Lecture Notes on Undergraduate Math Kevin Zhou
[email protected] These notes are a review of the basic undergraduate math curriculum, focusing on the content most relevant for physics. The primary sources were: • Oxford's Mathematics lecture notes, particularly notes on M2 Analysis, M1 Groups, A2 Metric Spaces, A3 Rings and Modules, A5 Topology, and ASO Groups. The notes by Richard Earl are particularly clear and written in a modular form. • Rudin, Principles of Mathematical Analysis. The canonical introduction to real analysis; terse but complete. Presents many results in the general setting of metric spaces rather than R. • Ablowitz and Fokas, Complex Variables. Quickly covers the core material of complex analysis, then introduces many practical tools; indispensable for an applied mathematician. • Artin, Algebra. A good general algebra textbook that interweaves linear algebra and focuses on nontrivial, concrete examples such as crystallography and quadratic number fields. • David Skinner's lecture notes on Methods. Provides a general undergraduate introduction to mathematical methods in physics, a bit more careful with mathematical details than typical. • Munkres, Topology. A clear, if somewhat dry introduction to point-set topology. Also includes a bit of algebraic topology, focusing on the fundamental group. • Renteln, Manifolds, Tensors, and Forms. A textbook on differential geometry and algebraic topology for physicists. Very clean and terse, with many good exercises. Some sections are quite brief, and are intended as a telegraphic review of results rather than a full exposition. The most recent version is here; please report any errors found to
[email protected]. 2 Contents Contents 1 Metric Spaces 4 1.1 Definitions..........................................4 1.2 Compactness........................................6 1.3 Sequences..........................................8 1.4 Series...........................................