MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie

CHARAKTERIZACE REPETITIVNÍCH SEKVENCÍ U RODU ALLIUM

Diplomová práce

Bc. Roman Gogela

VEDOUCÍ PRÁCE: Mgr. Martina Dvořáčková, Ph.D. Brno 2014

Bibliografický záznam

Autor: Bc. Roman Gogela Přírodovědecká fakulta, Masarykova univerzita Ústav experimentální biologie

Název práce: Charakterizace repetitivních sekvencí u rodu Allium

Studijní program: Experimentální biologie

Studijní obor: Molekulární biologie a genetika

Vedoucí práce: Mgr. Martina Dvořáčková, Ph.D.

Akademický rok: 2013/2014

Počet stran: 117 + 6 stran příloh

Klíčová slova: Allium, , GISH, rDNA, repetitivní sekvence, telomery

Bibliographic Entry

Author: Bc. Roman Gogela Faculty of Science, Masaryk University Department of Experimental Biology

Title of Thesis: Characterisation of repetitive sequences in genus Allium

Degree programme: Experimental Biology

Field of Study: Molecular Biology and Genetics

Supervisor: Mgr. Martina Dvořáčková, Ph. D.

Academic Year: 2013/2014

Number of Pages: 117 + 6 pages of appendix

Keywords: Allium, Asparagales, GISH, rDNA, repetitive sequences, telomeres

Abstrakt

Telomery jsou neodmyslitelnou součástí lineárních chromozomů eukaryotických buněk a struktury jim podobné můžeme nalézt i u lineárních chromozomů buněk prokaryotických. Tyto obvykle tandemové repetice nejen kompenzují erozi chromozomů vyvolanou neúplnou replikací, ale zároveň udržují cytogenetickou stabilitu genomu a jsou i regulátory dělivého potenciálu buněk. Od objevu první telomerické sekvence a mechanismu udržování telomer založeném na aktivitě RNA-dependentní DNA-polymerázy (telomerázy) bylo popsáno několik variant „klasické“ telomerické sekvence. Byla také zjištěna existence organismů s telomerami tvořenými jinými sekvencemi a závislými na jiném mechanismu udržování jejich délky. Stále však existují organismy, u kterých není telomerická sekvence známa. Jedněmi z nich jsou zástupci rodu Allium. Diplomové práce je zaměřena na studium lokalizace 45S rDNA a jejích strukturních podjednotek na chromozomech evolučně vzdálených zástupců rodu Allium ve vztahu k předpokládané telomerické úloze této sekvence u zmíněného rodu a dále pak na studium dalších kandidátních sekvencí. Byla provedena i genomová in situ hybridizace mezi modelovými druhy s cílem zjistit, zda sdílí společnou telomerickou sekvenci. Na základě zjištěných výsledků nelze potvrdit telomerickou roli testovaných kandidátních sekvencí. Vzhledem k lokalizaci 45S rDNA lokusů však existuje i nadále možnost, že tato sekvence tvoří telomeru chromozomů, na kterých je lokalizována, případně je zahrnuta v mechanismu jejich udržování. Důležitým zjištěním je objev doposud neznámé sekvence lokalizované na všech koncích chromozomů A. ursinum a sdílené s A. cepa. S velkou pravděpodobností se jedná o sekvenci telomerickou.

Abstract

Telomeres are important parts of linear chromosomes of eukaryotic cells and similar structures can be found at the ends of linear chromosomes of prokaryotic cells too. Telomeres are usually formed as tandem repeats that protect chromosomes against shortening caused by DNA replication. According to their localization, telomeres are involved in the maintenance of genome stability and regulation of cell proliferation capability. Since discovery of the first telomeric sequence and the mechanism of telomere lenght maintenance based on RNA-dependent DNA-polymerase (telomerase), several variants of „classical“ telomeric sequences have been described. Organisms with telomeres formed by other sequences and with different telomere length maintenance were detected. There are still organisms with unknown telomeric sequences, one of them are members of genus Allium. In this thesis, we have studied the localization of 45S rDNA and its subunits in selected species of genus Allium according to predicted role of 45S rDNA as telomeres in this genus. In the following steps, other candidate sequences were tested and genomic in situ hybridization between model species has been done. Based on the acquired results, we were not able to confirm role of the selected candidate sequences as a telomeric sequence within the tested from genus Allium According to the localization of the 45rDNA, it is possible that this sequence plays the role of a telomere within these localities, and probably can be involved in the telomere length maintenance process. An important result was the founding of a new sequence which is located on all of the telomeric ends of A. ursinum chromosomes and shared with A. cepa. Probably this sequence is of telomeric origin.

Poděkování

Na tomto místě bych rád poděkoval své vedoucí diplomové práce Mgr. Martině

Dvořáčkové, Ph. D. za odborné vedení, podporu a čas, který mi ochotně věnovala po celou dobu řešení mé diplomové práce.

Dále bych chtěl poděkovat Mgr. Vratislavu Peškovi, Ph. D. za možnost podílet se na projektu studia telomer rodu Allium a odborné rady a konzultace, které mi napomohly osvojit si danou problematiku. V neposlední řadě patří mé velké poděkování také Mgr. Terezii Mandákové, Ph. D. za cenné teoretické i praktické rady na poli rostlinné cytogenetiky. Závěrem chci poděkovat všem kolegů a kolegyním z Oddělení funkční genomiky a proteomiky, se kterými jsem měl čest pracovat, zvláště pak prof. RNDr. Jiřímu Fajkusovi, Csc.

Prohlášení

Prohlašuji, že jsem svoji diplomovou práci vypracoval samostatně s využitím informačních zdrojů, které jsou v práci citovány.

Brno 14. května 2014 ……………………………… Bc. Roman Gogela

Obsah 1. Úvod………………………………………………………………………………...... 13

2. Teoretický úvod………………………………………………………………………...skryto

2.1. Rod Allium……………………………………………………………………….. skryto 2.1.1. Fylogenetické zařazení………………………………………………………..skryto 2.1.2. Morfologické znaky…………………………………………………………. skryto 2.1.3. Oblast rozšíření……………………………………………………………… skryto 2.1.4. Charakteristika genomu……………………………………………………... skryto 2.2. Klasické telomery ...... skryto 2.2.1. Počátky studia telomer...... skryto 2.2.2. Odhalení struktury telomer a mechanismu jejich udržování………………… skryto 2.2.3. Čtyři základní charakteristiky „klasických telomer“...... skryto 2.3. Neobvyklé telomery ...... skryto 2.3.1. Telomerický systém Drosophila ...... skryto

2.3.2. Telomery typu Chironomus………………………………………………….. skryto 2.3.3. Telomery typu Rhynchosciara………………………………………………. skryto 2.3.4. Alternativní způsoby udržování telomer u kvasinek………………………….skryto 2.4. Záhada telomer rodu Allium ...... skryto 2.5. Ribosomální DNA (rDNA)………………………………………………………. skryto 2.5.1. Struktura rDNA a sekvenční konzervovanost………………………………. skryto

2.5.2. 45S rDNA u rodu Allium……………………………………………………. skryto 3. Cíle diplomové práce:………………………………………………………………… skryto

4. Materiál a metody: ……………………………………………………………………. skryto 4.1. Seznam použitých roztoků:...... skryto 4.2. Materiál: ...... skryto

4.2.1. Modelové organismy:...... skryto 4.2.2. Genetický materiál:...... skryto 4.3. Metody:...... skryto 4.3.1. Příprava sond:...... skryto

4.3.2. Příprava preparátů:...... skryto 5. Výsledky:...... skryto 5.1. Lokalizace 45S rDNA u A. ursinum...... skryto 5.2. Genomová in situ hybidizace (GISH)……………………………………………. skryto 5.3. Lokalizace 45S rDNA u A. cepa...... skryto 5.4. Lokalizace kandidátních telomerických sekvencí na chromozomech Allium cepa......

...... skryto

6. Diskuze...... skryto 6.1. Telomery rodu Allium...... skryto 6.1.1. Hypotézy plynoucí z literatury...... skryto 6.1.2. Role 45S rDNA při formování telomer rodu Allium...... skryto

6.1.3. GISH A. cepa a A. ursinum – společná telomerická sekvence?...... skryto 6.1.4. Kandidátní telomerické sekvence – vyhodnocení a možnosti jejich predikce...... skryto 6.2. Variabilita v délce IGS oblasti sekvence 45S rDNA A. ursinum...... skryto 6.3. Variabilita v počtu lokusů 45S rDNA A. cepa a A. ursinum...... skryto 7. Souhrn………………………………………………………………………………... skryto 8. Summary……………………………………………………………………………... skryto 9. Literatura…………………………………………………………………………………. 95

Seznam zkratek

ALT Alternative lengthening of telomeres APG Angiosperm phylogeny group BAC Bacterial artificial chromosome ETS External transcribed spacer FISH Fluorescenční in situ hybridizace gDNA Genomová DNA GISH Genomová in situ hybridizace HAATI Heterochromatin amplification-mediated and telomerase-independent IGS Intergenic spacer ITS Internal transcribed spacer LINE Long interspersed elements non-LTR Non-long terminal repeats NOR Nucleolus organizer region NTS Non-transcribed spacer rDNA Ribosomální DNA RPM Revolutions per minute (otáčky za minutu) SINE Short interspersed elements TER Telomerase RNA TERT Telomerase reverse transcriptase WCSP World Checklist of Selected Families

1. Úvod

Rostliny z rodu Allium (česnek) patří mezi významné kulturní plodiny. Více než dvacet druhů, jako je cibule (Allium cepa), česnek (Allium sativum), pórek (Allium porrum) nebo pažitka (Allium schoeneprasum, Allium tuberosum), je pěstováno, ať už celosvětově či pouze lokálně. Další druhy, jako je například česnek medvědí (Allium ursinum), jsou hojně používané pro vysoký obsah léčivých látek v přírodní medicíně a v neposlední řadě jsou v této skupině hojně zastoupeny i druhy okrasné. Tento druhově velmi bohatý rod však není důležitý pouze z ekonomického hlediska, ale někteří jeho zástupci mají nepopiratelný význam při studiu různých odvětví biologie, především pak v cytogenetice. Allium cepa je jedním z klasických cytogenetických modelových organismů a Allium schorodoprasum bylo po dlouhou dobu využíváno ke studiu B chromosomů. Některé druhy jsou často spojovány s léčbou či prevencí některých onemocnění, proto není divu, že neunikly zájmu moderní medicíny. Druhy jako Allium sativa, Allium macrostemon, nebo Allium victorialis jsou v současnosti studovány s ohledem na jejich farmaceutické využití, převážně kvůli antimikrobiálním, antioxidačním a protinádorovým vlastnostem látek, které syntetizují. Ve své práci se však chci zaměřit na jiný fenomén, který je s těmito rostlinami spojen, a to na doposud nevyjasněnou strukturu jejich telomer. Skutečnost, že telomery těchto rostlin nejsou tvořeny žádnou z doposud známých telomerických sekvencí, byla poprvé popsána v roce 1995, avšak zatím žádná následná studie nepodala uspokojivou odpověď na otázku, o jakou sekvenci se v případě telomer u rostlin rodu Allium jedná. Cílem této práce je proto shrnout dosavadní poznatky o studiu této problematiky a zodpovědět tuto otázku, případně naznačit směr, kterým by se studium struktury telomer u rostlin rodu Allium mohlo dále ubírat.

13

9. Literatura

Abad, J.P., de Pablos, B., Osoegawa, K., de Jong, P.J., Martin-Gallardo, A., Villasante, A. 2004. TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21: 1620-1624.

Adams, S.P., Hartman, T.P.V., Lim, K.Y., Chase, M.W., Bennett, M.D., Leitch, I.J., Leitch, A.R. 2001. Loss and recovery of Arabidopsis-type telomere repeat sequences 5 '-

(TTTAGGG)(n)-3 ' in the evolution of a major radiation of flowering plants. P Roy Soc B-Biol Sci 268: 1541-1546.

Adams, S.P., Leitch, I.J., Bennett, M.D., Leitch, A.R. 2000. Aloe L. - a second plant family without (TTTAGGG)(n) telomeres. Chromosoma 109: 201-205.

Allshire, R.C., Dempster, M., Hastie, N.D. 1989. Human telomeres contain at least 3 types of G-rich repeat distributed non-randomly. Nucleic Acids Res 17: 4611-4627.

Allsopp, R.C., Harley, C.B. 1995. Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res 219: 130-136.

APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161: 105-121

Baird, D.M., Coleman, J., Rosser, Z.H., Royle, N.J. 2000. High levels of sequence polymorphism and linkage disequilibrium at the telomere of 12q: Implications for telomere biology and human evolution. Am J Hum Genet 66: 235-250.

Barnes, S.R., James, A.M., Jamieson, G. 1985. The organization, nucleotide-sequence, and chromosomal distribution of a satellite DNA from Allium cepa. Chromosoma 92: 185-192.

Bennett, M.D. 1972. Nuclear DNA content and minimum generation time in Herbaceous plants. Proc R Soc Ser B-Bio 181: 109-135.

95

Bennett, M.D. 1987. Variation in genomic form in plants and its ecological implications. New Phytol 106: 177-200.

Bennett, M.D., Bhandol, P., Leitch, I.J. 2000a. Nuclear DNA amounts in angiosperms and their modern uses - 807 new estimates. Ann Bot-London 86: 859-909.

Bennett, M.D., Johnston, S., Hodnett, G.L., Price, H.J. 2000b. Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann Bot- London 85: 351-357.

Bennett, M.D., Leitch, I.J. 1997. Nuclear DNA amounts in angiosperms - 583 new estimates. Ann Bot-London 80: 169-196.

Bennett, M.D., Leitch, I.J. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot-London 107: 467-590.

Benoit, M., Layat, E., Tourmente, S., Probst, A.V. 2013. Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene 526: 39-45.

Bernards, A., Michels, P.A.M., Lincke, C.R., Borst, P. 1983. Growth of chromosome ends in multiplying trypanosomes. Nature 303: 592-597.

Bilaud, T., Brun, C., Ancelin, K., Koering, C.E., Laroche, T., Gilson, E. 1997. Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17: 236-239.

Bilaud, T., Koering, C.E., BinetBrasselet, E., Ancelin, K., Pollice, A., Gasser, S.M., Gilson, E. 1996. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res 24: 1294-1303.

Birnstiel, M.L., Wallace, H., Sirlin, J.L., Fischberg, M. 1966. Localization of the ribosomal DNA complements in the nucleolar organizer region of Xenopus laevis. Natl Cancer Inst Monogr 23: 431-447.

96

Blackburn, E.H., Gall, J.G. 1978. Tandemly repeated sequence at termini of extrachromosomal ribosomal-RNA genes in tetrahymena. J Mol Biol 120: 33-53.

Bougourd, S.M., Parker, J.S. 1976. Nucleolar organizer polymorphism in natural populations of Allium schoenoprasum. Chromosoma 56: 301-307.

Bremer, B., Bremer, K., Chase, M.W., Fay, M.F., Reveal, J.L., Soltis, D.E., Soltis, P.S., Stevens, P.F., Anderberg, A.A., Moore, M.J., Olmstead, R.G., Rudall, P.J., Sytsma, K.J., Tank, D.C., Wurdack, K., Xiang, J.Q.Y., Zmarzty, S., Grp, A.P. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161,: 105-121.

Bryan, T.M., Englezou, A., DallaPozza, L., Dunham, M.A., Reddel, R.R. 1997. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor- derived cell lines. Nat Med 3: 1271-1274.

Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S., Reddel, R.R. 1995. Telomere elongation in immortal human cells without detectable telomerase activity. Embo J 14: 4240- 4248.

Bucholc, M., Buchowicz, J. 1995. An extrachromosomal fragment of telomeric DNA in wheat. Plant Mol Biol 27: 435-439.

Campo, D., Machado-Schiaffino, G., Horreo, J.L., Garcia-Vazquez, E. 2009. Molecular organization and evolution of 5S rDNA in the genus Merluccius and their phylogenetic implications. J Mol Evol 68: 208-216.

Carmo-Fonseca, M., Mendes-Soares, L., Campos, I. 2000. To be or not to be in the nucleolus. Nat Cell Biol 2: 107-112.

Carmona, M.J., Morcillo, G., Galler, R., Martinezsalas, E., Delacampa, A.G., Diez, J.L., Edstrom, J.E. 1985. Cloning and molecular characterization of a telomeric sequence from a temperature-induced Balbiani ring. Chromosoma 92: 108-115.

97

Casacuberta, E., Pardue, M.L. 2003a. HeT-A elements in Drosophila virilis: Retrotransposon telomeres are conserved across the Drosophila genus. P Natl Acad Sci USA 100: 14091-14096.

Casacuberta, E., Pardue, M.L. 2003b. Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. P Natl Acad Sci USA 100: 3363-3368.

Cavalier-Smith, T. 2009. Predation and eukaryote cell origins: A coevolutionary perspective. Int J Biochem Cell B 41: 307-322.

Cohen, H., Sinclair, D.A. 2001. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. P Natl Acad Sci USA 98: 3174-3179.

Cohen, S., Mechali, M. 2002. Formation of extrachromosomal circles from telomeric DNA in Xenopus laevis. Embo Rep 3: 1168-1174.

Cohn, M., Edstrom, J.E. 1992a. Chromosome ends in Chironomus pallidivittatus contain different subfamilies of telomere-associated Repeats. Chromosoma 101: 634-640.

Cohn, M., Edstrom, J.E. 1992b. Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion. J Mol Evol 35: 114-122.

Cong, Y.S., Wright, W.E., Shay, J.W. 2002. Human telomerase and its regulation. Microbiol Mol Biol R 66: 407-425.

Counter, C.M., Avilion, A.A., Lefeuvre, C.E., Stewart, N.G., Greider, C.W., Harley, C.B., Bacchetti, S. 1992. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo J 11: 1921-1929.

Croy, J.E., Wuttke, D.S. 2006. Themes in ssDNA recognition by telomere-end protection proteins. Trends Biochem Sci 31: 516-525.

98

Do, G.S., Seo, B.B. 2000. Phylogenetic relationships among Allium subg. Rhizirideum species based on the molecular variation of 5S rRNA genes. Korean Journal of Biological Sciences 4: 77-85 de la Herran, R., Cunado, N., Navajas-Perez, R., Santos, J.L., Rejon, C.R., Garrido- Ramos, M.A., Rejon, M.R. 2005. The controversial telomeres of lily plants. Cytogenet Genome Res 109: 144-147. de Lange, T. 2005. Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev 19: 2100-2110.

De Sarker, D., Johnson, M.A.T., Reynolds, A., Brandham, P.E. 1997. Cytology of the highly polyploid disjunct species, Allium dregeanum (Alliaceae), and of some Eurasian relatives. Bot J Linn Soc 124: 361-373.

Dellaporta, S.L., Wood, J., Hicks, J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19-21

Dunham, M.A., Neumann, A.A., Fasching, C.L., Reddel, R.R., 2000. Telomere maintenance by recombination in human cells. Nat Genet 26: 447-450.

Eickbush, T.H., Eickbush, D.G. 2007. Finely orchestrated movements: Evolution of the ribosomal RNA genes. Genetics 175: 477-485.

Ellis, T.H.N., Lee, D., Thomas, C.M., Simpson, P.R., Cleary, W.G., Newman, M.A., Burcham, K.W.G. 1988. 5s ribosomal-RNA aenes in Pisum - sequence, long-range and chromosomal organization. Mol Gen Genet 214: 333-342.

Fernandes, T., Madalena, C.R.G., Gorab, E. 2012. Cloning and characterisation of a novel chromosome end repeat enriched with homopolymeric (dA)/(dT) DNA in Rhynchosciara americana (Diptera: Sciaridae). Chromosome Res 20: 435-445.

Flavell, R.B., Bennett, M.D., Smith, J.B., Smith, D.B. 1974. Genome size and proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12: 257-269.

99

Flynn, R.L., Zou, L. 2010. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol 45: 266-275.

Friesen, N., Fritsch R.M., Blattner, F.R. 2006. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22: 372-395

Fritsch, R.M., Friesen, N. 2002. Evolution, Domestication and Taxonomy. In: Rabinowitch, H.D., Currah, L. (eds). Allium Crop Science: Recent Avances New York, CABI Publishing, 5-31

Frydrychova, R., Grossmann, P., Trubac, P., Vitkova, M., Marec, F.E. 2004. Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47: 163-178.

Frydrychova, R., Marec, F. 2002. Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115: 179-187.

Fuchs, J., Brandes, A., Schubert, I. 1995. Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196: 227-241.

Fujiwara, H., Osanai, M., Matsumoto, T., Kojima, K.K. 2005. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res 13: 455-467.

Fulnečková, J., Hasíková, T., Fajkus, J., Lukešová, A., Eliáš, M., Sýkorová, E. 2012. Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biol Evol 4: 248-264.

Gallego, M.E., White, C.I. 2001. RAD50 function is essential for telomere maintenance in Arabidopsis. P Natl Acad Sci USA 98: 1711-1716.

Garcia, S., Kovarik, A. 2013. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 111: 23-33.

100

Garrido-Ramos, M.A., Jamilena, M., Lozano, R., Rejon, C.R., Rejon, M.R. 1992. A cytogenetical and molecular analysis of the ribosomal cistrons of Allium sphaerocephalon L (Liliaceae). Heredity 69: 43-49.

Garrido, M.A., Jamilena, M., Lozano, R., Rejon, C.R., Rejon, M.R., Parker, J.S. 1994. rDNA site number polymorphism and nor inactivation in natural populations of Allium schoenoprasum. Genetica 94: 67-71.

Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R.L., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchinson, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J.P., Miguel, T., Paszkowski, U., Zhang, S.P., Colbert, M., Sun, W.L., Chen, L.L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y.S., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., Briggs, S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296: 92-100.

Goldsbrough, P.B., Ellis, T.H.N., Cullis, C.A., 1981. Organization of the 5s RNA genes in flax. Nucleic Acids Res 9: 5895-5904.

Gonzalez-Melendi, P., Wells, B., Beven, A.F., Shaw, P.J. 2001. Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. Plant J 27: 223- 233.

Gray, J.W., Caranno, A.V., Steinmetz, L.L., Van Dilla, M.A., Moore II, D.H., Mayall, B.H., Mendelsohn, M.L. 1975. Chromosome measurement and sorting by flow system. Proc Natl Acad Sci USA 72: 1231-1234

Greider, C.W., Blackburn, E.H. 1985. Identification of a specific telomere terminal transferase-activity in Tetrahymena extracts. Cell 43: 405-413.

Greilhuber, J., Volleth, M., Loidl, J. 1983. Genome size of man and animals relative to the plant Allium cepa. Can J Genet Cytol 25: 554-560.

101

Griffith, J.D., Comeau, L., Rosenfield, S., Stansel, R.M., Bianchi, A., Moss, H., de Lange, T. 1999. Mammalian telomeres end in a large duplex loop. Cell 97: 503-514.

Grime, J.P., Shacklock, J.M.L., Band, S.R. 1985. Nuclear-DNA contents, shoot phenology and species co-existence in a limestone grassland community. New Phytol 100: 435-445.

Hasterok, R., Maluszynska, J. 2000. Different rRNA gene expression in primary and adventitious roots of Allium cepa L. Folia Histochem Cyto 38: 181-184.

Hayflick, L., Moorhead, P.S. 1961. Serial cultivation of human diploid cell strains. Exp Cell Res 25: 585-621.

Heaphy, C.M., Subhawong, A.P., Hong, S.M., Goggins, M.G., Montgomery, E.A., Gabrielson, E., Netto, G.J., Epstein, J.I., Lotan, T.L., Westra, W.H., Shih, L.M., Lacobuzio-Donahue, C.A., Maitra, A., Li, Q.K., Eberhart, C.G., Taube, J.M., Rakheja, D., Kurman, R.J., Wu, T.C., Roden, R.B., Argani, P., De Marzo, A.M., Terracciano, L., Torbenson, M., Meeker, A.K. 2011. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179: 1608-1615.

Hemleben, V., Grierson, D. 1978. Evidence ghat in higher plants 25S and 18S Ribosomal- RNA genes are not ntierspersed with genes for 5S Ribosomal-RNA. Chromosoma 65: 353- 358.

Hemleben, V., Werts, D. 1988. Sequence organization and putative regulatory elements in the 5S ribosomal-RNA genes of 2 higher plants (Vigna radiata and Matthiola incana). Gene 62: 165-169.

Heslop-Harrison, J.S. 2000. Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. Plant Cell 12: 617-635.

Houghtaling, B.R., Cuttonaro, L., Chang, W., Smith, S. 2004. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14: 1621-1631.

102

Huang, P.H., Pryde, F.E., Lester, D., Maddison, R.L., Borts, R.H., Hickson, I.D., Louis, E.J. 2001. SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11: 125-129.

Chase, M.W., Reveal, J.L., Fay, M.F. 2009. A subfamilial classification for the expanded asparagalean families , Asparagaceae and Xanthorrhoeaceae. Bot J Linn Soc 161: 132-136.

Chen, C.M., Wang, C.T., Ho, C.H. 2001a. A plant gene encoding a Myb-like protein that binds telomeric GGTTTAG repeats in vitro. J Biol Chem 276: 16511-16519.

Chen, C.H., Chen, R.J. 2011. Prevalence of telomerase activity in human cancer. J Formos Med Assoc 110: 275-289.

Chen, Q.J., Ijpma, A., Greider, C.W. 2001b. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 21: 1819-1827.

Chung, M.C., Lee, Y.I., Cheng, Y.Y., Chou, Y.J., Lu, C.F. 2008. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor Appl Genet 116: 745-753.

Ingle, J., Timmis, J.N., Sinclair, J. 1975. Relationship between satellite deoxyribonucleic- acid, ribosomal ribonucleic-acid gene redundancy, and genome size in plants. Plant Physiol 55: 496-501.

Jain, D., Hebden, A.K., Nakamura, T.M., Miller, K.M., Cooper, J.P. 2010. HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467: 223-227.

Jamilena, M., Rejon, C.R., Rejon, M.R. 1990. Variation in the heterochromatin and nucleolar organizing regions of Allium subvillosum L (Liliaceae). Genome 33: 779-784.

103

Johnson, F.B., Marciniak, R.A., McVey, M., Stewart, S.A., Hahn, W.C., Guarente, L. 2001. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. Embo J 20: 905-913.

Jones R. N., Rees H. 1982. B Chromosomes. New York, Academic Press

Kamnert, I., Lopez, C.C., Rosen, M., Edstrom, J.E. 1997. Telomeres terminating with long complex tandem repeats. Hereditas 127: 175-180.

Karamysheva, Z.N., Surovtseva, Y.V., Vespa, L., Shakirov, E.V., Shippen, D.E. 2004. A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA- binding proteins in Arabidopsis. J Biol Chem 279: 47799-47807.

Karlseder, J., Smogorzewska, A., de Lange, T. 2002. Senescence induced by altered telomere state, not telomere loss. Science 295: 2446-2449.

Kim, S.H., Kaminker, P., Campisi, J. 1999. TIN2, a new regulator of telomere length in human cells. Nat Genet 23: 405-412.

Kirk, K.E., Blackburn, E.H. 1995. An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila. Gene Dev 9: 59-71.

Kiss, T., Kis, M., Solymosy, F. 1989. Nucleotide-sequence of a 25S Ribosomal-RNA gene from Tomato. Nucleic Acids Res 17: 796-796.

Knoll, A.H., Javaux, E.J., Hewitt, D., Cohen, P. 2006. Eukaryotic organisms in Proterozoic oceans. Philos T R Soc B 361: 1023-1038.

Krahulec F., Duchoslav M. 2010. Alliaceae J. AGARDH. In: Štěpánková J. (eds). Květena České republiky, díl 7. Praha, Academia, 647-677.

Kubo, Y., Okazaki, S., Anzai, T., Fujiwara, H. 2001. Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects. Mol Biol Evol 18: 848-857.

104

Kuo, H.F., Olsen, K.M., Richards, E.J. 2006. Natural variation in a subtelomeric region of Arabidopsis: Implications for the genomic dynamics of a chromosome end. Genetics 173: 401-417.

Lansdorp, P.M., Verwoerd, N.P., van de Rijke, F.M., Dragowska, V., Little, M.T., Dirks, R.W., Raap, A.L., Tanke, H.J. 1996. Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5: 685-691.

Lapitan, N.L.V., Ganal, M.W., Tanksley, S.D. 1991. Organization of the 5S Ribosomal RNA genes in the genome of Tomato. Genome 34: 509-514.

Le, S., Moore, J.K., Haber, J.E., Greider, C.W. 1999. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152: 143-152.

Levy, M.Z., Allsopp, R.C., Futcher, A.B., Greider, C.W., Harley, C.B. 1992. Telomere end-replication problem and cell aging. J Mol Biol 225: 951-960.

Li, B.B., Oestreich, S., de Lange, T. 2000. Identification of human Rap1: Implications for telomere evolution. Cell 101: 471-483.

Li, Q.Q., Zhou, S.D., He, X.J., Yu, Y., Zhang, Y.C., Wei, X.Q. 2010. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann Bot 106: 709-733.

Lima-de-Faria, A. 1976. Chromosome field 1. Prediction of location of ribosomal cistrons. Hereditas 83: 1-22.

Liu, D., Safari, A., O'Connor, M.S., Chan, D.W., Laegeler, A., Qin, J., Zhou, S.Y. 2004. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6: 673- 680.

105

Loidl, J., Greilhuber, J. 1983. Structural changes of Ag-stained nucleolus organizing regions and nucleoli during meiosis in Allium flavum. Can J Genet Cytol 25: 524-529.

Lopez, C.C., Nielsen, L., Edstrom, J.E. 1996. Terminal long tandem repeats in chromosomes form Chironomus pallidivittatus. Mol Cell Biol 16: 3285-3290.

Lundblad, V., Blackburn, E.H. 1993. An alternative pathway for yeast telomere maintenance rescues Est1- senescence. Cell 73: 347-360.

Lundblad, V., Szostak, J.W. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633-643.

Macgillivray, C.W., Grime, J.P. 1995. Genome size predicts frost-resistance in British herbaceous plants - Implications for rates of vegetation response to global warming. Funct Ecol 9: 320-325.

Madalena, C.R.G., Amabis, J.M., Gorab, E. 2010. Unusually short tandem repeats appear to reach chromosome ends of Rhynchosciara americana (Diptera: Sciaridae). Chromosoma 119: 613-623.

Madalena, C.R.G., Gorab, E. 2005. A chromosome end satellite of Rhynchosciara americana (Diptera: Sciaridae) resembling nematoceran telomeric repeats. Insect Mol Biol 14: 255-262.

Makarov, V.L., Hirose, Y., Langmore, J.P. 1997. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88: 657-666.

Mandakova, T., Joly, S., Krzywinski, M., Mummenhoff, K., Lysak, M.A. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277-2290.

Mandáková, T., Marhold, K., Lysak, M.A. 2013. The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytologist 2013: doi: 10.1111/nph.12567.

106

Maringele, L., Lydall, D. 2004. Telomerase- and recombination-independent immortalization of budding yeast. Gene Dev 18: 2663-2675.

Markova, M., Vyskot, B. 2009. New horizons of genomic in situ hybridization. Cytogenet Genome Res 126: 368-375.

Martinez-Guitarte, J.L., Diez, J.L., Morcillo, G. 2008. Transcription and activation under environmental stress of the complex telomeric repeats of Chironomus thummi. Chromosome Res 16: 1085-1096.

Mártonfi P. 2007. Systematika cievnatých rastlín. Košice. Vydavateľstvo UPJŠ Košice

Mason, J.M., Biessmann, H. 1995. The unusual telomeres of Drosophila. Trends Genet 11: 58-62.

Mason, J.M., Frydrychova, R.C., Biessmann, H. 2008. Drosophila telomeres: an exception providing new insights. Bioessays 30: 25-37.

McClintock, B. 1934. The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Zeitschrift für Zellforschung und Mikroskopische Anatomie 21: 294-326.

McClintock, B. 1942. The fusion of broken ends of chromosomes following nuclear fusion. Proceedings of the National Academy of Sciences of the United States of America 28: 458- 463.

McCormick-Graham, M., Haynes, W.J., Romero, D.P. 1997. Variable telomeric repeat synthesis in Paramecium tetraurelia is consistent with misincorporation by telomerase. Embo J 16: 3233-3242.

Memariani, F., Joharchi, M.R., Arjmandi, A.A. 2012. Allium aladaghense (Amaryllidaceae, Allieae), a new species of section Asteroprason from northeast of Iran. Phytotaxa 56: 28-34.

107

Meselson, M., Stahl, F.W. 1958. The replication of DNA. Cold Spring Harb Sym 23: 9-12.

Métézeau, P., Schmitz, A., Frelat, G. 1993. Analysis and sorting of chromosomes by flow cytometry: New trends. Biol Cell 78: 31-39.

Meyers, B.C., Tingley, S.V., Morgante, M. 2001. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11: 1660- 1676.

Meyne, J., Ratliff, R.L., Moyzis, R.K. 1989. Conservation of the human telomere sequence

(TTTAGGG)n among Vertebrates. P Natl Acad Sci USA 86: 7049-7053.

Mitton-Fry, R.M., Anderson, E.M., Hughes, T.R., Lundblad, V., Wuttke, D.S. 2002. Conserved structure for single-stranded telomeric DNA recognition. Science 296: 145-147.

Moon, I.K., Jarstfer, M.B. 2007. The human telomere and its relationship to human disease, therapy, and tissue engineering. Front Biosci 12: 4595-4620.

Morcillo, G., Barettino, D., Carmona, M.J., Carretero, M.T., Diez, J.L., 1988. Telomeric DNA-sequences differentially activated by heat-shock in 2 Chironomus subspecies. Chromosoma 96: 139-144.

Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L., Wu, J.R. 1988. A highly conserved repetitive DNA-sequence,

(TTTAGGG)n, present at the telomeres of human chromosomes. P Natl Acad Sci USA 85: 6622-6626.

Mozgova, I., Mokros, P., Fajkus, J. 2010. Dysfunction of Chromatin Assembly Factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22: 2768-2780.

Mravinac, B., Mestrovic, N., Cavrak, V.V., Plohl, M. 2011. TCAGG, an alternative telomeric sequence in insects. Chromosoma 120: 367-376.

108

Muller, H.J. 1938. The remaking of chromosomes. Collecting Net 13: 181-198.

Nakamura, T.M., Cooper, J.P., Cech, T.R. 1998. Two modes of survival of fission yeast without telomerase. Science 282: 493-496.

Natarajan, S., McEachern, M.J. 2002. Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol 22: 4512-4521.

Neves, N., Delgado, M., Silva, M., Caperta, A., Morais-Cecilio, L., Viegas, W., 2005. Ribosomal DNA heterochromatin in plants. Cytogenet Genome Res 109: 104-111.

Nielsen, L., Edstrom, J.E., 1993. Complex telomere-associated repeat units in members of the genus Chironomus evolve from sequences similar to simple telomeric repeats. Mol Cell Biol 13: 1583-1589.

Oganesian, L., Moon, I.K., Bryan, T.M., Jarstfer, M.B. 2006. Extension of G-quadruplex DNA by ciliate telomerase. Embo J 25: 1148-1159.

Ohri, D., Pistrick, K. 2001. Phenology and genome size variation in Allium L. - a tight correlation? Plant Biology 3: 654-660.

Ochman, H., Gerber, A.S., Hartl D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621-623.

Okazaki, S., Ishikawa, H., Fujiwara, H. 1995. Structural-snalysis of Tras1, a novel family of telomeric repeat-associated retrotransposons in the Silkworm, Bombyx mori. Mol Cell Biol 15: 4545-4552.

Okazaki, S., Tsuchida, K., Maekawa, H., Ishikawa, H., Fujiwara, H. 1993. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the Silkworm Bombyx mori and in other insects. Mol Cell Biol 13: 1424-1432.

Olovnikov, A.M. 1971. Principle of Marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR: 201, 1496-1499.

109

Osanai, M., Kojima, K.K., Futahashi, R., Yaguchi, S., Fujiwara, H. 2006. Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene 376: 281-289.

Palm, W., de Lange, T. 2008. How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301-334.

Panzera, F., Gimenez-Abian, M.I., Lopez-Saez, J.F., Gimenez-Martin, G., Cuadrado, A., Shaw, P.J., Beven, A.F., Canovas, J.L., De la Torre, C. 1996. Nucleolar organizer expression in Allium cepa L. chromosomes. Chromosoma 105: 12-19.

Pardue, M.L., Danilevskaya, O.N., Lowenhaupt, K., Slot, F., Traverse, K.L. 1996. Drosophila telomeres: New views on chromosome evolution. Trends Genet 12: 48-52.

Pasolini, P., Costagliola, D., Rocco, L., Tinti, F. 2006. Molecular organization of 5S rDNAs in Rajidae (Chondrichthyes): Structural features and evolution of piscine 5S rRNA genes and nontranscribed intergenic spacers. J Mol Evol 62: 564-574.

Pearce, S.R., Pich, U., Harrison, G., Flavell, A.J., HeslopHarrison, J.S.P., Schubert, I., Kumar, A. 1996. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res 4: 357-364.

Peska, V. 2011. Neobvyklé telomery (Disertační práce), Brno, Masarykova univerzita

Peska, V., Schrumpfova, P.P., Fajkus, J. 2011. Using the telobox to search for plant telomere binding proteins. Curr Protein Pept Sc 12: 75-83.

Pich, U., Fritsch, R., Schubert, I. 1996. Closely related Allium species (Alliaceae) share a very similar satellite sequence. Plant Syst Evol 202: 255-264.

Pich, U., Schubert, I. 1998. Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res 6: 315-321.

110

Prescott, J., Blackburn, E.H.: 1997. Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro. Gene Dev 11: 528-540.

Prochazkova Schrumpfova, P., Vychodilova, I., Dvorackova, M., Majerska, J., Dokladal, L., Schorova, S., Fajkus, J. 2014. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J 77: 770-781.

Prokopowich, C.D., Gregory, T.R., Crease, T.J. 2003. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46: 48-50.

Prowse, K.R., Greider, C.W. 1995. Developmental and tissue-specific regulation of mouse telomerase and telomere length. P Natl Acad Sci USA 92: 4818-4822.

Pruitt, R.E., Meyerowitz, E.M. 1986. Characterization of the genome of Arabidopsis thaliana. J Mol Biol 187: 169-183.

Ranjekar, P.K., Lafontaine, J.G., Pallotta, D. 1978. Analysis of plant genomes. V. Comparative study of molecular properties of DNAs of 7 Allium species. Biochem Genet 16: 957-970.

Rashkova, S., Karam, S.E., Kellum, R., Pardue, M.L. 2002. Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159: 397-402.

Ricroch, A., Brown, S.C. 1997. DNA base composition of Allium genomes with different chromosome numbers. Gene 205: 255-260.

Ricroch, A., Peffley, E.B., Baker, R.J. 1991. Chromosomal location of rDNA in Allium - in situ hybridization using biotin-labeled and fluorescein-labeled probe. Theor Appl Genet 83: 413-418.

Ricroch, A., Yockteng, R., Brown, S.C., Nadot, S. 2005. Evolution of genome size across some cultivated Allium species. Genome 48: 511-520.

111

Rigby, P.W., Dieckmann, M., Rhodes, C., Berg, P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113: 237-251.

Richards, E.J., Ausubel, F.M. 1988. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127-136.

Ritossa, F.M., Spiegelman, S. 1965. Localization of DNA complementary to ribosomal RNA in nucleolus organizer region of Drosophila melanogaster. P Natl Acad Sci USA 53, 737-745

Roa, F., Guerra, M. 2012. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. Bmc Evol Biol 12: 225

Rodriguez-Enriquez, M.J., Grant-Downton, R.T. 2013. A new day dawning: Hemerocallis (daylily) as a future model organism. AoB PLANTS 5: pls055; doi:10.1093/aobpla/pls055.

Rogers, S.O., Bendich, A.J. 1987. Ribosomal-RNA genes in plants - variability in copy number and in the intergenic spacer. Plant Mol Biol 9, 509-520.

Rosen, M., Castillejo-Lopez, C., Edstrom, J.E. 2002a. Telomere terminating with centromere-specific repeats is closely associated with a transposon derived gene in Chironomus pallidivittatus. Chromosoma 110: 532-541.

Rosen, M., Edstrom, J.E. 2002. Chromosome ends in Chironomus tentans do not have long single-stranded overhangs characterizing canonical telomeres. Chromosome Res 10: 21-31.

Rosen, M., Kamnert, I., Edstrom, J.E. 2002b. Extrachromosomal RNA-DNA complex containing long telomeric repeats in chironomids. Insect Mol Biol 11: 167-174.

Rossato, R.M., Madalena, C.R.G., Gorab, E. 2007. Unusually short tandem repeats in the chromosome end structure of Rhynchosciara (Diptera: Sciaridae). Genetica 131: 109-116.

Roth, C.W., Kobeski, F., Walter, M.F., Biessmann, H. 1997. Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17: 5176-5183.

112

Rotkova, G., Sklenickova, M., Dvorackova, M., Sykorova, E., Leitch, A.R., Fajkus, J. 2004. An evolutionary change in telomere sequence motif within the plant section Asparagales had significance for telomere nucleoprotein complexes. Cytogenet Genome Res 107: 132-138.

Ruckova, E., Friml, J., Schrumpfova, P.P., Fajkus, J. 2008. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol Biol 66: 637-646.

Sasaki, T., Fujiwara, H. 2000. Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267: 3025-3031.

Scalenghe, F., Turco, E., Edström, J.E., Pirrota, V., Melli, M. 1981. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 82: 205-216

Shibata, F., Hizume, M. 2002. Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet 105: 167-172.

Shigyo, M., Tashiro, Y., Isshiki, S., Miyazaki, S. 1996. Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L) with extra chromosomes from shallot (A. cepa L Aggregatum group). Genes Genet Syst 71: 363-371.

Schubert, I., Wobus, U. 1985. In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143-148.

Signon, L., Malkova, A., Naylor, M.L., Klein, H., Haber, J.E. 2001. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol 21: 2048-2056.

Smith, F.W., Feigon, J., 1992. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356: 164-168.

113

Sousa, A., Silva, A.E.B.E., Cuadrado, A., Loarce, Y., Alves, M.V., Guerra, M. 2011. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the "chromosome field" hypothesis. Micron 42: 625-631.

Stajner, D., Igic, R., Popovic, B.M., Malencic, D. 2008. Comparative study of antioxidant properties of wild growing and cultivated Allium species. Phytother Res 22: 113-117.

Stevenson, M., Armstrong, S.J., Jones, G.H., Ford-Lloyd, B.V. 1999. Distribution of a 375 bp repeat sequence in Allium (Alliaceae) as revealed by FISH. Plant Syst Evol 217: 31-42.

Swift, H. 1950. The constancy of deoxyribose nucleic acid in plant nuclei. P Natl Acad Sci USA 36: 643-654.

Sykorova, E., Fajkus, J., Meznikova, M., Lim, K.Y., Neplechova, K., Blattner, F.R., Chase, M.W., Leitch, A.R. 2006a. Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am J Bot 93: 814-823.

Sykorova, E., Lim, K.Y., Chase, M.W., Knapp, S., Leitch, I.J., Leitch, A.R., Fajkus, J. 2003a. The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J 34: 283-291.

Sykorova, E., Lim, K.Y., Kunicka, Z., Chase, M.W., Bennett, M.D., Fajkus, J., Leitch, A.R. 2003b. Telomere variability in the monocotyledonous plant order Asparagales. P Roy Soc B-Biol Sci 270: 1893-1904.

Sykorova, E., Rowland, A., Leitch, A.R., Fajkus, J. 2006b. Asparagales telomerases which synthesize the human type of telomeres. Plant Mol Biol 60: 633-646.

Tatsuke, T., Sakashita, K., Masaki, Y., Lee, J.M., Kawaguchi, Y., Kusakabe, T. 2010. The telomere-specific non-LTR retrotransposons SART1 and TRAS1 are suppressed by Piwi subfamily proteins in the silkworm, Bombyx mori. Cell Mol Biol Lett 15: 118-133.

114

Teng, S.C., Chang, J., McCowan, B., Zakian, V.A. 2000. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6: 947-952.

Teng, S.C., Zakian, V.A. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19: 8083- 8093.

Tomaska, L., McEachern, M.J., Nosek, J. 2004. Alternatives to telomerase: keeping linear chromosomes via telomeric circles. Febs Lett 567: 142-146.

Tomaska, L., Nosek, J., Makhov, A.M., Pastorakova, A., Griffith, J.D. 2000. Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 28: 4479-4487.

Tucker, S., Vitins, A., Pikaard, C.S. 2010. Nucleolar dominance and ribosomal RNA gene silencing. Curr Opin Cell Biol 22: 351-356.

Vitkova, M., Kral, J., Traut, W., Zrzavy, J., Marec, F. 2005. The evolutionary origin of insect telomeric repeats, (TTAGG)(n). Chromosome Res 13: 145-156.

Volpicella, M., Leoni, C., Costanza, A., Fanizza, I., Placido, A., Ceci, L.R. 2012. Genome walking by next generation sequencing approaches. Biology 2013: 495-507. doi: 10.3390/biology1030495.

Walmsley, R.M., Chan, C.S.M., Tye, B.K., Petes, T.D. 1984. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310: 157-160.

Watson, J.D. 1972. Origin of concatemeric T7 DNA. Nature-New Biol 239: 197-201.

Watson, J.M., Bulankova, P., Riha, K., Shippen, D.E., Vyskot, B. 2005. Telomerase- independent cell survival in Arabidopsis thaliana. Plant J 43: 662-674.

115

Weiss-Schneeweiss, H., Riha, K., Jang, C.G., Puizina, J., Scherthan, H., Schweizer, D. 2004. Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesises vertebrate-type telomere sequences. Plant J 37: 484-493.

Weiss, H., Scherthan, H. 2002. Aloe spp. - plants with vertebrate-like telomeric sequences. Chromosome Res 10: 155-164.

Yang, Q., Zheng, Y.L., Harris, C.C. 2005. POT1 and TRF2 cooperate to maintain telomeric integrity. Mol Cell Biol 25: 1070-1080.

Ye, J.Z.S., Hockemeyer, D., Krutchinsky, A.N., Loayza, D., Hooper, S.M., Chait, B.T., de Lange, T. 2004. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Gene Dev 18: 1649-1654.

Yeager, T.R., Neumann, A.A., Englezou, A., Huschtscha, L.I., Noble, J.R., Reddel, R.R. 1999. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59: 4175-4179.

Yu, J., Hu, S.N., Wang, J., Wong, G.K.S., Li, S.G., Liu, B., Deng, Y.J., Dai, L., Zhou, Y., Zhang, X.Q., Cao, M.L., Liu, J., Sun, J.D., Tang, J.B., Chen, Y.J., Huang, X.B., Lin, W., Ye, C., Tong, W., Cong, L.J., Geng, J.N., Han, Y.J., Li, L., Li, W., Hu, G.Q., Huang, X.G., Li, W.J., Li, J., Liu, Z.W., Li, L., Liu, J.P., Qi, Q.H., Liu, J.S., Li, L., Li, T., Wang, X.G., Lu, H., Wu, T.T., Zhu, M., Ni, P.X., Han, H., Dong, W., Ren, X.Y., Feng, X.L., Cui, P., Li, X.R., Wang, H., Xu, X., Zhai, W.X., Xu, Z., Zhang, J.S., He, S.J., Zhang, J.G., Xu, J.C., Zhang, K.L., Zheng, X.W., Dong, J.H., Zeng, W.Y., Tao, L., Ye, J., Tan, J., Ren, X.D., Chen, X.W., He, J., Liu, D.F., Tian, W., Tian, C.G., Xia, H.G., Bao, Q.Y., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W.M., Li, P., Chen, W., Wang, X.D., Zhang, Y., Hu, J.F., Wang, J., Liu, S., Yang, J., Zhang, G.Y., Xiong, Y.Q., Li, Z.J., Mao, L., Zhou, C.S., Zhu, Z., Chen, R.S., Hao, B.L., Zheng, W.M., Chen, S.Y., Guo, W., Li, G.J., Liu, S.Q., Tao, M., Wang, J., Zhu, L.H., Yuan, L.P., Yang, H.M., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296: 79-92.

116

Zellinger, B., Akimcheva, S., Puizina, J., Schirato, M., Riha, K. 2007. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol Cell 27: 163-169.

Zhang, Y.J., Kamnert, I., Lopez, C.C., Cohn, M., Edstrom, J.E. 1994. A Family of complex tandem DNA repeats in the telomeres of Chironomus pallidivittatus. Mol Cell Biol 14: 8028-8036.

Zhong, Z., Shiue, L., Kaplan, S., Delange, T. 1992. A mammalian factor that binds telomeric TTTAGGG repeats in vitro. Mol Cell Biol 12: 4834-4843.

Zonneveld, B.J.M. 2010. New record holders for maximum genome size in eudicots and monocots. Journal of Botany [online]. DOI:10.1155/2010/527357.

Zvereva, M.I., Shcherbakova, D.M., Dontsova, O.A. 2010. Telomerase: Structure, functions, and activity regulation. Biochemistry-Moscow 75: 1563-1583.

117

Příloha 1: Fylogenetický strom Monocotyledonae

Příloha 1. Fylogenetický strom Monocotyledonae. Upraveno podle (APG III, 2009)

Příloha 2: Fylogenetické členění řádu Asparagales

Příloha 2. Fylogenetické členění řádu Asparagales. Upraveno podle (Rodriguez-Enriquez a Grant-Downton, 2013).

Příloha 3: Fylogenetické uspořádání rodu Allium

Druh Sekce Podrod

Druh Sekce Podrod

Druh Sekce Podrod

Druh Sekce Podrod

Příloha 3. Fylogenetické uspořádání rodu Allium. Převzato z podle (Li et al., 2010)