 (Mycological Culture Collection and Herbarium, large organelles were observed in the pore or on the University of Minnesota) were produced axenically on Difco adseptal side of the septal pore cap, although cornmeal agar and Pseudotsuga menziesii cones under cool ribosomes sometimes were present (FIG. 4). Bell- white fluorescent light with a 12 h day at 20 C. Cultures shaped septal pore caps were present on both sides were grown in Pyrex deep storage dishes (100 mm diam, of the septum (FIGS. 1, 4) and each had circular 80 mm high) containing 50 mL of half-strength cornmeal agar (8.5 g/L) and a P. menziesii cone separately autoclaved perforations approximately 70 nm diam uniformly distributed throughout the rounded portion of the in distilled H2O. The dish was tilted at approximately 15u while the agar solidified to provide a reservoir for water cap (100–120 nm between the centers of adjacent addition during sporocarp formation. pores, FIG. 2). Perforations were present in the area Two to three spines attached to pileal tissue were excised of the cap adjacent to the septal wall but their size and from mature sporocarps from colonies approximately 60 d distribution were not determined. The pore caps old and plunged into 2178 to 2185 C liquid propane contained a central electron-opaque layer about 8 nm (Hoch 1986). Specimens were transferred to substitution thick between two less electron-opaque layers. This fluid consisting of 2% osmium tetroxide and 0.1% uranyl layering was present in the portion of the cap that acetate in 100% anhydrous acetone at 280 C, and stored at extended along the cross wall on both sides of the 280 C at least 48 h. Samples gradually were brought to pore (FIGS. 1–4). The length of the cap that extended room temperature (220 C, 2 h; 0 C, 2 h; room tempera- along the cross wall varied between septa as well as on ture, 1 h), then rinsed three times with 100% HPLC-grade acetone with 1% acidified 2, 2–dimethoxypropane.
Recommended publications
  • Genome Sequence Analysis of Auricularia Heimuer Combined with Genetic Linkage Map
    Journal of Fungi Article Genome Sequence Analysis of Auricularia heimuer Combined with Genetic Linkage Map Ming Fang 1, Xiaoe Wang 2, Ying Chen 2, Peng Wang 2, Lixin Lu 2, Jia Lu 2, Fangjie Yao 1,2,* and Youmin Zhang 1,* 1 Lab of genetic breeding of edible mushromm, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; [email protected] 2 Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; [email protected] (X.W.); [email protected] (Y.C.); [email protected] (P.W.); [email protected] (L.L.); [email protected] (J.L.) * Correspondence: [email protected] (F.Y.); [email protected] (Y.Z.) Received: 3 March 2020; Accepted: 12 March 2020; Published: 16 March 2020 Abstract: Auricularia heimuer is one of the most popular edible fungi in China. In this study, the whole genome of A. heimuer was sequenced on the Illumina HiSeq X system and compared with other mushrooms genomes. As a wood-rotting fungus, a total of 509 carbohydrate-active enzymes (CAZymes) were annotated in order to explore its potential capabilities on wood degradation. The glycoside hydrolases (GH) family genes in the A. heimuer genome were more abundant than the genes in the other 11 mushrooms genomes. The A. heimuer genome contained 102 genes encoding class III, IV, and V ethanol dehydrogenases. Evolutionary analysis based on 562 orthologous single-copy genes from 15 mushrooms showed that Auricularia formed an early independent branch of Agaricomycetes. The mating-type locus of A. heimuer was located on linkage group 8 by genetic linkage analysis.
    [Show full text]
  • Safe Movement of Small Fruit Germplasm
    FOOD AND AGRICULTURE ORGANIZATION INTERNATIONAL PLANT OF THE UNITED NATIONS GENETIC RESOURCES INSTITUTE FAO/IPGRI TECHNICAL GUIDELINES FOR THE SAFE MOVEMENT OF SMALL FRUIT GERMPLASM Edited by M. Diekmann, E.A. Frison and T. Putter In collaboration with the Small Fruit Virus Working Group of the International Society for Horticultural Science 2 CONTENTS Introduction 4 2.Strawberrygreenpetal 31 3. Witches-broom and multiplier Contributors 6 disease 33 Prokaryoticdiseases-bacteria 35 General Recommendations 8 1.Strawberryangular leaf spot 35 2.Strawberrybacterialwilt 36 Technical Recommendations 8 3. Marginal chlorosis of strawberry 37 A. Pollen 8 Fungal diseases 38 B. Seed 9 1. Alternaria leaf spot 38 C. In vitro material 9 2 Anthracnose 39 D. Vegetative propagules 9 3. Fusarium wilt 40 E. Disease indexing 10 4.Phytophthoracrownrot 41 F. Therapy 11 5.Strawberry black root rot 42 6. Strawberry red stele (red core) 43 Descriptions of Pests 13 7. Verticillium wilt 44 Fragaria spp. (strawberry) 13 Ribesspp.(currant,gooseberry) 45 Viruses 13 Viruses 45 1. Ilarviruses 13 1.Alfalfamosaicvirus(AMV) 45 2. Nepoviruses 14 2. Cucumber mosaic virus (CMV) 46 3. Pallidosis 15 3. Gooseberry vein banding virus 4. Strawberry crinkle virus (SCrV) 17 (GVBV) 48 5. Strawberry latent C virus (SLCV) 18 4. Nepoviruses 50 6.Strawberry mildyellow-edge 19 5.Tobacco rattlevirus(TRV) 51 7. Strawberry mottle virus (SMoV) 21 Diseasesofunknownetiology 53 8. Strawberry pseudo mild 1. Black currant yellows 53 yellow-edgevirus(SPMYEV) 22 2. Reversion of red and black currant 54 9. Strawberry vein banding 3.Wildfireof blackcurrant 56 virus (SVBV) 23 4.Yellow leaf spotofcurrant 57 Diseasesofunknownetiology 25 Prokaryotic disease 58 1.
    [Show full text]
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • G. Gulden & E.W. Hanssen Distribution and Ecology of Stipitate Hydnaceous Fungi in Norway, with Special Reference to The
    DOI: 10.2478/som-1992-0001 sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 sommerfeltia~ J is owned and edited by the Botanical Garden and Museum, University of Oslo. SOMMERFELTIA is named in honour of the eminent Norwegian botanist and clergyman S0ren Christian Sommerfelt (1794-1838). The generic name Sommerfeltia has been used in (1) the lichens by Florke 1827, now Solorina, (2) Fabaceae by Schumacher 1827, now Drepanocarpus, and (3) Asteraceae by Lessing 1832, nom. cons. SOMMERFELTIA is a series of monographs in plant taxonomy, phytogeo­ graphy, phytosociology, plant ecology, plant morphology, and evolutionary botany. Most papers are by Norwegian authors. Authors not on the staff of the Botanical Garden and Museum in Oslo pay a page charge of NOK 30.00. SOMMERFEL TIA appears at irregular intervals, normally one article per volume. Editor: Rune Halvorsen 0kland. Editorial Board: Scientific staff of the Botanical Garden and Museum. Address: SOMMERFELTIA, Botanical Garden and Museum, University of Oslo, Trondheimsveien 23B, N-0562 Oslo 5, Norway. Order: On a standing order (payment on receipt of each volume) SOMMER­ FELTIA is supplied at 30 % discount. Separate volumes are supplied at the prices indicated on back cover. sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 ISBN 82-7420-014-4 ISSN 0800-6865 Gulden, G. and Hanssen, E.W. 1992. Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline.
    [Show full text]
  • Biological Species Concepts in Eastern North American Populations of Lentinellus Ursinus Andrew N
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1997 Biological Species Concepts in Eastern North American Populations of Lentinellus ursinus Andrew N. Miller Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Miller, Andrew N., "Biological Species Concepts in Eastern North American Populations of Lentinellus ursinus" (1997). Masters Theses. 1784. https://thekeep.eiu.edu/theses/1784 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates {who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. Andrew N. Miller u~l.ff~ Author Date 7 I respectfully request Booth Library of Eastern Illinois University not allow my thesis to be reproduced because: Author Date Biological species concepts in eastern North American populations of Lentinellus ursinus (TITLE) BY Andrew N.
    [Show full text]
  • Phylogeny, Morphology, and Ecology Resurrect Previously Synonymized Species of North American Stereum Sarah G
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342840; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny, morphology, and ecology resurrect previously synonymized species of North American Stereum Sarah G. Delong-Duhon and Robin K. Bagley Department of Biology, University of Iowa, Iowa City, IA 52242 [email protected] Abstract Stereum is a globally widespread genus of basidiomycete fungi with conspicuous shelf-like fruiting bodies. Several species have been extensively studied due to their economic importance, but broader Stereum taxonomy has been stymied by pervasive morphological crypsis in the genus. Here, we provide a preliminary investigation into species boundaries among some North American Stereum. The nominal species Stereum ostrea has been referenced in field guides, textbooks, and scientific papers as a common fungus with a wide geographic range and even wider morphological variability. We use ITS sequence data of specimens from midwestern and eastern North America, alongside morphological and ecological characters, to show that Stereum ostrea is a complex of at least three reproductively isolated species. Preliminary morphological analyses show that these three species correspond to three historical taxa that were previously synonymized with S. ostrea: Stereum fasciatum, Stereum lobatum, and Stereum subtomentosum. Stereum hirsutum ITS sequences taken from GenBank suggest that other Stereum species may actually be species complexes. Future work should apply a multilocus approach and global sampling strategy to better resolve the taxonomy and evolutionary history of this important fungal genus.
    [Show full text]
  • INTRODUCTION Biodiversity of Agaricomycetes Basidiomes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital DARWINIANA, nueva serie 1(1): 67-75. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 1Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] (author for correspondence). 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Natu- rales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes asso- ciated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales.
    [Show full text]
  • Studies on the Diversity of Macrofungus in Kodaikanal Region of Western Ghats, Tamil Nadu, India
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 6, November 2018 E-ISSN: 2085-4722 Pages: 2283-2293 DOI: 10.13057/biodiv/d190636 Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India BOOBALAN THULASINATHAN1, MOHAN RASU KULANTHAISAMY1,2, ARUMUGAM NAGARAJAN1, SARAVANAN SOORANGKATTAN3, JOTHI BASU MUTHURAMALINGAM3, JEYAKANTHAN JEYARAMAN4, ALAGARSAMY ARUN 1, 1Department of Microbiology, Alagappa University, College Road, Alagappa Puram, Karaikudi – 630003, Tamil Nadu, India. Tel.: +91-4565-223 100, email: [email protected] 2Department of Energy Science, Alagappa University. Karaikudi 630003, Tamil Nadu, India 3Department of Botany (DDE), Alagappa University. Karaikudi 630003, Tamil Nadu, India 4Department of Bioinformatics, Alagappa University. Karaikudi 630003, Tamil Nadu, India Manuscript received: 22 October 2018. Revision accepted: 13 November 2018. Abstract. Boobalan T, Mohan Rasu K, Arumugam N, Saravanan S, Jothi Basu M, Jeyakanthan J, Arun A. 2018. Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India. Biodiversitas 19: 2283-2293. We have demonstrated the distribution of macro fungal communities in the selected forest territory of Kodaikanal (Poondi) region, which houses about 100 mushrooms species diverse forms of mushrooms including both the soil-inhabiting (n = 45) and wood-inhabiting (n = 55) species. Kodaikanal is situated on a plateau between the Parappar and Gundar valleys; this area experiences peculiar lower temperature between 8.2°C and 19.7°C, higher humidity between 92% and 95%, which in turn enhances the growth of different types of mushrooms throughout the year. However, the peak production and macro fungal flushes were observed during the winter season followed by the northeast monsoon (Oct-Dec 2015).
    [Show full text]
  • Pt Reyes Species As of 12-1-2017 Abortiporus Biennis Agaricus
    Pt Reyes Species as of 12-1-2017 Abortiporus biennis Agaricus augustus Agaricus bernardii Agaricus californicus Agaricus campestris Agaricus cupreobrunneus Agaricus diminutivus Agaricus hondensis Agaricus lilaceps Agaricus praeclaresquamosus Agaricus rutilescens Agaricus silvicola Agaricus subrutilescens Agaricus xanthodermus Agrocybe pediades Agrocybe praecox Alboleptonia sericella Aleuria aurantia Alnicola sp. Amanita aprica Amanita augusta Amanita breckonii Amanita calyptratoides Amanita constricta Amanita gemmata Amanita gemmata var. exannulata Amanita calyptraderma Amanita calyptraderma (white form) Amanita magniverrucata Amanita muscaria Amanita novinupta Amanita ocreata Amanita pachycolea Amanita pantherina Amanita phalloides Amanita porphyria Amanita protecta Amanita velosa Amanita smithiana Amaurodon sp. nova Amphinema byssoides gr. Annulohypoxylon thouarsianum Anthrocobia melaloma Antrodia heteromorpha Aphanobasidium pseudotsugae Armillaria gallica Armillaria mellea Armillaria nabsnona Arrhenia epichysium Pt Reyes Species as of 12-1-2017 Arrhenia retiruga Ascobolus sp. Ascocoryne sarcoides Astraeus hygrometricus Auricularia auricula Auriscalpium vulgare Baeospora myosura Balsamia cf. magnata Bisporella citrina Bjerkandera adusta Boidinia propinqua Bolbitius vitellinus Suillellus (Boletus) amygdalinus Rubroboleus (Boletus) eastwoodiae Boletus edulis Boletus fibrillosus Botryobasidium longisporum Botryobasidium sp. Botryobasidium vagum Bovista dermoxantha Bovista pila Bovista plumbea Bulgaria inquinans Byssocorticium californicum
    [Show full text]
  • Chapter 2 Literature Review
    CHAPTER 2 LITERATURE REVIEW 2.1. BASIDIOMYCOTA (MACROFUNGI) Representatives of the fungi sensu stricto include four phyla: Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota (McLaughlin et al., 2001; Seifert and Gams, 2001). Chytridiomycota and Zygomycota are described as lower fungi. They are characterized by vegetative mycelium with no septa, complete septa are only found in reproductive structures. Asexual and sexual reproductions are by sporangia and zygospore formation respectively. Ascomycota and Basidiomycota are higher fungi and have a more complex mycelium with elaborate, perforate septa. Members of Ascomycota produce sexual ascospores in sac-shaped cells (asci) while fungi in Basidiomycota produce sexual basidiospores on club-shaped basidia in complex fruit bodies. Anamorphic fungi are anamorphs of Ascomycota and Basidiomycota and usually produce asexual conidia (Nicklin et al., 1999; Kirk et al., 2001). The Basidiomycota contains about 30,000 described species, which is 37% of the described species of true Fungi (Kirk et al., 2001). They have a huge impact on human affairs and ecosystem functioning. Many Basidiomycota obtain nutrition by decaying dead organic matter, including wood and leaf litter. Thus, Basidiomycota play a significant role in the carbon cycle. Unfortunately, Basidiomycota frequently 5 attack the wood in buildings and other structures, which has negative economic consequences for humans. 2.1.1 LIFE CYCLE OF MUSHROOM (BASIDIOMYCOTA) The life cycle of mushroom (Figure 2.1) is beginning at the site of meiosis. The basidium is the cell in which karyogamy (nuclear fusion) and meiosis occur, and on which haploid basidiospores are formed (basidia are not produced by asexual Basidiomycota). Mushroom produce basidia on multicellular fruiting bodies.
    [Show full text]
  • The New York Botanical Garden
    Vol. XV DECEMBER, 1914 No. 180 JOURNAL The New York Botanical Garden EDITOR ARLOW BURDETTE STOUT Director of the Laboratories CONTENTS PAGE Index to Volumes I-XV »33 PUBLISHED FOR THE GARDEN AT 41 NORTH QUBKN STRHBT, LANCASTER, PA. THI NEW ERA PRINTING COMPANY OFFICERS 1914 PRESIDENT—W. GILMAN THOMPSON „ „ _ i ANDREW CARNEGIE VICE PRESIDENTS J FRANCIS LYNDE STETSON TREASURER—JAMES A. SCRYMSER SECRETARY—N. L. BRITTON BOARD OF- MANAGERS 1. ELECTED MANAGERS Term expires January, 1915 N. L. BRITTON W. J. MATHESON ANDREW CARNEGIE W GILMAN THOMPSON LEWIS RUTHERFORD MORRIS Term expire January. 1916 THOMAS H. HUBBARD FRANCIS LYNDE STETSON GEORGE W. PERKINS MVLES TIERNEY LOUIS C. TIFFANY Term expire* January, 1917 EDWARD D. ADAMS JAMES A. SCRYMSER ROBERT W. DE FOREST HENRY W. DE FOREST J. P. MORGAN DANIEL GUGGENHEIM 2. EX-OFFICIO MANAGERS THE MAYOR OP THE CITY OF NEW YORK HON. JOHN PURROY MITCHEL THE PRESIDENT OP THE DEPARTMENT OP PUBLIC PARES HON. GEORGE CABOT WARD 3. SCIENTIFIC DIRECTORS PROF. H. H. RUSBY. Chairman EUGENE P. BICKNELL PROF. WILLIAM J. GIES DR. NICHOLAS MURRAY BUTLER PROF. R. A. HARPER THOMAS W. CHURCHILL PROF. JAMES F. KEMP PROF. FREDERIC S. LEE GARDEN STAFF DR. N. L. BRITTON, Director-in-Chief (Development, Administration) DR. W. A. MURRILL, Assistant Director (Administration) DR. JOHN K. SMALL, Head Curator of the Museums (Flowering Plants) DR. P. A. RYDBERG, Curator (Flowering Plants) DR. MARSHALL A. HOWE, Curator (Flowerless Plants) DR. FRED J. SEAVER, Curator (Flowerless Plants) ROBERT S. WILLIAMS, Administrative Assistant PERCY WILSON, Associate Curator DR. FRANCIS W. PENNELL, Associate Curator GEORGE V.
    [Show full text]