Tasty Bits of Several Complex Variables
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topic 7 Notes 7 Taylor and Laurent Series
Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof. -
Complex Analysis Class 24: Wednesday April 2
Complex Analysis Math 214 Spring 2014 Fowler 307 MWF 3:00pm - 3:55pm c 2014 Ron Buckmire http://faculty.oxy.edu/ron/math/312/14/ Class 24: Wednesday April 2 TITLE Classifying Singularities using Laurent Series CURRENT READING Zill & Shanahan, §6.2-6.3 HOMEWORK Zill & Shanahan, §6.2 3, 15, 20, 24 33*. §6.3 7, 8, 9, 10. SUMMARY We shall be introduced to Laurent Series and learn how to use them to classify different various kinds of singularities (locations where complex functions are no longer analytic). Classifying Singularities There are basically three types of singularities (points where f(z) is not analytic) in the complex plane. Isolated Singularity An isolated singularity of a function f(z) is a point z0 such that f(z) is analytic on the punctured disc 0 < |z − z0| <rbut is undefined at z = z0. We usually call isolated singularities poles. An example is z = i for the function z/(z − i). Removable Singularity A removable singularity is a point z0 where the function f(z0) appears to be undefined but if we assign f(z0) the value w0 with the knowledge that lim f(z)=w0 then we can say that we z→z0 have “removed” the singularity. An example would be the point z = 0 for f(z) = sin(z)/z. Branch Singularity A branch singularity is a point z0 through which all possible branch cuts of a multi-valued function can be drawn to produce a single-valued function. An example of such a point would be the point z = 0 for Log (z). -
Residue Theorem
Topic 8 Notes Jeremy Orloff 8 Residue Theorem 8.1 Poles and zeros f z z We remind you of the following terminology: Suppose . / is analytic at 0 and f z a z z n a z z n+1 ; . / = n. * 0/ + n+1. * 0/ + § a ≠ f n z n z with n 0. Then we say has a zero of order at 0. If = 1 we say 0 is a simple zero. f z Suppose has an isolated singularity at 0 and Laurent series b b b n n*1 1 f .z/ = + + § + + a + a .z * z / + § z z n z z n*1 z z 0 1 0 . * 0/ . * 0/ * 0 < z z < R b ≠ f n z which converges on 0 * 0 and with n 0. Then we say has a pole of order at 0. n z If = 1 we say 0 is a simple pole. There are several examples in the Topic 7 notes. Here is one more Example 8.1. z + 1 f .z/ = z3.z2 + 1/ has isolated singularities at z = 0; ,i and a zero at z = *1. We will show that z = 0 is a pole of order 3, z = ,i are poles of order 1 and z = *1 is a zero of order 1. The style of argument is the same in each case. At z = 0: 1 z + 1 f .z/ = ⋅ : z3 z2 + 1 Call the second factor g.z/. Since g.z/ is analytic at z = 0 and g.0/ = 1, it has a Taylor series z + 1 g.z/ = = 1 + a z + a z2 + § z2 + 1 1 2 Therefore 1 a a f .z/ = + 1 +2 + § : z3 z2 z This shows z = 0 is a pole of order 3. -
Chapter 2 Complex Analysis
Chapter 2 Complex Analysis In this part of the course we will study some basic complex analysis. This is an extremely useful and beautiful part of mathematics and forms the basis of many techniques employed in many branches of mathematics and physics. We will extend the notions of derivatives and integrals, familiar from calculus, to the case of complex functions of a complex variable. In so doing we will come across analytic functions, which form the centerpiece of this part of the course. In fact, to a large extent complex analysis is the study of analytic functions. After a brief review of complex numbers as points in the complex plane, we will ¯rst discuss analyticity and give plenty of examples of analytic functions. We will then discuss complex integration, culminating with the generalised Cauchy Integral Formula, and some of its applications. We then go on to discuss the power series representations of analytic functions and the residue calculus, which will allow us to compute many real integrals and in¯nite sums very easily via complex integration. 2.1 Analytic functions In this section we will study complex functions of a complex variable. We will see that di®erentiability of such a function is a non-trivial property, giving rise to the concept of an analytic function. We will then study many examples of analytic functions. In fact, the construction of analytic functions will form a basic leitmotif for this part of the course. 2.1.1 The complex plane We already discussed complex numbers briefly in Section 1.3.5. -
Compex Analysis
( ! ) 1. The amplitu.e of a comple2 number isisis a) 0 b) 89: c) 8 .) :8 2.The amplitu.e of the quotient of two comple2 numbers is a) the sum of their amplitu.es b) the .ifference of their amplitu.es c) the pro.uct of their amplitu.es .) the quotient of their amplitu.es 3. The ? = A B then ?C = : : : : : : a) AB b) A B c) DB .) imaginary J ? K ?: J 4. If ? I ?: are any two comple2 numbers, then J ?.?: J isisis J ? K ?: J J ? K ?: J J ? K ?: J J J J J a)a)a) J ?: J b) J ?. J c) J ?: JJ? J .) J ? J J ?: J : : 555.5...MNO?P:Q: A B R = a) S b) DS c) T .) U 666.The6.The equation J? A UJ A J? D UJ = W represents a) Circle b) ellipse c) parparabolaabola .) hyperbola 777.The7.The equation J? A ZJ = J? D ZJ represents a) Circle b) ellipse c) parparabolaabola .) Real a2is 888.The8.The equation J? A J = ]:J? D J represents a) Circle b) ellipse c) parparabolaabola .) hyperbola 999.The9.The equation J?A:J A J?D:J = U represents a) Circle b) a st. line c) parabola .) hyperbohyperbolalalala 101010.The10.The equation J:? D J = J?D:J represents a) Circle b) a st. line c) parabola .) hyperbola : : 111111.The11.The equation J? D J A J?D:J = U represents a) Circle b) a st. line c) parabola .) hyperbola ?a 121212.The12.The equation !_ `?a b = c represents a) Circle b) a st. -
Extremal Positive Pluriharmonic Functions on Euclidean Balls
EXTREMAL POSITIVE PLURIHARMONIC FUNCTIONS ON EUCLIDEAN BALLS By Farhad Jafari and Mihai Putinar IMA Preprint Series # 2180 ( November 2007 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA 400 Lind Hall 207 Church Street S.E. Minneapolis, Minnesota 55455–0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu EXTREMAL POSITIVE PLURIHARMONIC FUNCTIONS ON EUCLIDEAN BALLS FARHAD JAFARI AND MIHAI PUTINAR To Professor J. J. Kohn on the occasion of his seventy-fifth birthday Abstract. Contrary to the well understood structure of positive har- monic functions in the unit disk, most of the properties of positive pluri- n harmonic functions in symmetric domains of C , in particular the unit ball, remain mysterious. In particular, in spite of efforts spread over quite a few decades, no characterization of the extremal rays in the n cone of positive pluriharmonic functions in the unit ball of C is known. We investigate this question by a geometric tomography technique, and provide some new classes of examples of such extremal functions. 1. Introduction. According to a classical theorem due to Herglotz and F. Riesz, every non- negative harmonic function in the open unit disk D is the Poisson integral of a positive Borel measure on the unit circle T. This correspondence readily characterizes the extreme points of the convex cone of positive harmonic functions h in D, normalized by the condition h(0) = 1, as the Poisson integrals of extremal probability measures on the unit circle, namely the Dirac measures on the unit circle. Thus these extremal objects are simply the one-parameter class of functions uζ (z) = P (z, ζ), ζ ∈ T, where P (z, ζ) is the classical Poisson kernel in D. -
COMPLEX ANALYSIS Notes Lent 2006 T. K. Carne
Department of Pure Mathematics and Mathematical Statistics University of Cambridge COMPLEX ANALYSIS Notes Lent 2006 T. K. Carne. [email protected] c Copyright. Not for distribution outside Cambridge University. CONTENTS 1. ANALYTIC FUNCTIONS 1 Domains 1 Analytic Functions 1 Cauchy – Riemann Equations 1 2. POWER SERIES 3 Proposition 2.1 Radius of convergence 3 Proposition 2.2 Power series are differentiable. 3 Corollary 2.3 Power series are infinitely differentiable 4 The Exponential Function 4 Proposition 2.4 Products of exponentials 5 Corollary 2.5 Properties of the exponential 5 Logarithms 6 Branches of the logarithm 6 Logarithmic singularity 6 Powers 7 Branches of powers 7 Branch point 7 Conformal Maps 8 3. INTEGRATION ALONG CURVES 9 Definition of curves 9 Integral along a curve 9 Integral with respect to arc length 9 Proposition 3.1 10 Proposition 3.2 Fundamental Theorem of Calculus 11 Closed curves 11 Winding Numbers 11 Definition of the winding number 11 Lemma 3.3 12 Proposition 3.4 Winding numbers under perturbation 13 Proposition 3.5 Winding number constant on each component 13 Homotopy 13 Definition of homotopy 13 Definition of simply-connected 14 Definition of star domains 14 Proposition 3.6 Winding number and homotopy 14 Chains and Cycles 14 4 CAUCHY’S THEOREM 15 Proposition 4.1 Cauchy’s theorem for triangles 15 Theorem 4.2 Cauchy’s theorem for a star domain 16 Proposition 4.10 Cauchy’s theorem for triangles 17 Theorem 4.20 Cauchy’s theorem for a star domain 18 Theorem 4.3 Cauchy’s Representation Formula 18 Theorem 4.4 Liouville’s theorem 19 Corollary 4.5 The Fundamental Theorem of Algebra 19 Homotopy form of Cauchy’s Theorem. -
SOME PROPERTIES of GRAUERT TYPE SURFACES Contents 1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Politecnico di Milano SOME PROPERTIES OF GRAUERT TYPE SURFACES SAMUELE MONGODI1, ZBIGNIEW SLODKOWSKI2, AND GIUSEPPE TOMASSINI3 Contents 1. Introduction 1 2. Compact curves in Grauert type surfaces 3 3. Level sets of pluriharmonic functions 6 4. A class of examples 11 4.1. S-antisymmetric bundles and cocycles 12 4.2. Proof of Theorem 4.1 15 References 17 1. Introduction In [5, 6], we addressed the problem of studying a class of weakly complete spaces, namely, complex manifolds of dimension 2 endowed with a real analytic plurisubharmonic exhaustion function. Stein spaces are obviously an instance of weakly complete spaces, where the exhaustion function can be taken to be strictly plurisubhar- monic and we have abundance of holomorhpic functions; more gen- erally, holomorphically convex spaces give a wide range of examples, which admit a proper holomorphic map onto a Stein space, their Cartan- Remmert reduction. A completely different example of weakly complete space is due to Grauert (cfr. [7]). As a generalization of the latter, we say that a com- plex surface X is of Grauert type if it admits a real analytic plurisub- harmonic exhaustion function α, such that the regular level sets of Date: June 1, 2017. 2010 Mathematics Subject Classification. Primary 32E, 32T, 32U; Secondary 32E05, 32T35, 32U10. Key words and phrases. Pseudoconvex domains, Weakly complete spaces, Holo- morphic foliations. The first author was supported by the FIRB2012 grant “Differential Geometry and Geometric Function Theory". 1 2 S. -
MA 528 PRACTICE PROBLEMS 1. Find the Directional Derivative of F(X, Y)
MA 528 PRACTICE PROBLEMS 1. Find the directional derivative of f(x, y)=5− 4x2 − 3y at (x, y) towards the origin −8x2 − 3y −8x − 3 8x2 +3y a. −8x − 3b.p c. √ d. 8x2 +3y e. p . x2 + y2 64x2 +9 x2 + y2 2. Find a vector pointing in the direction in which f(x, y, z)=3xy − 9xz2 + y increases most rapidly at the point (1, 1, 0). a. 3i +4j b. i + j c. 4i − 3j d. 2i + k e. −i + j. 1 3. Find a vector that is normal to the graph of the equation 2 cos(πxy) = 1 at the point ( 6 , 2). √ a. 6i + j b. − 3 i − j c. 12i + j d. j e. 12i − j. 4. Find an equation of the tangent plane to the surface x2 +2y2 +3z2 = 6 at the point (1, 1, −1). a. −x +2y +3z =2 b. 2x +4y − 6z =6 c. x − 2y +3z = −4 d. 2x +4y − 6z =6 e. x +2y − 3z =6. 5. Find an equation of the plane tangent to the graph of z = π + sin(πx2 +2y)when(x, y)=(2,π). a. 4πx +2y − z =9π b. 4x +2πy − z =10π c. 4πx +2πy + z =10π d. 4x +2πy − z =9π e. 4πx +2y + z =9π. 6. Are the following statements true or false? R 1. The line integral (x3 +2xy)dx +(x2 − y2)dy is independent of path in the xy-plane. R C 3 2 − 2 2. C (x +2xy)dx +(x y )dy = 0 for every closed oriented curve C in the xy-plane. -
On a Monge-Amp`Ere Operator for Plurisubharmonic Functions With
ON A MONGE-AMPERE` OPERATOR FOR PLURISUBHARMONIC FUNCTIONS WITH ANALYTIC SINGULARITIES MATS ANDERSSON, ZBIGNIEW BLOCKI,ELIZABETH WULCAN Abstract. We study continuity properties of generalized Monge-Amp`ereoperators for plurisubharmonic functions with analytic singularities. In particular, we prove continuity for a natural class of decreasing approximating sequences. We also prove a formula for the total mass of the Monge-Amp`eremeasure of such a function on a compact K¨ahlermanifold. 1. Introduction We say that a plurisubharmonic (psh) function u on a complex manifold X has analytic singularities if locally it can be written in the form (1.1) u = c log jF j + b; where c ≥ 0 is a constant, F = (f1; : : : ; fm) is a tuple of holomorphic functions, and b is bounded. For instance, if fj are holomorphic functions and aj are positive rational numbers, a am then log(jf1j 1 + ··· + jfmj ) has analytic singularities. By the classical Bedford-Taylor theory, [5, 6], if u is of the form (1.1), then in fF 6= 0g, for any k, one can define a positive closed current (ddcu)k recursively as (1.2) (ddcu)k := ddcu(ddcu)k−1: It was shown in [3] that (ddcu)k has locally finite mass near fF = 0g for any k and that the c k−1 natural extension 1fF 6=0g(dd u) across fF = 0g is closed, cf. [3, Eq. (4.8)]. Moreover, by c k−1 [3, Proposition 4.1], u1fF 6=0g(dd u) has locally finite mass as well, and therefore one can define the Monge-Amp`erecurrent c k c c k−1 (1.3) (dd u) := dd u1fF 6=0g(dd u) for any k. -
Traces of Pluriharmonic Functions Compositio Mathematica, Tome 44, No 1-3 (1981), P
COMPOSITIO MATHEMATICA PAOLO DE BARTOLOMEIS GIUSEPPE TOMASSINI Traces of pluriharmonic functions Compositio Mathematica, tome 44, no 1-3 (1981), p. 29-39 <http://www.numdam.org/item?id=CM_1981__44_1-3_29_0> © Foundation Compositio Mathematica, 1981, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 44, Fasc. 1-3, 1981, pag. 29-39 @ 1981 Sijthoff & Noordhoff International Publishers - Alphen aan den Rijn Printed in the Netherlands TRACES OF PLURIHARMONIC FUNCTIONS Paolo de Bartolomeis and Giuseppe Tomassini Introduction Let M be a real oriented hypersurface in a complex manif old X, which divides X into two open sets X+ and X -. In this paper we characterize in terms of tangential linear diff eren- tial operators on M the distributions T on M which are "jumps" or traces (in the sense of currents) of pluriharmonic functions in X+ and X -. The starting point of our investigation is the non-tangential charac- terizing equation ~b~T = 0, which can be deduced from the theory of boundary values of holomorphic forms. If M is not Levi-flat, we construct a second order tangential local linear differential operator wM such that if T is the trace on M of a pluriharmonic function h, then CùM(T) = ah. -
20. Isolated Singularities Definition 20.1. Let F : U −→ C Be A
20. Isolated Singularities Definition 20.1. Let f : U −! C be a holomorphic function on a region U. Let a2 = U. We say that a is an isolated singularity of f if U contains a punctured neighbourhood of a. Note that Log z does not have an isolated singularity at 0, since we have to remove all of (−∞; 0] to get a continuous function. By contrast its derivative 1=z is holomorphic except at 0 and so it has an isolated singularity at 0. Suppose that f has an isolated singularity at a. As a punctured neighbourhood of a is a special type of annulus, f has a Laurent ex- pansion centred at a, 1 X k f(z) = ak(z − a) ; k=−∞ valid for 0 < jz − aj < r; for some real r. The behaviour at a is dictated by the negative part of the Laurent expansion. Definition 20.2. If f has an isolated singularity at a and all of the coefficients ak of the Laurent expansion 1 X k f(z) = ak(z − a) ; k=−∞ vanish if k < 0, then we say that f has a removable singularity. If f has a removable singularity then in fact we can extend f to a holomorphic function in a neighbourhood of a. Indeed, the Laurent ex- pansion of f is a power series expansion, and this defines a holomorphic function in a neighbourhood of a. Example 20.3. The function sin z z has a removable singularity at a. 1 Indeed, sin z 1 z3 z3 = z − + + ::: z z 3! 5! z2 z4 = 1 − + + :::; 3! 5! is the Laurent series expansion of sin z=z.