Very Basic Arduino Programming

Total Page:16

File Type:pdf, Size:1020Kb

Very Basic Arduino Programming THE ARDUINO MICROCONTROLLERS Presented by: Forest Shick, WA2MZG For those who don’t know me I am Forest Shick, WA2MZG. I have been a ham for about 50 years. Ground rule – ask questions on the current slide First, I will briefly cover other microcontroller boards - quickly 1 Buyer Beware $0.95 Is it worth it? Buyer beware – I purchased these connectors from Adafruit. This picture shows 3 connectors. They lasted about 10 insertion removal cycles. Spend the money and buy a good connector 2 Qualifications Did you ever wonder Why is this person presenting? I do!! I am an electronics engineer. I have been designing and developing hardware and software for microcontroller based products since 1980. The first product I designed with a microcontroller was the hand held terminal on the left – in assembly language for RCA CDP1802 microprocessor. My next project was the battery-operated printer in 1982. My last 2 projects, around 2014, were the remote-controlled lights and the electronic beer tap. Those were written in C language and each had a different microcontroller from Motorola / Freescale. For these products I did the electronic and software design and development. The beer tap also had software for a PC and a PDA with network, USB and IR communications. I have designed products with microcontrollers from RCA, Motorola, Freescale, Microchip, Atmel, Texas Instrument and a DSP from Analog Devices 3 Single Board Computers Beagleboard.org Raspberrypi.org Asus.com/us/single-board- computer/tinker-board Just to acknowledge the existence of other devices – Arduinos are not the only hobbyist microcontrollers, here are 3 single board computers from Beagle board, Raspberry Pi and Asus. The Pi is a decent entry level product for the beginner - from a software point of view because of the support. The Beagle Bone Black is a superior product relative to the Pi but is not as well supported. The Asus – I have seen very little info on in the hobbyist market or anywhere else – only one article stating it was better for ft8 than the Pi because it was faster. 4 Other Microcomputer Modules Pjrc.com/teensy/ 3.2 – 72MHz Cortex M4 3.6 – 180MHz Cortex-M4F 4.0 – 600 MHz ARM Cortex M7 NANO – 16MHz 8 bit Teensy 3.2 Teensy 4.0 Arduino NANO Teensy 3.6 Here is a less popular competitor to the Arduino. It claims it is compatible with the Arduino Integrated Development Environment – after adding additional files. I have not had any experience with these boards, but they appear to have much the same capabilities but with a much faster microcontroller. Notice the speed difference – The NANO is the slowest. 5 What is an Arduino? These may be the 3 most popular Arduino boards: UNO, NANO & MEGA. The UNO and NANO are very similar. The slide shows the relative size of the board. Each has its own advantage: NANO – size MEGA – capability and features UNO – compatibility with Arduino shields There are many vendors selling their own version of the Arduino boards and you can get them very inexpensively on-line from “unknown” vendors. As always – buyer beware. Remember the 2nd slide! 6 Other Arduino Modules If you are purchasing an Arduino – beware – 6 of the smaller boards are all NANOs but with different functionality. The other 4 boards are just examples of the many boards available in the Arduino product line 7 Arduino Shields There are also other boards or modules called shields available for the Arduino. They will be plug compatible with the UNO and possibly the MEGA but not the NANO. They will work with the NANO but you will have to wire them together. There are many different shields from Arduino and other vendors. There are motor driver shields, sensor shields, prototyping shields, SD card shields, GPS shields, robot and touch screen LCD shields and more 8 What is an Arduino good for? • Weather station • Station control / accessories • Rotor controller • Keyer • Station 24 Hr Clock • Home automation • Use your imagination • Robot • Steppingstone to the • Light Controller Raspberry Pi and other more • Simple Security System powerful devices • Homebrew test equipment • Having fun • Game design – remember • Saying – “I DID THAT”!! Simon? The big question is WHAT IS AN ARDUINO GOOD FOR? Within limits – use your imagination. You are not going to make an SDR transceiver, but you could make a VFO. See my projects on the table. 9 Prototyping Let’s stop for a quick look at prototyping technique that might be useful. Using a simple breadboard prototyping strip you can build many of your ideas. Notice the blue, red and green lines – they show which contacts are connected. The black lines show the break A 1/4W resistor is a good source of jumpers. Cut the wires off at the body of the resistor and they fit perfectly. Old solid conductor phone lines make good jumpers. Of course you can buy ready-made jumpers: M-M, F-F, M-F 10 Projects – Direct Conversion Receiver NANO controls the LCD and the DDS chip – the VFO in this direct conversion receiver Samples of projects using different Arduino boards. This uses a NANO This is a project from N6QW A direct conversion receiver I did a presentation on this Sept 2015, I believe 11 Projects First steps in an SSB transceiver. This uses an UNO. Using an UNO to control the VFO, BFO, LO and display. This is the evolution of the direct conversion receiver shown on the last slide into a SSB transceiver. It never was completed 12 Projects – Morse Code Tool The Arduino MEGA was used because the SD card required a lot of memory space – program and RAM Details are in a previous issue of the RAG Using a MEGA This is what happens when you start a project and don’t stop. I have 2 more options for this: CW transmitter and morse code decoder but came to my senses and stopped. 13 Let’s Get Started • To be fair – there is more relevant material than we can cover in 1 hour • We will start with an overview of the NANO • We will investigate the more common / easy to use features first • Initialization • Digital IO • Analog Conversion • As time permits, we will do a 10,000 ft view of as many features as possible 14 Comparison UNO NANO MEGA Microcontroller ATmega328P ATmega328 ATmega2560 Digital IO 14 22 54 Analog IO 6 8 16 PWM 6 6 15 UART 1 1 4 Flash 32K 32K 256K RAM 2K 2K 8K EEPROM 1K 1K 4K Clock 16MHz 16MHz 16MHZ LED_BUILTIN 13 13 13 Pins 28 32 100 This is a chart of some of the highlights of the 3 popular Arduino boards. As you can see the UNO and NANO use the same microcontroller. • Digital IO – these are logic level inputs and outputs basically used to set a condition or test a condition using only 2 states – ON and OFF or 1 and 0 or 5 volts and 0 volts • Analog IO – Inputs to a 10 bit A/D converter – 0 to 1023 • PWM – Pulse Width Modulator • UART – used for serial IO It appears as if there are 26, 36, 85 available signals – there are not! These functions share common pins for example D0 & D1 are also UART RX & TX. • Flash – program storage • RAM – variable and stack storage • EEPROM – non-volatile data storage (data is not lost when power is removed) • LED_BUILTIN – D13 on each board has a resistor and LED attached to it. 15 Microcontroller Block Diagram ATmega328 ATmega2560 Block diagram for comparison of the 328 and 2560 microcontrollers Notice the increased complexity of the 2560 We do not have the time to examine each block in detail, but I will try to cover highlights of many of the blocks – enough so you can get started giving the Arduino boards a try. Notice that each block diagram has a block titled AVR CPU. This is where the work is done 16 ATmega328 Data Sheet BUT Arduino has done a great job of getting you started There are 294 pages in without having to depend this data “book” on this book. At some level of The Arduino web site has project complexity much to offer if you have many of these pages the time to look through it. will be important to your project TAKE THE TIME NOTE: I have not found a hardware description – it could be there somewhere! Let’s take a quick look at the data sheet for the ATmega329 There are 27,489 sqin of specifications – happy reading! 17 AVR CPU Core and Sample of Instruction Set On the left is a block diagram of the AVR CPU. The structures inside the heavy black line are memory and calculation hardware. The structures to the right of the black line are the interface hardware to all the external I/O – digital, analog, etc. On the right is a peek at some of the 130+ assembly language instructions which are common to both micros. A good reason to start with the Arduino IDE – it hides these instructions from you. That is NOT C. These are the instructions higher level languages, like C, get compiled down to before they are assembled into code the micro can run. NOTE: In the RARA Academy, we will be programming in C and using many of the Arduino predefined functions. 18 NANO / ATmega328 Features • 32K bytes of Flash memory • 8 channel, 10 bit A/D • 1K bytes of EEPROM • Internal temperature measurement • 2K bytes of RAM • USART (UART) • Two 8 bit Timer / Counter • SPI • Prescaler • I2C / IIC / TWI • Output Compare • Watchdog timer and oscillator • One 16 bit Timer / Counter • Analog Comparator • Prescaler • Interrupt • Input Capture • Output Compare • Pin Change Interrupts • Real time counter and oscillator • 23 Programmable IO lines • Six Pulse Width Modulator channels This is a summary of the features of the microcontroller used on the UNO and NANO.
Recommended publications
  • Cubietruck – Mini PC
    SPRZĘT Cubietruck – mini PC Rynek komputerków jednopłytkowych opartych o procesory ARM zapoczątkowany przez Raspberry Pi rozwija się doskonale. Może nie jak grzyby po deszczu, ale systematycznie pojawiają się nowe rozwiązania: BeagleBoard, Marsboard, Cubieboard, Olinuxino itp. Różnią się one wyposażeniem, wydajnością, dostępnością dokumentacji oraz wsparciem technicznym. Ciekawie rozwija się propozycja Cubieboard. mocujących. Niby nic, ale te trzy kawałki two- org, zapoczątkowana płytką Cubieboard A10 rzywa i paczka tulejek umożliwiają poskładanie Fotografi a 3. Obudowa Cubietruck (opisaną w EP06/2013) i Cubieboard2 zgod- samodzielnego systemu mini-PC wyposażo- ną mechanicznie, ale zbudowaną w oparciu nego w dysk HDD 2,5”, wystarczająco zabez- rolę domowego centrum multimedialnego lub o nowszy, dwurdzeniowy procesor A20, zwięk- pieczając mechanicznie jego elementy. Osłony Linuxowego komputera PC. Jedyne zastrzeżenie szający wydajność Cubie i paletę jej zastosowań w odpowiednich miejscach mają wyfrezowane można mieć do kilku różnokolorowych LED, (fotografi a 1). Najnowsza propozycja to Cubie- otwory umożliwiające korzystanie z GPIO bez bezlitośnie informujących nasze oczy o stanie truck (Cubieboard3), oparty podobnie jak Cu- zdejmowania obudowy. pracy Cubie. bieboard2 (fotografi a 2) o procesor Allwinner Ciekawą propozycją dla osób wykorzy- Cubieboard3 oparty jest o SoC w architektu- A20, lecz mający znacznie bogatsze wyposaże- stujących Cubieboard3 w roli samodzielnego rze ARM7 – Allwinner A20, który w połączeniu nie, co niestety wiąże się z wyższą ceną. Porów- mini-PC, jest pełna obudowa pokazana na fo- ze sporej wielkości dyskiem NAND Flash oraz nanie parametrów poszczególnych komputer- tografi i 3. W swoim wnętrzu mieści swobodnie zwiększoną pamięcią RAM bezproblemowo ków Cubieboard umieszczono w tabeli 1. płytkę Cubieboard3, dysk HDD 2,5” (fotogra- sprawdza się w roli komputera PC pracującego Podobnie jak w przypadku poprzednich fi a 4) i przewody połączeniowe.
    [Show full text]
  • Development Boards This Product Is Rohs Compliant
    Development Boards This product is RoHS compliant. PANDABOARD DEVELOPMENT PLATFORM Features: • Core Logic: OMAP4460 applications Processor • Interface: (1) General Purpose Expansion Header • Wireless Connectivity: 802.11 b/g/n (WiLink™ 6.0) • Memory: 1GB DDR2 RAM (I2C, GPMC, USB, MMC, DSS, ETM) • Debug options: JTAG, UART/RS-232, 1 GPIO button NTL • Full Size SD/MMC card port • Camera Expansion Header • Graphics APIs: OpenGL ES v2.0, OpenGL ES v1.1, • 10/100 Ethernet • Display Connectors: HDMI v1.3, DVI-D. LCD Expansion OpenVGv1.1, and EGL v1.3 • USB: (1) USB 2.0 OTG port, (2) USB 2.0 High-speed port • Audio Connectors: 3.5" In/Out, HDMI audio out For quantities greater than listed, call for quote. MOUSER Pandaboard Price Description STOCK NO. Part No. Each 595-PANDABOARD UEVM4430G-01-00-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4430 SoC Platform 179.00 595-PANDABOARD-ES UEVM4460G-02-01-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4460 SoC Platform 185.00 Embedded Modules Embedded BEAGLEBOARD SOC PLATFORMS BeagleBoard.org develops low-cost, fan-less single-board computers based on low-power Texas Instruments processors featuring the ARM Cortex-A8 core with all of the expandability of today's desktop machines, but without the bulk, expense, or noise. BeagleBoard.org provides an open source development platform for A B the creation of high-performance embedded designs. Beagleboard C4 Features: Beagleboard xM Features: Beaglebone Features: • Over 1,200 Dhrystone MIPS using the superscalar • Over 2,000 Dhrystone MIPS using the Super-scalar
    [Show full text]
  • Openbricks Embedded Linux Framework - User Manual I
    OpenBricks Embedded Linux Framework - User Manual i OpenBricks Embedded Linux Framework - User Manual OpenBricks Embedded Linux Framework - User Manual ii Contents 1 OpenBricks Introduction 1 1.1 What is it ?......................................................1 1.2 Who is it for ?.....................................................1 1.3 Which hardware is supported ?............................................1 1.4 What does the software offer ?............................................1 1.5 Who’s using it ?....................................................1 2 List of supported features 2 2.1 Key Features.....................................................2 2.2 Applicative Toolkits..................................................2 2.3 Graphic Extensions..................................................2 2.4 Video Extensions...................................................3 2.5 Audio Extensions...................................................3 2.6 Media Players.....................................................3 2.7 Key Audio/Video Profiles...............................................3 2.8 Networking Features.................................................3 2.9 Supported Filesystems................................................4 2.10 Toolchain Features..................................................4 3 OpenBricks Supported Platforms 5 3.1 Supported Hardware Architectures..........................................5 3.2 Available Platforms..................................................5 3.3 Certified Platforms..................................................7
    [Show full text]
  • Cubieboard Cubieboard2 Cubietruck Beaglebone Black
    Raspberry Pi (Model B rev.2) Cubieboard Cubieboard2 Cubietruck Beaglebone Black 1 Ghz (OC) ARM® Cortex-A6 1 Ghz ARM® Cortex-A8 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A8 CPU ARM1176JZF-F Allwinner A10 C8096CA Allwinner A20 Allwinner A20 AM335x GPU/FPU VideoCore IV Mali-400 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) SGX350 3D / NEON FPU accelerator RAM 512 MB 1 GB DDR3 2 GB 2 GB 512 MB DDR3 Storage micro SD/SDHC 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 2.0 2GB eMMC Power micro USB (5V/1A) 3.5 W DC 5v/2A DC 5v/2A DC 5v/2.5A DC 5V/500mA Video RCA Composite Video, HDMI 1.4 HDMI HDMI HDMI/VGA microHDMI Audio 3.5 mm Headphone Jack 3.5 mm Headphone Jack / Line In 3.5 mm Headphone Jack 3.5 mm Headphone Jack, SPDIF Network 10/100 Mbps 10/100 Mbps 10/100 Mbps 10/100/1000 Mbps, Wifi, Bluetooth 10/100 Mbps 2x46 PIN GPIO I/O ports 26 PIN GPIO, 2x Ribon 2x48 PIN GPIO, 4PIN Serial, 1IR 2x48 PIN GPIO, 4PIN Serial, 1IR 1x 54 PIN GPIO (Arduino Shield Compatible) USB ports 2x USB 2.0 2x USB 2.0 2x USB 2.0, 1 mini USB OTG 2x USB 2.0, 1 mini USB OTG 1x USB 2.0 Linux (Raspbian, Debian, Fedora, Arch, Gentoo, Kali), Andoid, Angstrom, Ubuntu, Fedora, Gentoo.
    [Show full text]
  • WLAN Hacking Workshop
    WLAN Hacking Workshop Oz Krakowski – [email protected] Luciano Coelho – [email protected] Agenda What is “OpenLink™”? Workshop intro Board setup Getting WLAN to work on BeagleBoard The OpenLink Challenge Wrap-up – Demo – Ubuntu – Prizes – What’s next What is “OpenLink™”? An open source initiative Wireless connectivity technologies – Wi-Fi™ – Bluetooth® – FM – Roadmap: • Bluetooth Low Energy • ANT • Zigbee® • NFC What is “OpenLink™”? Open link drivers available today Part of mainline Linux kernel Easily attach to open source development platform such as BeagleBoard and PandaBoard What is “OpenLink™”? Website – OpenLink.org – Community – News – Projects – Support – Platforms – Resources … And more to come… Workshop Outline Short hands-on demo Learn how to connect to an AP from the CLI Your chance to get your own BeagleBoard with a WLAN daughter card! Board Setup Pre-requisite: minicom (or another terminal app) Insert the micro-SD card Connect the USB-serial adapter Connect the USB cable (power supply) Serial Console Start minicom – minicom -s -o • /dev/ttyUSB0 • 115200 8N1 • No HW/SW flow control Log in to the serial console • user: root • pwd: rootguri BeagleBoard boot basics Two-phase boot – X-Loader (MLO) – u-boot.bin • Environment setup • Kernel parameters Kernel – Mainline-based (2.6.39-rc1) – One patch for the WLAN daughtercard Connecting to an open Access Point Set your own MAC address ifconfig wlan0 hw ether 08:00:28:00:00:<number> ifconfig wlan0 up Using the iw tool to scan iw wlan0 scan Connecting to an open AP iw wlan0 connect
    [Show full text]
  • Raspberry Pi Computer Vision Programming – Second Edition Programming – Second Edition
    Raspberry Pi Computer Vision Pajankar Ashwin Edition Second – Programming Vision Computer Pi Raspberry Programming – Second Edition Raspberry Pi is one of the popular on Raspberry Pi, before covering major Raspberry Pi single-board computers of our generation. techniques and algorithms in image All the major image processing and computer processing, manipulation, and computer vision algorithms and operations can be vision. By sequentially working through the implemented easily with OpenCV on steps in each chapter, you'll understand Computer Vision Raspberry Pi. This updated second edition is essential OpenCV features. Later sections packed with cutting-edge examples and new will take you through creating graphical user topics, and covers the latest versions of key interface (GUI) apps with GPIO and OpenCV. technologies such as Python 3, Raspberry Pi, You'll also learn how to use the new computer Programming and OpenCV. This book will equip you with vision library, Mahotas, to perform various the skills required to successfully design and image processing operations. Finally, you'll implement your own OpenCV, Raspberry Pi, explore the Jupyter notebook and how to and Python-based computer vision projects. set up a Windows computer and Ubuntu for computer vision. Second Edition At the start, you'll learn the basics of Python 3, and the fundamentals of single-board By the end of this book, you'll be able to computers and NumPy. Next, you'll discover confi dently build and deploy computer how to install OpenCV 4 for Python 3 vision apps. Design
    [Show full text]
  • A $35 Firewall for the Developing World
    RC25442 (IRE1401-011) January 20, 2014 Computer Science IBM Research Report A $35 Firewall for the Developing World Zubair Nabi IBM Research Smarter Cities Technology Centre Mulhuddart Dublin 15, Ireland Research Division Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home. A $35 Firewall for the Developing World Zubair Nabi IBM Research, Dublin [email protected] ABSTRACT countries [20]. In addition, maturity in the Internet A number of recent efforts aim to bridge the global digital ecosystem has resulted in a higher standard of life [20]. divide, particularly with respect to Internet access. We take In the same vein, Internet access coupled with social this endeavor one step further and argue that Internet access media has become a catalyst for social, cultural, and and web security go hand in glove in the developing world. political activism and change [32, 35, 33, 36]. While the To remedy the situation, we explore whether low-cost plat- Internet has been declared a basic human right [29], in forms, such as Raspberry Pi ($35) and Cubieboard ($59), reality more than two-thirds of the world population| can be used to implement security mechanisms.
    [Show full text]
  • Proyecto Fin De Grado
    ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN PROYECTO FIN DE GRADO TÍTULO: Despliegue de Liota (Little IoT Agent) en Raspberry Pi AUTOR: Ricardo Amador Pérez TITULACIÓN: Ingeniería Telemática TUTOR (o Director en su caso): Antonio da Silva Fariña DEPARTAMENTO: Departamento de Ingeniería Telemática y Electrónica VºBº Miembros del Tribunal Calificador: PRESIDENTE: David Luengo García VOCAL: Antonio da Silva Fariña SECRETARIO: Ana Belén García Hernando Fecha de lectura: Calificación: El Secretario, Despliegue de Liota (Little IoT Agent) en Raspberry Pi Quizás de todas las líneas que he escrito para este proyecto, estas sean a la vez las más fáciles y las más difíciles de todas. Fáciles porque podría doblar la longitud de este proyecto solo agradeciendo a mis padres la infinita paciencia que han tenido conmigo, el apoyo que me han dado siempre, y el esfuerzo que han hecho para que estas líneas se hagan realidad. Por todo ello y mil cosas más, gracias. Mamá, papá, lo he conseguido. Fáciles porque sin mi tutor Antonio, este proyecto tampoco sería una realidad, no solo por su propia labor de tutor, si no porque literalmente sin su ayuda no se hubiera entregado a tiempo y funcionando. Después de esto Antonio, voy a tener que dejarme ganar algún combate en kenpo como agradecimiento. Fáciles porque, sí melones os toca a vosotros, Alex, Alfonso, Manu, Sama, habéis sido mi apoyo más grande en los momentos más difíciles y oscuros, y mis mejores compañeros en los momentos de felicidad. Amigos de Kulturales, los hermanos Baños por empujarme a mejorar, Pablo por ser un ejemplo a seguir, Chou, por ser de los mejores profesores y amigos que he tenido jamás.
    [Show full text]
  • Pocketbeagle
    PocketBeagle®, the tiniest $25 key-fob computer you can buy The newest BeagleBoard.org® board is PocketBeagle®, an ultra-tiny-yet-complete Linux-enabled, community-supported, open-source USB-key-fob computer. PocketBeagle® features an incredible low cost, slick design and simple usage, making PocketBeagle® the ideal development board for beginners and professionals alike. You develop directly in a web browser and PocketBeagle® can easily be set back to factory conditions, leaving you free to experiment. Key features: * Low cost Linux computer with tremendous expansibility * Opportunity to learn many programming aspects from educators on-line * Openness and flexibility tear-down limits on your imagination ® beagleboard.org PocketBeagle® 173401 The whats and whys of PocketBeagle® What is a USB key-fob computer? PocketBeagle® is the size of a tiny mint-tin (35mm by 55mm), less than half the size of the larger mint-tin or credit-card sized BeagleBone® Black (55mm by 86mm). Unlike a desktop computer where you connect a monitor, keyboard and mouse, PocketBeagle® is made to live inside your project and enables you to define its interfaces. PocketBeagle® is easily programmed through a web browser running on any other connected desktop. What can I do with PocketBeagle®? Getting to the Linux command-line and text editor via your web browser is simple, providing you with a playground for programming and electronics. Exploring is made easy with several available libraries and tutorials and many more coming. Once you get a bit familiar with Linux and electronics, you are free to explore numerous more advanced projects from the community. The sky is no limit; PocketBeagle® makes a great starting point for building something as advanced as a computer for a CubeSat and there are several BeagleBone® Black examples out there already today.
    [Show full text]
  • Using the Beaglebone Real-‐Time
    USING THE BEAGLEBONE REAL-TIME MICROCONTROLLERS Jason Kridner, [email protected] BeagleBone Black: Open hardware computer for makers Truly flexible open hardware and BeagleBone Black soRware development plaorm • Ready to use: ~$50 • 1 GHz performance • On-board HDMI to connect directly to TVs and All you need is in the box monitors • More and faster memory now with 512MB DDR3 • On-board flash storage Proven ecosystem from prototype frees up the microSD card slot to product • Support for exis^ng Most affordable and proven open hardware Linux platform available Cape plug-in boards What are PRUs ¨ “Programmable Real-^me Units” ¨ 32-bit RISC processors at 200MHz with single-cycle pin access for hard real-^me ¨ Op^mized for packet processing/switching and soRware implementaons of peripherals ¨ Part of the PRU-ICSS, “Industrial Communicaons SubSystem” Why and when to use PRUs ¨ Free from running on an operang system, so can be dedicated to a func^on ¨ Real-^me because it can’t be interrupted from its given task by other tasks ¤ Interrupts are simply registered into an event register ¤ Operaons scheduled in an event loop ¨ Low, low, low latency from input to output ¤ Zero-depth pipeline ¨ You can’t interface an external MCU to DDR memory so fast! Examples usage ¨ Tight control loops ¤ Driving motors in a mobile robot, CNC machine or 3D printer ¨ Custom protocols ¤ WS28x LEDs, DMX512, ... ¤ EtherCAT, ProfiBUS, ProfiNET, ... ¨ SoR peripherals ¤ PWM, UART (LEGO), ... Example projects (see wiki page) ¨ 6502 memory slave ¨ DMX512 ¨ WS28xx LEDs (OLA, LEDscape) ¨ MachineKit for 3D prinng or CNC ¨ GSoC: pruspeak, BeagleLogic ¨ GCC, Forth, ..
    [Show full text]
  • Design of a Low-Cost Wireless NIRS System with Embedded Linux and a Smartphone Interface
    Design of a low-cost wireless NIRS system with embedded Linux and a smartphone interface A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering by Diogo D.S. Dias BEng, Fundac¸a~o Federal do ABC, 2014 Bac., Fundac¸a~o Federal do ABC, 2012 2015 Wright State University Wright State University GRADUATE SCHOOL October 28th, 2015 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Diogo D.S. Dias ENTITLED Design of a low-cost wireless NIRS system with embedded Linux and a smartphone interface BE ACCEPTED IN PARTIAL FUL- FILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Biomedical Engineering. Nasser H. Kashou Thesis Director Jaime E. Ramirez-Vick, Ph.D., Chair, Department of Biomedical, Industrial and Human Factors Engineering Committee on Final Examination Jack Jean, Ph.D. Ulas Sunar, Ph.D. Nasser H. Kashou, Ph.D. Robert E.W. Fyffe , Ph.D. Vice President for Research and Dean of the Graduate School ABSTRACT Dias, Diogo. M.S.B.M.E, Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, 2015. Design of a low-cost wireless NIRS system with embedded Linux and a smartphone interface. Wireless near-infrared spectroscopy (NIRS) systems can help to reduce movement ar- tifacts, and distraction due cables. Utilizing Embedded Linux (EL) can reduce size, devel- opment time, cost of a project and allow portability. The goal of this project is to develop a low-cost wireless small-sized NIRS system using EL and a Smartphone as the interface.
    [Show full text]
  • EECS 452 – Project Hardware Possibilities
    EECS 452 – Project Hardware Possibilities ñ This lecture is focused on programmable and non-programmable devices for potential project use. ñ Projects are not restricted to using C5515/DE2-70. What are some alternatives? ñ This is an awareness building lecture. It is not comprehensive. Other choices exist. ñ There has been an explosive growth of programmable/configurable devices. How to choose? The good news about computers is that they do what you tell them to do. The bad news is that they do what you tell them to do. — Ted Nelson If you can get your hands on the part, it’s obsolete. — anon Nothing is more difficult, and therefore more precious, than to be able to decide. — Napoleon Bonaparte EECS 452 – Fall 2014 Project Hardware Possibilities – Page 1/90 Thursday – Sept 18, 2014 Before we start . In today’s world there exist many, moderately powerful, very low cost, single board computers that one can use to self-educate. When doing DSP one very often wants/needs to generate an observe signals. The cost of the needed equipment can greatly dwarf the board cost. However, the cost of “equipment” is dropping. Consider the Digilent Analog Discovery. ñ $159 academic ñ 2-channel oscilloscope ñ 2-channel waveform generator ñ 16-channel logic analyzer ñ 16-channel digital pattern generator ñ Spectrum Analyzer ñ Network Analyzer ñ Voltmeter ñ Digital I/O ñ ≈$220 with bells and whistles From a Digilent web page. EECS 452 – Fall 2014 Project Hardware Possibilities – Page 2/90 Thursday – Sept 18, 2014 Risk and other ñ The safest choice in implementing your project is to make use of the C5515 and/or DE2-70 (or DE0-nano).
    [Show full text]