Relation of Environmental Characteristics to the Composition of Aquatic Assemblages Along a Gradient of Urban Land Use in New Jersey, 1996-98

Total Page:16

File Type:pdf, Size:1020Kb

Relation of Environmental Characteristics to the Composition of Aquatic Assemblages Along a Gradient of Urban Land Use in New Jersey, 1996-98 U.S. Department of the Interior U.S. Geological Survey RELATION OF ENVIRONMENTAL CHARACTERISTICS TO THE COMPOSITION OF AQUATIC ASSEMBLAGES ALONG A GRADIENT OF URBAN LAND USE IN NEW JERSEY, 1996-98 Water-Resources Investigations Report 02-4069 National Water-Quality Assessment Program A D B C A. Algae sampling equipment (pipettor, microalgal periphyton brush attached to end of hand drill, and a modified-syringe sampling device) B. Surveying channel cross sections (Photograph by Ming Chang, U.S. Geological Survey) C. Determining length and weight of a white sucker D. Collecting aquatic macroinvertebrates (Photograph by Denis Sun, U.S. Geological Survey) All photographs in this document without photo credit were taken by the author. RELATION OF ENVIRONMENTAL CHARACTERISTICS TO THE COMPOSITION OF AQUATIC ASSEMBLAGES ALONG A GRADIENT OF URBAN LAND USE IN NEW JERSEY, 1996-98 By Jonathan G. Kennen and Mark A. Ayers U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 02-4069 National Water-Quality Assessment Program West Trenton, New Jersey 2002 U.S. DEPARTMENT OF THE INTERIOR Gale A. Norton, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, or brand names in this report is for identification purposes only and does not consti- tute endorsement by the U.S. Geological Survey. For additional information, write to: Copies of this report can be purchased from: NAWQA Project Chief U.S. Geological Survey U.S. Geological Survey Mountain View Office Park Branch of Information Services 810 Bear Tavern Road, Suite 206 Box 25286 West Trenton, NJ 08628 Denver, CO 80225-0286 Information about the National Water-Quality Assessment (NAWQA) Program is available on the Internet through the World Wide Web at http://water.usgs.gov/nawqa/nawqa_home or http://nj.usgs.gov/nawqa/. CONTENTS Page Glossary ........................................................................................................................................................ix Abstract.......................................................................................................................................................... 1 Introduction.................................................................................................................................................... 2 Purpose and scope................................................................................................................................... 3 Study area................................................................................................................................................ 3 Acknowledgments................................................................................................................................... 6 Approach........................................................................................................................................................ 6 Design of land-use gradient .................................................................................................................... 8 Aggregation of anthropogenic factors used in assessment...................................................................... 8 Data collection............................................................................................................................................. 10 Stream Characteristics........................................................................................................................... 10 Habitat ............................................................................................................................................ 10 Ichthyofauna ................................................................................................................................... 11 Macroinvertebrates ......................................................................................................................... 12 Attached algae (periphyton) ........................................................................................................... 12 Water quality................................................................................................................................... 13 Volatile organic compounds (VOCs) ....................................................................................... 14 Pesticides.................................................................................................................................. 14 Trace elements and organochlorine compounds in bed sediment............................................ 14 Watershed characteristics ...................................................................................................................... 15 Interpretation of digital data ........................................................................................................... 15 Derivation of the index of impervious area .................................................................................... 16 Flow-path length and topography................................................................................................... 16 Analytical methods ...................................................................................................................................... 17 Spatial and temporal assessment........................................................................................................... 17 Univariate and multivariate approaches ................................................................................................ 17 Principal components analysis........................................................................................................ 17 Detrended correspondence analysis................................................................................................ 18 Multiple linear regression............................................................................................................... 18 Indices of aquatic community impairment ..................................................................................... 19 Partial canonical correspondence analysis ..................................................................................... 20 Analysis of benchmark communities ............................................................................................. 21 Resolution of taxonomic ambiguities and data censoring..................................................................... 21 Variability of aquatic communities.............................................................................................................. 21 Species abundance ................................................................................................................................ 21 Spatial and temporal variability in aquatic assemblages....................................................................... 39 Distinctions among benchmark community groups.............................................................................. 39 Identification of important environmental variables .............................................................................42 Indirect gradient assessment of aquatic assemblages............................................................................ 42 Significant environmental factors ......................................................................................................... 45 Environmental associations across multiple pCCA axes ...................................................................... 48 Relation of environmental characteristics to aquatic assemblages.............................................................. 55 Impervious surfaces .............................................................................................................................. 56 Hydrologic instability............................................................................................................................ 58 Effects of runoff quality ........................................................................................................................ 58 Erosion, sedimentation, and stream-channel modification ................................................................... 59 iii CONTENTS--Continued Page Trace elements....................................................................................................................................... 60 Riparian conditions and stream buffers................................................................................................. 61 Forest and wetlands............................................................................................................................... 61 Relation of land-use changes to assemblage structure of long-lived species........................................ 62 Community indices ............................................................................................................................... 62 Indicator taxa......................................................................................................................................... 62 Complementary analytical techniques......................................................................................................... 64 Summary and conclusions ........................................................................................................................... 64 References cited..........................................................................................................................................
Recommended publications
  • Draft Final Remedial Investigation / Feasibility Study (Ri/Fs)
    Snperfondi RMQ SITE: DRAFT FINAL PKEAK; REMEDIAL VOLUME 1 OF 4 - TEXT REMEDIAL INVESTIGATION/FEASIBILITY STUDY NEW HAMPSHIRE PLATING COMPANY MERRIMACK, NEW HAMPSHIRE For U.S. Environmental Protection Agency By Halliburton NUS Corporation and Raytheon Engineers & Constructors, Inc. EPA Work Assignment No. 33-1LG1 EPA Contract No. 68-W8-0117 HNUS Project No. 0772 May 1996 Halliburton NTJS CORPORATION W94619DF DRAFT FINAL REMEDIAL INVESTIGATION REPORT VOLUME 1 OF 4 - TEXT REMEDIAL INVESTIGATION/FEASIBILITY STUDY NEW HAMPSHIRE PLATING COMPANY MERRIMACK, NEW HAMPSHIRE For U.S. Environmental Protection Agency By Halliburton NUS Corporation and Raytheon Engineers & Constructors, Inc. EPA Work Assignment No. 33-1LG1 EPA Contract No. 68-W8-0117 HNUS Project No. 0772 May 1996 Marilyn M. Wade, P.E. George D(7Gardner, P.E. Project Manager Program Manager DRAFT FINAL TABLE OF CONTENTS VOLUME 1 - TEXT DRAFT FINAL REMEDIAL INVESTIGATION REPORT NEW HAMPSHIRE PLATING COMPANY SITE MERRIMACK, NEW HAMPSHIRE SECTION PAGE E.O EXECUTIVE SUMMARY ES-1 1.0 INTRODUCTION 1-1 1.1 Site and Study Area Background 1-2 1.2 NHPC Site History 1-3 1.3 Report Organization 1-4 2.0 STUDY AREA INVESTIGATION 2-1 2.1 Previous Investigations 2-1 2.1.1 Peck Environmental Laboratory ,Inc 2-1 2.1.2 Wehran Engineerin g 2-2 2.1.3 New Hampshire Department of Environmental Services (NHDES) 2-3 2.1.4 Removal Actio n- U.S. EPA Emergency Response Team (ERT) 2-4 2.1.5 Wetlan dInvestigation 2-5 2.1.6 Technical Assistance Groundwater Samplin g 2-6 2.1.7 Non-Time-Critical Removal Action 2-7 2.1.8 Previous Investigation son Properties Abutting the NHPC Site 2-9 2.1.8.1 Magnum Leasing and Mortgage Company .
    [Show full text]
  • Wq-Rule4-12Kk L.7
    L.7. Calculation of Minnesota Macroinvertebrate IBIs- Draft January 26, 2017 Introduction The Index of Biotic Integrity (IBI) is one of the primary tools used by the Minnesota Pollution Control Agency (MPCA) to determine if streams are meeting their aquatic life use goals. Calculation of an IBI involves the synthesis of macroinvertebrate community information into a numerical expression of stream health. In order to apply the MPCA Macroinvertebrate IBI (MIBI) to a macroinvertebrate dataset, it is essential that all data is collected using MPCA field and laboratory protocols (MPCA 2004, MPCA 2015). This document details the process for calculating the Minnesota MIBIs from raw macroinvertebrate samples. Summary of MIBI development To account for natural differences in macroinvertebrates communities in Minnesota, streams are assigned to different stream types. These stream types use different MIBI models and biocriteria to determine the condition of the macroinvertebrate assemblage and their attainment or nonattainment of the aqutic life beneficial use. The MPCA stratified Minnesota streams into nine macroinvertebrate stream types based on the expected natural composition of stream macroinvertebrates (Table 1). Stream type is differentiated by drainage area, geographic region, thermal regime, and gradient. These stream types are used to determine thresholds (i.e., biocriteria) that interpret the calculated MIBI as meeting or exceeding the aquatic life use goal. MIBIs were developed from five individual invertebrate stream groups, with large rivers, wadable high gradient and wabable low gradient stream types each being combined for the purposes of metric testing and evaluation. A complete description of the development of MIBIs can be found in MPCA (2014).
    [Show full text]
  • CHIRONOMUS Newsletter on Chironomidae Research
    CHIRONOMUS Newsletter on Chironomidae Research No. 25 ISSN 0172-1941 (printed) 1891-5426 (online) November 2012 CONTENTS Editorial: Inventories - What are they good for? 3 Dr. William P. Coffman: Celebrating 50 years of research on Chironomidae 4 Dear Sepp! 9 Dr. Marta Margreiter-Kownacka 14 Current Research Sharma, S. et al. Chironomidae (Diptera) in the Himalayan Lakes - A study of sub- fossil assemblages in the sediments of two high altitude lakes from Nepal 15 Krosch, M. et al. Non-destructive DNA extraction from Chironomidae, including fragile pupal exuviae, extends analysable collections and enhances vouchering 22 Martin, J. Kiefferulus barbitarsis (Kieffer, 1911) and Kiefferulus tainanus (Kieffer, 1912) are distinct species 28 Short Communications An easy to make and simple designed rearing apparatus for Chironomidae 33 Some proposed emendations to larval morphology terminology 35 Chironomids in Quaternary permafrost deposits in the Siberian Arctic 39 New books, resources and announcements 43 Finnish Chironomidae 47 Chironomini indet. (Paratendipes?) from La Selva Biological Station, Costa Rica. Photo by Carlos de la Rosa. CHIRONOMUS Newsletter on Chironomidae Research Editors Torbjørn EKREM, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX The CHIRONOMUS Newsletter on Chironomidae Research is devoted to all aspects of chironomid research and aims to be an updated news bulletin for the Chironomidae research community. The newsletter is published yearly in October/November, is open access, and can be downloaded free from this website: http:// www.ntnu.no/ojs/index.php/chironomus. Publisher is the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology in Trondheim, Norway.
    [Show full text]
  • Arctic Biodiversity of Stream Macroinvertebrates Declines in Response to Latitudinal Change in the Abiotic Template
    Arctic biodiversity of stream macroinvertebrates declines in response to latitudinal change in the abiotic template Joseph M. Culp1,2,5, Jennifer Lento2,6, R. Allen Curry2,7, Eric Luiker3,8, and Daryl Halliwell4,9 1Environment and Climate Change Canada and Wilfrid Laurier University, Department Biology and Department Geography and Environmental Studies, 75 University Avenue West, Waterloo, Ontario N2L3C5 Canada 2Canadian Rivers Institute, Department Biology, University of New Brunswick, 10 Bailey Drive, PO Box 4400, Fredericton, New Brunswick E3B 6E1 Canada 3Environment and Climate Change Canada, Fredericton, New Brunswick E3B 6E1 Canada 4National Hydrology Research Centre, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5 Canada Abstract: We aimed to determine which processes drive patterns of a and b diversity in Arctic river benthic macrofauna across a broad latitudinal gradient spanning the low to high Arctic of eastern Canada (58 to 81oN). Further, we examined whether latitudinal differences in taxonomic composition resulted from species replacement with organisms better adapted to northerly conditions or from the loss of taxa unable to tolerate the harsh envi- ronments of higher latitudes. We used the bioclimatic envelope concept to provide a first approximation forecast of how climate warming may modify a and b diversity of Arctic rivers and to identify potential changes in envi- ronmental variables that will drive future assemblage structure. Benthic macroinvertebrates, environmental sup- porting variables, and geospatial catchment data were collected to assess drivers of ecological pattern. We compared a diversity (i.e., taxonomic richness) across latitudes and partitioned b diversity into components of nestedness and species turnover to assess their relative contributions to compositional differences.
    [Show full text]
  • Dear Colleagues
    NEW RECORDS OF CHIRONOMIDAE (DIPTERA) FROM CONTINENTAL FRANCE Joel Moubayed-Breil Applied ecology, 10 rue des Fenouils, 34070-Montpellier, France, Email: [email protected] Abstract Material recently collected in Continental France has allowed me to generate a list of 83 taxa of chironomids, including 37 new records to the fauna of France. According to published data on the chironomid fauna of France 718 chironomid species are hitherto known from the French territories. The nomenclature and taxonomy of the species listed are based on the last version of the Chironomidae data in Fauna Europaea, on recent revisions of genera and other recent publications relevant to taxonomy and nomenclature. Introduction French territories represent almost the largest Figure 1. Major biogeographic regions and subregions variety of aquatic ecosystems in Europe with of France respect to both physiographic and hydrographic aspects. According to literature on the chironomid fauna of France, some regions still are better Sites and methodology sampled then others, and the best sampled areas The identification of slide mounted specimens are: The northern and southern parts of the Alps was aided by recent taxonomic revisions and keys (regions 5a and 5b in figure 1); western, central to adults or pupal exuviae (Reiss and Säwedal and eastern parts of the Pyrenees (regions 6, 7, 8), 1981; Tuiskunen 1986; Serra-Tosio 1989; Sæther and South-Central France, including inland and 1990; Soponis 1990; Langton 1991; Sæther and coastal rivers (regions 9a and 9b). The remaining Wang 1995; Kyerematen and Sæther 2000; regions located in the North, the Middle and the Michiels and Spies 2002; Vårdal et al.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760
    Subterranean Biology 10: 61-73, 2012 (2013) Lazare Botosaneanu ‘Naturalist’ 61 doi: 10.3897/subtbiol.10.4760 Lazare Botosaneanu ‘Naturalist’ 1927 – 2012 demic training shortly after the Second World War at the Faculty of Biology of the University of Bucharest, the same city where he was born and raised. At a young age he had already showed interest in Zoology. He wrote his first publication –about a new caddisfly species– at the age of 20. As Botosaneanu himself wanted to remark, the prominent Romanian zoologist and man of culture Constantin Motaş had great influence on him. A small portrait of Motaş was one of the few objects adorning his ascetic office in the Amsterdam Museum. Later on, the geneticist and evolutionary biologist Theodosius Dobzhansky and the evolutionary biologist Ernst Mayr greatly influenced his thinking. In 1956, he was appoint- ed as a senior researcher at the Institute of Speleology belonging to the Rumanian Academy of Sciences. Lazare Botosaneanu began his career as an entomologist, and in particular he studied Trichoptera. Until the end of his life he would remain studying this group of insects and most of his publications are dedicated to the Trichoptera and their environment. His colleague and friend Prof. Mar- cos Gonzalez, of University of Santiago de Compostella (Spain) recently described his contribution to Entomolo- gy in an obituary published in the Trichoptera newsletter2 Lazare Botosaneanu’s first contribution to the study of Subterranean Biology took place in 1954, when he co-authored with the Romanian carcinologist Adriana Damian-Georgescu a paper on animals discovered in the drinking water conduits of the city of Bucharest.
    [Show full text]
  • Chironomidae Hirschkopf
    Literatur Chironomidae Gesäuse U.A. zur Bestimmung und Ermittlung der Autökologie herangezogene Literatur: Albu, P. (1972): Două specii de Chironomide noi pentru ştiinţă în masivul Retezat.- St. şi Cerc. Biol., Seria Zoologie, 24: 15-20. Andersen, T.; Mendes, H.F. (2002): Neotropical and Mexican Mesosmittia Brundin, with the description of four new species (Insecta, Diptera, Chironomidae).- Spixiana, 25(2): 141-155. Andersen, T.; Sæther, O.A. (1993): Lerheimia, a new genus of Orthocladiinae from Africa (Diptera: Chironomidae).- Spixiana, 16: 105-112. Andersen, T.; Sæther, O.A.; Mendes, H.F. (2010): Neotropical Allocladius Kieffer, 1913 and Pseudosmittia Edwards, 1932 (Diptera: Chironomidae).- Zootaxa, 2472: 1-77. Baranov, V.A. (2011): New and rare species of Orthocladiinae (Diptera, Chironomidae) from the Crimea, Ukraine.- Vestnik zoologii, 45(5): 405-410. Boggero, A.; Zaupa, S.; Rossaro, B. (2014): Pseudosmittia fabioi sp. n., a new species from Sardinia (Diptera: Chironomidae, Orthocladiinae).- Journal of Entomological and Acarological Research, [S.l.],46(1): 1-5. Brundin, L. (1947): Zur Kenntnis der schwedischen Chironomiden.- Arkiv för Zoologi, 39 A(3): 1- 95. Brundin, L. (1956): Zur Systematik der Orthocladiinae (Dipt. Chironomidae).- Rep. Inst. Freshwat. Drottningholm 37: 5-185. Casas, J.J.; Laville, H. (1990): Micropsectra seguyi, n. sp. du groupe attenuata Reiss (Diptera: Chironomidae) de la Sierra Nevada (Espagne).- Annls Soc. ent. Fr. (N.S.), 26(3): 421-425. Caspers, N. (1983): Chironomiden-Emergenz zweier Lunzer Bäche, 1972.- Arch. Hydrobiol. Suppl. 65: 484-549. Caspers, N. (1987): Chaetocladius insolitus sp. n. (Diptera: Chironomidae) from Lunz, Austria. In: Saether, O.A. (Ed.): A conspectus of contemporary studies in Chironomidae (Diptera).
    [Show full text]
  • ED052034.Pdf
    DOCUMENT RESUME ED 052 034 SE 011 371 AUTHOR Reiners, William A.; Smallwood, Frank TITLE Undergraduate Education in Environmental Studies, A Conference Report. INSTITUTION Dartmouth Coll., Hanover, N.H. PUB DATE Apr 70 NOTE 100p. AVAILABLE FROM Public Affiars Center E Dartmouth Bicentennial Year Committee, Dartmouth College, Hanover, New Hampshire ($2.50) EDRS PRICE EDRS price MF-$0.65 HC-$3.29 DESCRIPTORS College Programs, Conference Reports, Curriculum, *Curriculum Development, *Environment, *Environmental Education, Program Descriptions, *Program Development, Programs, *Undergraduate Study ABSTRACT The nine papers included in this volume were presented during the "Working Conference on Undergraduate Education in Environmental Studies" at Dartmouth College. The rationale and strategy for environmental studies at Dartmouth College are considered in part one. Details of the proposed programs at both Dartmouth College and Williams College are reviewed in the concluding section. The main body of the volume consists of four working papers, each designed to provide a specific in-depth analysis of a key issue related to environmental education: Bioeconomics--The Science of Survival: A Proposed Philosophy for the Program; Basic approaches to the Organization of a Curriculum; Environmental Centers in a Crowded Landscape: Policies and Pitfalls in Organizing a Program; and A Case Study of New England: Examples of Public and Private Support for Environmental Education. Two additional conference papers are included: Man and Nature on Collision Course; and Environmental Dialogue: The New Education. (PR) U.S. DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE DF EDUCATION THIS DOCUMENT HAS BEENREPRO- OUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATIONORIG- INATING IT. POINTS OF VIEW OR OPIN- IONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDU- CATION POSITION OR POLICY A CONFERENCE REPORT Undergraduate Education in Environmental Studies EDITED BY WILLIAM A.
    [Show full text]
  • The Study of the Zoobenthos of the Tsraudon River Basin (The Terek River Basin)
    E3S Web of Conferences 169, 03006 (2020) https://doi.org/10.1051/e3sconf/202016903006 APEEM 2020 The study of the zoobenthos of the Tsraudon river basin (the Terek river basin) Ia E. Dzhioeva*, Susanna K. Cherchesova , Oleg A. Navatorov, and Sofia F. Lamarton North Ossetian state University named after K.L. Khetagurov, Vladikavkaz, Russia Abstract. The paper presents data on the species composition and distribution of zoobenthos in the Tsraudon river basin, obtained during the 2017-2019 research. In total, 4 classes of invertebrates (Gastropoda, Crustacea, Hydracarina, Insecta) are found in the benthic structure. The class Insecta has the greatest species diversity. All types of insects in our collections are represented by lithophilic, oligosaprobic fauna. Significant differences in the composition of the fauna of the Tsraudon river creeks and tributary streams have been identified. 7 families of the order Trichoptera are registered in streams, and 4 families in the river. It is established that the streamlets of the family Hydroptilidae do not occur in streams, the distribution boundary of the streamlets of Hydropsyche angustipennis (Hydropsychidae) is concentrated in the mountain-forest zone. The hydrological features of the studied watercourses are also revealed. 1 Introduction The biocenoses of flowing reservoirs of the North Caucasus, and especially small rivers, remain insufficiently explored today; particularly, there is no information about the systematic composition, biology and ecology of amphibiotic insects (mayflies, stoneflies, caddisflies and dipterous) of the studied basin. Amphibiotic insects are an essential link in the food chain of our reservoirs and at the same time can be attributed to reliable indicators of water quality.
    [Show full text]
  • Species Fact Sheet
    SPECIES FACT SHEET Common Name: Scott’s apatanian caddisfly Scientific Name: Allomyia scotti Wiggins 1973 (Imania) Synonyms: Imania scotti Phylum: Mandibulata Class: Insecta Order: Trichoptera Family: Apataniidae Genus: Allomyia Conservation Status: Global Status (2005): G1 National Status (1999): N1 State Statuses: Oregon: S1 (NatureServe 2010). Type Locality: OREGON, Clackamas and Hood River counties, Mt. Hood, 1st to 3rd order streams originating from perennial seeps and springs supplied by permanent snowfields around Mt. Hood at elevations from 3,500 to 5,700 feet (Wiggins 1973b; Wanner and Arendt 2015). Water was clear and cold, temperature in July and August between 2 and 6ºC. Rocks in the stream bear dense growths of a wiry moss (Wiggins 1973b; Wanner and Arendt 2015). Technical Description (Wiggins 1973b): Adult: Length of forewing male 7.7-8.1 mm, female 7.7-9.0 mm. General structure typical of the genus and for tripunctata group; dark brown in color, forewings covered uniformly with dark brown hairs. Venation similar in two sexes, essentially as illustrated for Imania bifosa Ross by Schmid (1955, see fig 15). Wing coupling mechanism consisting of approximately eight stout, non- clavate, bristles at base of hind wing, and line of short, stout, hooked setae along costal margin of hind wing which engage upon long hairs arising from anal margin of forewing (as illustrated for Lepania cascadia by Wiggins 1973a, see fig 21). Male and female genitalia described in Wiggins 1973b. Adult Caddisfly (NC State 2005). 1 Larva: Generally similar to other larvae in this genus, but distinguished primarily by the prominent horns on the head.
    [Show full text]
  • DNA Barcoding
    Full-time PhD studies of Ecology and Environmental Protection Piotr Gadawski Species diversity and origin of non-biting midges (Chironomidae) from a geologically young lake PhD Thesis and its old spring system Performed in Department of Invertebrate Zoology and Hydrobiology in Institute of Ecology and Environmental Protection Różnorodność gatunkowa i pochodzenie fauny Supervisor: ochotkowatych (Chironomidae) z geologicznie Prof. dr hab. Michał Grabowski młodego jeziora i starego systemu źródlisk Auxiliary supervisor: Dr. Matteo Montagna, Assoc. Prof. Łódź, 2020 Łódź, 2020 Table of contents Acknowledgements ..........................................................................................................3 Summary ...........................................................................................................................4 General introduction .........................................................................................................6 Skadar Lake ...................................................................................................................7 Chironomidae ..............................................................................................................10 Species concept and integrative taxonomy .................................................................12 DNA barcoding ...........................................................................................................14 Chapter I. First insight into the diversity and ecology of non-biting midges (Diptera: Chironomidae)
    [Show full text]