Chromosome Numbers of Plant Species from the Canary Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Cally Plant List a ACIPHYLLA Horrida
Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’ -
Flowers of Italy's Gargano Peninsula
Flowers of Italy's Gargano Peninsula Naturetrek Tour Report 25 April - 2 May 2016 Convolvulus althaeoidess Scenic views A reflection of Peschici Ophrys parviflora Report and images by Andrew Cleave Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Flowers of Italy's Gargano Peninsula Tour participants: Andrew Cleave & Luca Boscain (leaders) with 11 Naturetrek clients Summary Our week-long exploration of the “Orchid Capital of Europe” followed the well-established pattern set in previous years, visiting many of the top botanical sites of the Gargano Peninsula, plus many more of the less well-known spots discovered on our earlier trips which are rarely visited by other groups. We had a week of mostly pleasant sunny weather with only one or two spells of rain, but this did not stop us from visiting any of the important habitats. We started on the flat coastal area north of Bari, visiting some salt pans and a deserted beach where we had some excellent birdwatching and found a few unusual coastal plants, and then headed into the hills for the rest of our stay. Our base in the historic hill-top town of Monte Sant’Angelo enabled us to reach some superb orchid habitats, and we also had time to check out the grassy slopes behind the hotel, and explore the town itself, a UNESCO World Heritage Site. The latter part of the week was spent in the charming seaside town of Peschici, in the family-run Hotel Elisa located on the harbour. -
Healing Process Induced by a Flavonic Fraction of Bidens Aurea on Chronic Gastric Lesion in Rat
Healing Process Induced by a Flavonic Fraction of Bidens aurea on Chronic Gastric Lesion in Rat. Role of Angiogenesis and Neutrophil Inhibition M. J. Martín Calero, C. La Casa, V. Motilva, A. López and C. Alarcón de la Lastra Laboratorio de Farmacologfa, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Espana Z. Naturforsch. 51c, 570-577 (1996); received March 11/May 21, 1996 Bidens aurea, Flavonoids. Chronic Gastric Ulcer, Neutrophils, Myeloperoxidase Activity The aim of this study was to elucidate the mechanism of the healing process mediated by the flavonic fraction of Bidens aurea on chronic gastric ulceration induced by 5% acetic acid in rats. The diethyl ether extract (125 and 62.5 mg kg -1 body weight) was administered in a single doses, 7 and 14 days after provocation of lesions. Our results demonstrated that both doses significantly decreased the macro and microscopic ulcer index. Usually after 14-days treatment the lesions were found completely covered with regenerative epithelium and also an important proliferation of blood vessels was observed. Myeloperoxidase (M PO ) activity was assayed and used as an index of leucocyte infiltration. Application of acetic acid pro duced a significant increase of this activity 7 days after induction of chronic injury. A dm in istration of 125 mg kg 1 of the ether extract provoked a sharp reduction on the enzymatic activity at the same period. After 14 days, this decrease was higher with both doses (p<0.001). In addition, the macroscopic examination showed a drastic reduction of leucocyte infiltration in treated groups. These results suggest that the recovery of vascularization of the ulcerated area and the decrease of neutrophil infiltration are involved in the antiulcerogenic effect of the flavonoid fraction of Bidens aurea. -
Bc. Roman Gogela
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie CHARAKTERIZACE REPETITIVNÍCH SEKVENCÍ U RODU ALLIUM Diplomová práce Bc. Roman Gogela VEDOUCÍ PRÁCE: Mgr. Martina Dvořáčková, Ph.D. Brno 2014 Bibliografický záznam Autor: Bc. Roman Gogela Přírodovědecká fakulta, Masarykova univerzita Ústav experimentální biologie Název práce: Charakterizace repetitivních sekvencí u rodu Allium Studijní program: Experimentální biologie Studijní obor: Molekulární biologie a genetika Vedoucí práce: Mgr. Martina Dvořáčková, Ph.D. Akademický rok: 2013/2014 Počet stran: 117 + 6 stran příloh Klíčová slova: Allium, Asparagales, GISH, rDNA, repetitivní sekvence, telomery Bibliographic Entry Author: Bc. Roman Gogela Faculty of Science, Masaryk University Department of Experimental Biology Title of Thesis: Characterisation of repetitive sequences in genus Allium Degree programme: Experimental Biology Field of Study: Molecular Biology and Genetics Supervisor: Mgr. Martina Dvořáčková, Ph. D. Academic Year: 2013/2014 Number of Pages: 117 + 6 pages of appendix Keywords: Allium, Asparagales, GISH, rDNA, repetitive sequences, telomeres Abstrakt Telomery jsou neodmyslitelnou součástí lineárních chromozomů eukaryotických buněk a struktury jim podobné můžeme nalézt i u lineárních chromozomů buněk prokaryotických. Tyto obvykle tandemové repetice nejen kompenzují erozi chromozomů vyvolanou neúplnou replikací, ale zároveň udržují cytogenetickou stabilitu genomu a jsou i regulátory dělivého potenciálu buněk. Od -
A. Hansen & P. Sunding Flora of Macaronesia. Checklist of Vascular Plants. 4. Revised Edition
DOI: 10.2478/som-1993-0003 sommerfeltia 17 A. Hansen & P. Sunding Flora of Macaronesia. Checklist of vascular plants. 4. revised edition 1993 sommerf~ is owned and edited by the Botanical Garden and Museum, University of Oslo. SOMMERFELTIA is named in honour of the eminent Norwegian botanist and clergyman S0ren Christian Sommerfelt (1794-1838). The generic name Sommerfeltia has been used in (1) the lichens by Florke 1827, now Solorina, (2) Fabaceae by Schumacher 1827, now Drepanocarpus, and (3) Asteraceae by Lessing 1832, nom. cons. SOMMERFELTIA is a series of monographs in plant taxonomy, phytogeography, phyto sociology, plant ecology, plant morphology, and evolutionary botany. Most papers are by Norwegian authors. Authors not on the staff of the Botanical Garden and Museum in Oslo pay a page charge of NOK 30. SOMMERFELTIA appears at irregular intervals, normally one article per volume. Editor: Rune Halvorsen 0kland. Editorial Board: Scientific staff of the Botanical Garden and Museum. Address: SOMMERFELTIA, Botanical Garden and Museum, University of Oslo, Trond heimsveien 23B, N-0562 Oslo 5, Norway. Order: On a standing order (payment on receipt of each volume) SOMMERFELTIA is supplied at 30 % discount. Separate volumes are supplied at prices given on pages inserted at the end of the volume. sommerfeltia 17 A. Hansen & P. Sunding Flora of Macaronesia. Checklist of vascular plants. 4. revised edition 1993 ISBN 82-7420-019-5 ISSN 0800-6865 Hansen, A. & Sunding, P. 1993. Flora of Macaronesia. Checklist of vascular plants. 4. revised edition. - Sommerfeltia 17: 1-295. Oslo. ISBN 82-7420-019-5. ISSN 0800-6865. An up-to-date checklist of the vascular plants of Macaronesia (the Azores, the Madeira archipelago, the Salvage Islands, the Canary Island, and the Cape Verde Islands) is given. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Documento Informativo RESERVA NATURAL ESPECIAL DE PUNTALLANA PLAN DIRECTOR
P la n D ir e c to r Reserva Natural Especial de APROBACIÓN APROBACIPuntallanaÓN DEFINITIVA DDEFINITIVA oc um en to In fo rm at ivo RESERVA NATURAL ESPECIAL DE PUNTALLANA PLAN DIRECTOR INDICE DOCUMENTO INFORMATIVO 1. DESCRIPCIÓN DE LA RESERVA NATURAL ESPECIAL .................................. 3 1.1 INTRODUCCIÓN ...................................................................................... 3 1.2 MEDIO FÍSICO............................................................................................ 3 1.2.1. Situación geográfica y extensión..................................................... 3 1.2.2. Clima ............................................................................................. 3 1.2.3. Geología y geomorfología ............................................................. 4 1.2.4. Características morfológicas .......................................................... 7 1.2.5. Hidrología ....................................................................................... 8 1.2.6. Edafología ..................................................................................... 10 1.2.7. Paisaje. Unidades de paisaje ....................................................... 12 1.3 MEDIO BIOLÓGICO ................................................................................. 14 1.3.1. Flora y vegetación ......................................................................... 14 1.3.2. Fauna ............................................................................................ 23 1.3.3. Medio litoral ................................................................................ -
Introduced Weed Species
coastline Garden Plants that are Known to Become Serious Coastal Weeds SOUTH AUSTRALIAN COAST PROTECTION BOARD No 34 September 2003 GARDEN PLANTS THAT HAVE BECOME Vegetation communities that originally had a diverse SERIOUS COASTAL WEEDS structure are transformed to a simplified state where Sadly, our beautiful coastal environment is under threat one or several weeds dominate. Weeds aggressively from plants that are escaping from gardens and compete with native species for resources such as becoming serious coastal weeds. Garden escapees sunlight, nutrients, space, water, and pollinators. The account for some of the most damaging environmental regeneration of native plants is inhibited once weeds are weeds in Australia. Weeds are a major environmental established, causing biodiversity to be reduced. problem facing our coastline, threatening biodiversity and the preservation of native flora and fauna. This Furthermore, native animals and insects are significantly edition of Coastline addresses a selection of common affected by the loss of indigenous plants which they rely garden plants that are having significant impacts on our on for food, breeding and shelter. They are also affected coastal bushland. by exotic animals that prosper in response to altered conditions. WHAT ARE WEEDS? Weeds are plants that grow where they are not wanted. Weeds require costly management programs and divert In bushland they out compete native plants that are then resources from other coastal issues. They can modify excluded from their habitat. Weeds are not always from the soil and significantly alter dune landscapes. overseas but also include native plants from other regions in Australia. HOW ARE WEEDS INTRODUCED AND SPREAD? WEEDS INVADE OUR COASTLINE… Weeds are introduced into the natural environment in a Unfortunately, introduced species form a significant variety of ways. -
Argyranthemum Frutescens
Argyranthemum frutescens (Marguerite daisy, cobbitty daisy) Argyranthemum frutescens is a somewhat short-lived, tender perennial or subshrub that produces daisy-like white flowers with yellow center disks on bushy plants growing 2-3’ tall and as wide. Blooms throughout the summer, The flower is very fragrant, it opens its petals in the morning and closes them at night and it attracts bees. It is a short- lived perennial, used as an annual and prefers well-drained soils in full sun Landscape Information Pronounciation: ar-jur-AN-thuh-mum froo- TESS-enz Plant Type: Origin: Canary Islands Heat Zones: Hardiness Zones: 8, 9 Uses: Border Plant, Mass Planting, Container, Cut Flowers / Arrangements, Rock Garden Size/Shape Growth Rate: Fast Tree Shape: oval, Upright Canopy Texture: Medium Height at Maturity: 0.5 to 1 m, 1 to 1.5 m Plant Image Spread at Maturity: 0.5 to 1 meter Argyranthemum frutescens (Marguerite daisy, cobbitty daisy) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Blade: 5 - 10 cm Leaf Shape: Obovate Leaf Textures: Smooth Leaf Scent: Pleasant Color(growing season): Green Color(changing season): Green Flower Flower Showiness: True Flower Size Range: 3 - 7 Flower Type: Capitulum Flower Scent: Pleasant Flower Color: Yellow, White, Pink Flower Image Seasons: Summer, Fall Fruit Fruit Showiness: False Fruit Colors: Brown Seasons: Fall Argyranthemum frutescens (Marguerite daisy, cobbitty daisy) Horticulture Management Requirements Soil Requirements: Soil Ph Requirements: Water Requirements: Moderate Light Requirements: Full, Part Management Edible Parts: Plant Propagations: Seed, Cutting Leaf Image MORE IMAGES Fruit Image Other Image. -
Host Range and Impact of Dichrorampha Aeratana, the First Potential Biological Control Agent for Leucanthemum Vulgare in North America and Australia
insects Article Host Range and Impact of Dichrorampha aeratana, the First Potential Biological Control Agent for Leucanthemum vulgare in North America and Australia Sonja Stutz 1,* , Rosemarie De Clerck-Floate 2 , Hariet L. Hinz 1, Alec McClay 3 , Andrew J. McConnachie 4 and Urs Schaffner 1 1 CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland; [email protected] (H.L.H.); [email protected] (U.S.) 2 Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403—1 Ave. S., Lethbridge, AB T1J 4B1, Canada; rosemarie.declerck-fl[email protected] 3 12 Roseglen Private, Ottawa, ON K1H 1B6, Canada; [email protected] 4 Weed Research Unit, New South Wales Department of Primary Industries, Biosecurity and Food Safety, Orange, NSW 2800, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Oxeye daisy, a Eurasian member of the daisy family, has become invasive in several parts of the world, including North America and Australia. We investigated whether a root-feeding moth found closely associated with oxeye daisy in Europe could be used as a biological control agent for the plant when weedy. We found that the moth could develop on 11 out of 74 plant species that we tested in laboratory conditions when it was given no choice of plants. When the Citation: Stutz, S.; De Clerck-Floate, moths were given a choice of food plants outdoors, we found its larvae only on the ornamentals R.; Hinz, H.L.; McClay, A.; Shasta daisy and creeping daisy. Larval feeding had no impact on the weight and number of flowers McConnachie, A.J.; Schaffner, U.