Label-Free and Charge-Sensitive Dynamic Imaging of Lipid Membrane Hydration on Millisecond Time Scales

Total Page:16

File Type:pdf, Size:1020Kb

Label-Free and Charge-Sensitive Dynamic Imaging of Lipid Membrane Hydration on Millisecond Time Scales Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales Orly B. Taruna,b,c, Christof Hannesschlägerd, Peter Pohld, and Sylvie Rokea,b,c,1 aLaboratory for Fundamental BioPhotonics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; bInstitute of Materials Science, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; cLausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and dInstitute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria Edited by F. Fleming Crim, University of Wisconsin−Madison, Madison, WI, and approved March 1, 2018 (received for review November 7, 2017) Biological membranes are highly dynamic and complex lipid also employed in methods such as interferometric scattering mi- bilayers, responsible for the fate of living cells. To achieve this croscopy (13), ellipsometry (14), and atomic force microscopy (15, function, the hydrating environment is crucial. However, mem- 16). Second-harmonic (SH) and sum frequency (SF) generation brane imaging typically neglects water, focusing on the insertion have been recognized as powerful probes of membrane function: of probes, resonant responses of lipids, or the hydrophobic core. The intrinsic symmetry selection rule that applies to both methods Owing to a recent improvement of second-harmonic (SH) imaging ensures that centrosymmetric structures such as ideal single- throughput by three orders of magnitude, we show here that we component lipid bilayers do not emit SH or SF photons. With can use SH microscopy to follow membrane hydration of free- this in mind, the vibrational response of lipids in supported lipid standing lipid bilayers on millisecond time scales. Instead of using membranes was used to spectroscopically probe transmembrane the UV/VIS resonant response of specific membrane-inserted fluo- lipid motion (17) and lipid acyl chain conformation in monolayers rophores to record static SH images over time scales of >1,000 s, we on air/water interfaces (18). SH imaging studies have been per- SH imaged symmetric and asymmetric lipid membranes, while vary- formed on lipid bilayers deposited on a substrate in which the UV ing the ionic strength and pH of the adjacent solutions. We show resonance of specific drugs or chiral molecules was employed to that the nonresonant SH response of water molecules aligned by record static structural maps (19, 20). Another study employed − charge dipole interactions with charged lipids can be used as a static SH imaging to confirm single-component membrane sym- label-free probe of membrane structure and dynamics. Lipid domain metry and relate it to the stability of black lipid membranes diffusion is imaged label-free by means of the hydration of charged formed with different substrates (21). Due to the weak nonlinear domains. The orientational ordering of water is used to construct optical response in these experiments, recording times are more electrostatic membrane potential maps. The average membrane po- than 20 min per image. Since structural changes occur on much tential depends quadratically on an applied external bias, which is shorter time scales, no dynamic information has been obtained. modeled by nonlinear optical theory. Spatiotemporal fluctuations The above methods have greatly advanced membrane re- on the order of 100-mV changes in the membrane potential are search, but have so far ignored the hydrating water, without seen. These changes imply that membranes are very dynamic, not which membranes cannot exist (22, 23). Recently, we demon- only in their structure but also in their membrane potential land- strated high-throughput wide-field SH imaging (24, 25) where we scape. This may have important consequences for membrane func- tion, mechanical stability, and protein/pore distributions. Significance water | membranes | second-harmonic imaging | lipids | surface potential Lipid bilayer membranes are responsible for compartmentali- he properties of membranes around cells and organelles are zation, signaling, transport, and flow of charge in living cells. Tcritically determined by the structural and dynamical proper- Membranes self-assemble in aqueous solutions. Without a ties of lipid membranes (1, 2). The distribution of charge, chemical hydrating environment, membranes cannot exist. It is there- composition, and presence or absence of domains at membranes fore surprising to note that the hydrating water is neglected in determine the traffic in and out of cells, the structural integrity, most membrane-related studies. We imaged membrane-bound oriented water by means of label-free second harmonic mi- and the response of cells to their environment, even leading to cell CHEMISTRY croscopy. We tracked, on millisecond time scales, membrane death (3). In addition, the hydration of lipid membranes is key to domain diffusion of condensed charged lipid domains, domain their structural integrity: Without water, lipids will not self- structure, and the spatial distribution of charge. Real-time assemble into a membrane structure or remain stable. Imaging electrostatic membrane potential maps were constructed us- membrane hydration, the dynamics of charge, lipid domain for- ing nonlinear optical theory. The spatiotemporal fluctuation in mation, and diffusion is a formidable challenge relevant for un- the membrane potential is surprisingly large and reveals the derstanding membrane properties and utilizing them for treating importance of charge fluctuations on membranes. related diseases, such as neurodegenerative disorders (4). Owing to the importance of membranes, a wide variety of imaging Author contributions: O.B.T., P.P., and S.R. designed research; O.B.T. and C.H. performed BIOPHYSICS AND methods are used that are either geared toward measuring the fate research; O.B.T., C.H., P.P., and S.R. analyzed data; and O.B.T. and S.R. wrote the paper. COMPUTATIONAL BIOLOGY of membrane-inserted probes and their relation with the mem- The authors declare no conflict of interest. brane, such as confocal fluorescence microscopy (5, 6), stimulated This article is a PNAS Direct Submission. emission depletion far-field fluorescence nanoscopy (7), and This open access article is distributed under Creative Commons Attribution-NonCommercial- superresolution fluorescence imaging (8), or to probe the resonant NoDerivatives License 4.0 (CC BY-NC-ND). response, using coherent anti-Stokes Raman scattering micros- 1To whom correspondence should be addressed. Email: [email protected]. copy (9–11), or stimulated Raman scattering microscopy (12). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Refractive index contrast or the height difference of the hydro- 1073/pnas.1719347115/-/DCSupplemental. phobic core of the membrane that are substrate-dependent are Published online April 2, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1719347115 PNAS | April 17, 2018 | vol. 115 | no. 16 | 4081–4086 Downloaded by guest on September 28, 2021 improved the throughput of an SH microscope by a factor of microscopy. Finally, we use the second-order optical response of ∼5,000 compared with a confocal scanning microscope (25), water to measure the membrane potential and changes therein enabling the measurement of interfacial water that was oriented as a function of an external bias. While the average potential by the presence of surface charges inside a glass microcapillary. follows the quadratic dependence on an external bias, extract- If high-throughput wide-field SH imaging were to be applied to able from nonlinear optical theory, individual images show dy- lipid membrane research, it would be possible to image the namic spatiotemporal fluctuations on the order of 100 mV. molecular structure of membrane-interacting water that is in- terrelated with hydration, the presence of local charges, ioniza- Results and Discussion tion states, and membrane potentials. Such information, if SH Imaging of Membrane Hydration. Freestanding horizontal pla- obtained on a subsecond time scale, would provide a new nar lipid bilayers are formed in an aperture of a thin Teflon film pathway to image the dynamic molecular response of mem- by the apposition of lipid monolayers formed on two different branes and relate molecular structure to macroscopic function. air/water interfaces (20, 26, 27). The presence of a bilayer inside Here, we show that wide-field high-throughput SH imaging a ∼80- to 120-μm-sized circular aperture in a 25-μm-thick Teflon can indeed be used to label-free image the water molecules in film is confirmed with white-light imaging and electrical re- the hydration shells of charged membranes. As hydrating water cordings (Fig. 1A and Fig. S2). The appearance of Newton dif- molecules are oriented by the ionic groups in the lipid head fraction rings and the measured specific capacitance (Cm) and 2 groups of charged lipids through charge−dipole interactions, specific resistance (Rm) of the membrane (Cm > 0.7 μF/cm ,Rm ≈ they can emit SH photons. We use a series of experiments based 108 Ω·cm2,Fig.1A) agree well with literature values (26, 27). on changing the membrane composition, changing the ionic Compositional transleaflet asymmetry is confirmed by capacitance content of the aqueous phase adjacent to both membrane leaf- minimization measurements (28, 29) that are sensitive to differ- lets, and the pH
Recommended publications
  • New Light on Hidden Surfaces
    New light on hidden surfaces New light on hidden surfaces PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN, OP GEZAG VAN DE RECTOR MAGNIFICUS DR.D.D.BREIMER, HOOGLERAAR IN DE FACULTEIT DER WISKUNDE EN NATUURWETENSCHAPPEN EN DIE DER GENEESKUNDE, VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES TE VERDEDIGEN OP WOENSDAG 15 SEPTEMBER 2004 KLOKKE 15.15 UUR DOOR SYLVIE ROKE GEBOREN TE DE BILT IN 1977 Promotiecommissie Promotor: Prof. Dr. A. W. Kleyn Co-promotor Dr. M. Bonn Referent Prof. Dr. H. J. Bakker Overige leden: Prof. Dr. J. Reedijk Prof. Dr. J. W. M. Frenken Prof. Dr. G. J. Kroes Prof. Dr. A. van Blaaderen The work described in this thesis was made possible by financial support from the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organization for Scientific Research (NWO). ”...Thereisnoproblemknowntosciencethatcannotbecured by the liberal application of chocolate.” RICHARD BUTTERWORTH Contents 1Introduction 1 1.1Surfaces................................. 1 1.2Second-ordersumfrequencygeneration............... 3 1.3Femtosecondsumfrequencygeneration............... 4 1.4Thisthesis................................ 6 2 Experimental 9 2.1Introduction............................... 9 2.2Thelasersystem............................ 9 2.3Second-orderprocesses........................ 10 2.4Generatinginfraredpulses....................... 12 2.5Thesumfrequencyexperiment.................... 12 3 Time vs. frequency domain sum frequency generation 15 3.1Introduction..............................
    [Show full text]
  • Diving Into Surfaces
    Sylvie Roke cycles in the foyer of the Max Planck Institute for Metals Research for demonstration purposes only, but she loves cycling in the Swabian hills and dales around Stuttgart. xxxxxxxxxxxx MATERIAL & TECHNOLOGY_Personal Portrait Diving into Surfaces The experiments for her doctoral studies did not work out quite as planned the first time around. After switching gears and continued work, however, Sylvie Roke opened up a completely new perspective on soft matter. At the Max Planck Institute for Metals Research, she also uses this method to investigate potential new drugs and biological materials. A PORTRAIT BY UTA DEFFKE ometimes it is the small, ev- many more charges, which have an at- In spite of her delicate appearance and eryday things that still hide tractive or repulsive effect on each oth- her mere 32 years, it does not sound as big secrets. Take some oil, for er and on their surroundings. But what if Sylvie Roke is intimidated by this. On example, and pour it into a exactly do these molecules look like? the contrary. The young researcher bowl of water. The two liq- How are they arranged and why? Is loves such challenges and knows what S uids won’t mix, as everyone knows there a difference between a curved she can do and what she wants. When from an oil and vinegar vinaigrette. surface and a planar interface? she talks about her work and her plans, Only a vigorous shake makes the oil she makes vivid gestures, demonstrates floating on top disperse into the water CHALLENGING TEXTBOOK the motion of molecules with the aid in the form of fine droplets.
    [Show full text]
  • Surface Molecular View of Colloidal Gelation
    Surface molecular view of colloidal gelation Sylvie Roke*†, Otto Berg‡, Johan Buitenhuis§, Alfons van Blaaderen¶, and Mischa Bonn‡ʈ *Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany; ‡Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands; §Institute for Solid State Research, Soft Matter, Research Center Juelich, 52425 Juelich, Germany; ¶Soft Condensed Matter, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA, Utrecht, The Netherlands; and ʈFOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands Communicated by Gabor A. Somorjai, University of California, Berkeley, CA, July 21, 2006 (received for review April 6, 2006) We investigate the phase behavior of surface-functionalized silica ultimate ‘‘collapse’’ or coalescence of an aged gel to a noncol- colloids at both the molecular and macroscopic levels. This inves- loidal state). The gel state has been explained variously as a tigation allows us to relate collective properties such as aggrega- consequence of percolation (8), a dynamic instability (9), a tion, gelation, and aging directly to molecular interfacial behavior. frustrated gas–solid transition (10), and a manifestation of By using surface-specific vibrational spectroscopy, we reveal dra- solvent–interface interactions (11). The origin of this contro- matic changes in the conformation of alkyl chains terminating versy may be traced to the prevailing indirect or incomplete submicrometer silica particles. In fluid suspension at high temper- knowledge of interfacial structure (6). To date, colloids have atures, the interfacial molecules are in a liquid-like state of con- been studied by techniques that are not specifically sensitive to formational disorder.
    [Show full text]
  • Arxiv:1611.03384V1
    Second Harmonic Scattering as a Probe of Structural Correlations in Liquids Gabriele Tocci,1, 2, ∗ Chungwen Liang,1, 2 David M. Wilkins,1, 2 Sylvie Roke,1 and Michele Ceriotti2 1Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, Ecole´ Polytechnique F´ed´erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 2Laboratory of Computational Science and Modeling, Institute of Materials, Ecole´ Polytechnique F´ed´erale de Lausanne, 1015 Lausanne, Switzerland Second harmonic scattering experiments of water and other bulk molecular liquids have long been assumed to be insensitive to interactions between the molecules. The measured intensity is generally thought to arise from incoherent scattering due to individual molecules. We introduce a method to compute the second harmonic scattering pattern of molecular liquids directly from atomistic computer simulations, which takes into account the coherent terms. We apply this approach to large scale molecular dynamics simulations of liquid water, where we show that nanosecond second harmonic scattering experiments contain a coherent contribution arising from radial and angular correlations on a length-scale of . 1 nm - much shorter than had been recently hypothesized [1]. By combining structural correlations from simulations with experimental data [1] we can also extract an effective molecular hyperpolarizability in the liquid phase. This work demonstrates that second harmonic
    [Show full text]
  • Surface Molecular View of Colloidal Gelation
    Surface molecular view of colloidal gelation Sylvie Roke*†, Otto Berg‡, Johan Buitenhuis§, Alfons van Blaaderen¶, and Mischa Bonn‡ʈ *Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany; ‡Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands; §Institute for Solid State Research, Soft Matter, Research Center Juelich, 52425 Juelich, Germany; ¶Soft Condensed Matter, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA, Utrecht, The Netherlands; and ʈFOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands Communicated by Gabor A. Somorjai, University of California, Berkeley, CA, July 21, 2006 (received for review April 6, 2006) We investigate the phase behavior of surface-functionalized silica ultimate ‘‘collapse’’ or coalescence of an aged gel to a noncol- colloids at both the molecular and macroscopic levels. This inves- loidal state). The gel state has been explained variously as a tigation allows us to relate collective properties such as aggrega- consequence of percolation (8), a dynamic instability (9), a tion, gelation, and aging directly to molecular interfacial behavior. frustrated gas–solid transition (10), and a manifestation of By using surface-specific vibrational spectroscopy, we reveal dra- solvent–interface interactions (11). The origin of this contro- matic changes in the conformation of alkyl chains terminating versy may be traced to the prevailing indirect or incomplete submicrometer silica particles. In fluid suspension at high temper- knowledge of interfacial structure (6). To date, colloids have atures, the interfacial molecules are in a liquid-like state of con- been studied by techniques that are not specifically sensitive to formational disorder.
    [Show full text]
  • Future of Chemical Physics
    Future of Chemical Physics 31 August to 2 September, 2016 St. Edmund Hall University of Oxford Oxford, United Kingdom PROGRAM Future of Chemical Physics All meals will be served in St. Edmund Hall (SEH), Wolfson Hall. Scientific talks and coffee/tea breaks will take place in the Physical and Theoretical Chemistry Lecture Theatre (PTCL), Department of Chemistry. Poster Sessions will be held at the Jarvis Doctorow Hall (JDH), St. Edmund Hall. Wednesday 31 August Future of Chemical Physics 9:00–13:00 ....................Registration in St. Edmund Hall 13:45–14:00 ..................Welcome and opening remarks - Marsha I. Lester (PTCL) Date: 31 August – 2 September, 2016 Session I: Atoms, Molecules and Clusters (Chair: David W. Chandler) 14:00 ................................... André Fielicke (Fritz-Haber-Institut der Max-Planck-Gesellschaft Shedding IR light on gas-phase metal clusters: insights into structures Location: St. Edmund Hall, University of Oxford, and reactions Oxford, United Kingdom 14:30 .................................... Jonathan Reid (University of Bristol) Challenges in the chemical physics of aerosols 15:00 ................................... Claire Vallance (University of Oxford) Conference Organizers: State-of-the-art imaging techniques for chemical dynamics studies Angelos Michaelides (University College London), Associate Editor, JCP 15:30–16:00 ..................Coffee and tea break David Manolopoulos (University of Oxford), Deputy Editor, JCP Session II: Liquids, Glasses, and Crystals (Chair: Jeppe Dyre) Peter Hamm (University of Zürich), Deputy Editor, JCP 16:00 ................................... Ludovic Berthier (Université de Montpellier) Carlos Vega (University Complutense of Madrid), Associate Editor, JCP Facets of glass physics Marsha I. Lester (University of Pennsylvania), Editor in Chief, JCP 16:30 .................................... Kristine Niss (Roskilde University) Is the glass transition universal? 17:00 ...................................
    [Show full text]
  • Optical Imaging of Surface Chemistry and Dynamics in Confinement
    Optical Imaging of Surface Chemistry and Dynamics in Confinement Carlos Macias-Romero, Igor Nahalka, Halil I. Okur, Sylvie Roke# Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Sci- ence (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytech- nique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland, #[email protected]; Surface chemistry and dynamics are optically imaged label-free and non-invasively in a 3D confined geome- try and on sub-second time scales Abstract The interfacial structure and dynamics of water in a microscopically confined geometry is imaged in three dimensions and on millisecond time scales. We developed a 3D wide-field second harmonic mi- croscope that employs structured illumination. We image pH induced chemical changes on the curved and confined inner and outer surfaces of a cylindrical glass micro-capillary immersed in aqueous solu- tion. The image contrast reports on the orientational order of interfacial water, induced by charge- dipole interactions between water molecules and surface charges. The images constitute surface poten- tial maps. Spatially resolved surface pKa,s values are determined for the silica deprotonation reaction. Values range from 2.3<pKa,s<10.7, highlighting the importance of surface heterogeneities. Water mol- ecules that rotate along an oscillating external electric field are also imaged. With this approach, real time movies of surface processes that involve flow, heterogeneities and potentials can be made, which will further developments in electrochemistry, geology, catalysis, biology, and microtechnology. Microscopic and nanoscopic structural heterogeneities, confinement, and flow critically influ- ence surface chemical processes in electrochemical, geological, and catalytic reactions (1-5).
    [Show full text]
  • First Annual Midwest Chautauqua on Polarization Effects in Nonlinear
    10th Annual Chautauqua on Nonlinear Optics Location: Rawls Hall, Rm 2058 Contact: Garth Simpson Purdue University [email protected] 100 S Grant Street Office: (765) 496-3054 West Lafayette, IN, 47907 Program Introduction This week-long intensive, interactive annual summer short course program on nonlinear optical and multi-photon phenomena is designed to engage participants in nuts-and-bolts discussions on issues related to measurements and analysis. This year’s focus subject will target applications of non-linear optics microscopy, surface SHG and SFG. The program is designed to target participants with approximately 1-2 years of hands-on experience in nonlinear optics. Website: www.chem.purdue.edu/chautauqua Keynote Speaker Sylvie Roke Julia Jacobi chair in photomedicine Laboratory for fundamental BioPhotonics (LBP), École Polytechnique Fédérale de Lausanne (EPFL) Institute of Bio-engineering (IBI), School of Engineering (STI), CH-1015 Lausanne, Switzerland Biography 2011 – present: Julia Jacobi Chair in photomedicine, École Polytechnique Fédérale Lausanne, CH. 2005 – 2012: Max Planck Research Group Leader (W2 /C3) of a centrally announced open theme independent research group. Host: The Max-Planck Institute for Metals Research, Stuttgart, DE. 2005 – 2005: Alexander von Humboldt Fellow, dept. of Applied Physical Chemistry, Heidelberg University, DE. 2004 – 2005: Postdoctoral Fellow, FOM-Institute for Plasma Physics, NL. Education PhD , Natural Sciences, Leiden University, 2000-2004 (highest honors) M.Sc. , Physics, Utrecht University, 1997 - 2000 (highest honors) M. Sc., Chemistry, Utrecht University, 1995 - 2000 (highest honors) Schedule of Events: Monday, June 15: 8:30 Coffee, Bagels, Introductions in RAWL 2058. Assign Working Groups. 9:00 The Molecular Tensor - Garth Simpson 10:00 – Problem Set Questions 12:00 – AlazarTech Lunch 2:00 – Participant Presentations 3:00 – Coordinate transformations - Garth Simpson 4:00 Problem Set Questions Tuesday, June 16: 8:30 Review Problem Set Questions.
    [Show full text]
  • Phd Student in Biophysics/Physical Chemistry the Position Is Part
    PhD student in Biophysics/Physical Chemistry The position is part of the Innovative Training Network (ITN) “PROTON”. The network is devoted to the investigation of proton transport and proton‐coupled transport. It is funded under Marie Sklodowska‐Curie actions (H2020‐MSCA‐ITN‐2019, grant agreement number: 860592). The successful applicant will perform her/his studies and research at the Institute of Biophysics (Division of Molecular and Membrane Biophysics) at Johannes Kepler Universität Linz, Austria, She/he will join the Membrane Transport Group (Head Peter Pohl) that is mainly interested in spontaneous and facilitated transport of water, protons and other small molecules as well as in membrane protein translocation across the reconstituted translocation channel. Preferentially we use electrophysiology, fluorescence correlation spectroscopy, light scattering (in stopped flow mode) and electrochemical microscopy. Job Description The successful applicant will investigate proton’s ability to migrate along the membrane surface. The process is important to bioenergetics, since it ensures the most efficient coupling between mitochondrial proton pumps and ATPases. The scope of this research project is to understand the compositional and geometrical requirements that the membrane surface must fulfil for its waters of hydration to generate these forces. The researcher will record pH profiles of traveling proton waves by using membrane anchored pH dependent dyes. Monitoring proton diffusion along differently shaped model membranes will help to elucidate the role of membrane curvature in proton lateral migration. Conducting similar experiments with other biological objects will demonstrate whether proton surface migration is a general phenomenon. The work involves overexpression, purification and reconstitution of membrane proteins. We will explore the role of regulatory factors like the presence of counterions, cation adsorption to the bilayer or the application of an electric field across and along the bilayer.
    [Show full text]
  • Workshop on Water at the Interface Between Biology, Chemistry, Physics and Materials Sciences
    Activity SMR: 2707 Workshop on Water at the Interface between Biology, Chemistry, Physics and Materials Sciences 5 October 2015 - 9 October 2015 Trieste - ITALY Co-sponsors: AIP - The Journal of Chemical Physics Boehringer Ingelheim Stiftung Final List of Participants Total Number of Visitors: 70 Strada Costiera, 11 I-34151, Trieste, Italy • Tel. +39 0402240111 • Fax. +39 040224163 • [email protected] • www.ictp.it ICTP is governed by UNESCO, IAEA and Italy, and is a UNESCO Category 1 Institute No. NAME and INSTITUTE Nationality Function DIRECTOR Total number in this function: 3 1. CAMPEN R. Kramer UNITED STATES OF DIRECTOR AMERICA 1. Permanent Institute: Fritz Haber Institut der Max Planck Gesellschaft Department of Physical Chemistry Faradayweg 4-6 D-14195 Berlin GERMANY Permanent Institute e mail [email protected] 2. CERIOTTI Michele ITALY DIRECTOR 2. Permanent Institute: Ecole Polytechnique Federale de Lausanne EPFL Lab. of Computational Science and Modelling COSMO EPFL STI IMX COSMO MXG 338 (Batiment MXG) Station 22 CH-1015 Lausanne SWITZERLAND Permanent Institute e mail [email protected] 3. HASSANALI Ali UNITED REPUBLIC OF DIRECTOR TANZANIA 3. Permanent Institute: The Abdus Salam International Centre for Theoretical Physics Condensed Matter and Statistical Physics Section Strada Costiera 11 34151 Trieste ITALY Permanent Institute e mail [email protected] Participation for activity Workshop On Water SMR Number: 2707 Page 2 No. NAME and INSTITUTE Nationality Function SPEAKER Total number in this function: 29 4. BAKKER Huib NETHERLANDS SPEAKER 4. Permanent Institute: FOM Institute for Atomic and Molecular Physics AMOLF Molecular Nanophysics Department Science Park 104 1098 XG Amsterdam NETHERLANDS Permanent Institute e mail [email protected] 5.
    [Show full text]
  • Nonlinear Microscopy for Temporally and Spatially Resolved Label-Free Imaging of Living Cells
    Nonlinear microscopy for temporally and spatially resolved label-free imaging of living cells THÈSE NO 8891 (2018) PRÉSENTÉE LE 23 NOVEMBRE 2018 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR CHAIRE JULIA JACOBI DE PHOTOMÉDECINE - LABORATOIRE DE BIOPHOTONIQUE FONDAMENTALE PROGRAMME DOCTORAL EN PHOTONIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Marie Eve Pascale DIDIER acceptée sur proposition du jury: Prof. C. Moser, président du jury Prof. S. Roke, directrice de thèse Dr S. Brasselet, rapporteuse Dr E. Beaurepaire, rapporteur Prof. D. Psaltis, rapporteuse Suisse 2018 To my parents, Marie-Aimée and Daniel, To my sister Pierrine and my brother Armand, To my family and friends. Acknowledgement I would like to start this section with a quotation that I received from my mother when I was doing my Bachelor in Canada: “Travail et persévérance sont forces de réussite”. Throughout all these years, this sentence stayed in my head as a self-motivation. Indeed, this thesis represents not only a 5-year- long personal and scientific achievement but also marks a long-term accomplishment that would not have been possible without a benevolent surrounding. Foremost, I am deeply grateful to have done my PhD in the Laboratory for fundamental BioPhotonics (LBP) at Ecole Polytechnique Fédérale de Lausanne with Professor Sylvie Roke, who was my PhD supervisor for these past 5 years. The workplace, the infrastructures and the research facility within the LBP and at EPFL were exquisite. The whole PhD’s apprenticeship would not have been the same without my supervisor, she occupied a significant place in this Bildungsroman that was my thesis.
    [Show full text]
  • Water-Mediated Ion Pairing: Occurrence and Relevance † ‡ § ∥ ⊥ # Nico F
    Review pubs.acs.org/CR Water-Mediated Ion Pairing: Occurrence and Relevance † ‡ § ∥ ⊥ # Nico F. A. van der Vegt,*, Kristoffer Haldrup, Sylvie Roke, Junrong Zheng, , Mikael Lund, ▽ and Huib J. Bakker † Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universitaẗ Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany ‡ Physics Department, NEXMAP Section, Technical University of Denmark, Fysikvej 307, 2800 Kongens Lyngby, Denmark § Laboratory for Fundamental BioPhotonics, Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fedéralé de Lausanne, CH-1015 Lausanne, Switzerland ∥ College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China ⊥ Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States # Division of Theoretical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden ▽ FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands ABSTRACT: We present an overview of the studies of ion pairing in aqueous media of the past decade. In these studies, interactions between ions, and between ions and water, are investigated with relatively novel approaches, including dielectric relaxation spectroscopy, far-infrared (terahertz) absorption spectroscopy, femtosecond mid- infrared spectroscopy, and X-ray spectroscopy and scattering, as well as molecular dynamics simulation methods. With these methods, it is found that ion pairing is not a rare phenomenon only occurring for very particular, strongly interacting cations and anions. Instead, for many salt solutions and their interfaces, the measured and calculated structure and dynamics reveal the presence of a distinct concentration of contact ion pairs (CIPs), solvent shared ion pairs (SIPs), and solvent-separated ion pairs (2SIPs).
    [Show full text]