Lecture Notes on Fields (Fall 1997) 1 Field Extensions

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes on Fields (Fall 1997) 1 Field Extensions Last Revised: December 7, 2001 Lecture Notes on Fields (Fall 1997) By George F. Seelinger NOTE: All references here are either made to Hungerford or to Beachy/Blair (2nd Edition). The references to Hungerford start with roman numerals while the references to Beachy/Blair are of the form x:y:z for positive integers x, y, and z. All internal references will be of the form x:y for positive integers x and y. 1 Field Extensions Definition 1.1 Let F be a field and let K F be a subring. Then we say K is a subfield of F if K is a field. In this case we also call⊆F an extension field of K and abbreviate this by saying F=K is a field extension. Recall the definition of a vector space over an arbitrary field. Definition 1.2 A vector space over a field K is an abelian group V whose group operation is denoted additively such that there exists a function : K V V with the following properties: ∗ × ! 1. (ab) x = a (b x) for all a; b K and x V . ∗ ∗ ∗ 2 2 2. (a + b) x = a x + b x for all a; b K and x V . ∗ ∗ ∗ 2 2 3. a (x + y) = a x + a y for all a K and x; y V . ∗ ∗ ∗ 2 2 4. 1 x = x for all x V ∗ 2 Then the following lemma tells us we can use some of the tools of linear algebra to help us study field extensions. Lemma 1.3 If F=K is a field extension, then F is a K vector space. Proof: By definition, F is an abelian group under addition, so we can define our vector addition to be the addition in F . Also, we can define our scalar multiplication : K F F to be given by k x = kx where the second multiplication is just multiplication∗ of× elements! in F . Then it is∗ easy to check that F satisfies the definition of a vector space with scalars K with these operations. Q.E.D. 1 So if F=K is a field extension, we define [F : K] = dimK (F ), the dimension of F as a K vector space. Therefore, [F : K] is the cardinality of any basis of F as a K-vector space. Review: Let V be a K-vector space for some field K. Let B be a non-empty subset of V . Then the K-span of B is the set of all finite sums of the form a1v1 + + anvn such that a1; : : : ; an K and v1; : : : ; vn B ··· 2 2 We say that B is linearly independent over K if for any n N and for any v1; : : : ; vn B 2 2 the only solution a1; : : : ; an K to the equation 2 a1v1 + ::: + anvn = 0 is the trivial one, a1 = a2 = = an = 0. Then a K-basis of V is a subset B V such that the K-span of B is V and···B is linearly independent over K. ⊆ Now let F=K be a field extension and choose u F . Then we can define K(u) to be the smallest subfield of F containing K and u. Hence2 for any subfield E of F such that K E and u E we have K(u) E. We call the extension K(u)=K a simple extension. ⊆ 2 ⊆ We can build more complicated extensions by taking a finite list of elements u1; : : : ; un F 2 and defining K(u1; : : : ; un) to be the smallest subfield of F containing the set u1; : : : ; un and K. In general, for any subset X F , we define K(X) to be the smallest subfieldf of Fg containing K and X. ⊆ First we try to understand simple extensions. Let F=K be a field extension and choose u F . Then there exists an evaluation homomorphism φu : K[x] F given by 2 n i n i ! φu( aix ) = aiu for every n N and every a0; : : : ; an K. (It is not hard to Pi=0 Pi=0 2 2 see that φu is a homomorphism if you note φu(p) = p(u) for every p K[x].) Furthermore, 2 it is straightforward to see that Imφu K(u) since K(u) is closed under addition and multiplication. ⊆ Definition 1.4 Let F=K be a field extension. Then an element u F is said to be alge- braic over K if there exists a non-zero p K[x] such that p(u) = 02. (This is equivalent to 2 saying ker(φu) = 0.) We say that u is transcendental over K if it is not algebraic over 6 K. (Hence u is transcendental over K if ker(φu) = 0.) We say that F is algebraic over K if every element of F is algebraic over K. If F is not algebraic over K, we say F is transcendental over K. Theorem 1.6 Let F=K be a field extension and let u F . 2 1. If u is transcendental over K then K(u) ∼= K(x). 2. If u is algebraic over K then K(u) = K[x]= p for some irreducible p K[x]. Also ∼2 nh 1i 2 n = [K(u): K] = deg(p) and 1; u; u ; : : : ; u − is a basis for K(u). f g 2 Proof: (1) Assume u is transcendental over K. Then for every nonzero g K[x] we have 2 g(u) = φu(g) = 0 must be an invertible element of K(u), hence for any f; g K[x] with g = 0 6 ~2 6 we have f(u)=g(u) K(u). Therefore we can define a homomorphism φu : K(x) K(u) ~ 2 ~ ! given by φu(f=g) = f(u)=g(u) for all f=g K(x). As φu is non-trivial, it must be a ~ 2 monomorphism. Therefore Imφu is a subfield of K(u) containing both u and K, hence must be equal to K(u). So our result follows from the first isomorphism theorem. (2) Assume u is algebraic over K. Then ker(φu) = p for some nonzero p K[x]. We claim that p must be irreducible, hence p is a maximalh ideali of K[x]. Indeed, if2 fg = p for some f; g K[x] of strictly lower degree,h theni f(u)g(u) = p(u) = 0. As F is a field we have 2 f(u) = 0 or g(u) = 0, which gives us f ker(φu) or g ker(φu). Therefore f = pq or g = pq for some q K[x]. This is a contradiction,2 hence p must2 be irreducible. 2 Now since p is irreducible, Im(φu) = K[x]= p is a field that contains K and u, hence ∼ h i we have Im(φu) K(u) Im(φu), so the first isomorphism theorem gives us that K(u) ∼= K[x]= p as required.⊆ ⊆ h i 2 n 1 Next we show that U = 1; u; u ; : : : ; u − is a basis of K(u) over K, where n = deg(p). f g For any w K(u) there exists an f K[x] such that φu(f) = w. By the Division Algorithm, 2 2 n 1 f = pq+r for some q; r K[x] such that r = a0 +a1x+ +an 1x − for some a0; : : : ; an 1 2 ··· − n 1 − 2 K. As pq ker(φu), we have w = φu(f) = φu(r) = a01 + a1u + + an 1u − . Therefore 2 n 1 ··· − U spans K(u). Also, if a01 + a1u + + an 1u − = 0 for some a0; : : : ; an 1 K, then n 1 i ··· − −n 12 i − aix ker(φu). As this has degree smaller than p, we must have − aix = 0. Pi=0 2 Pi=0 Therefore we have that ai = 0 for all 0 i n 1, so U is also linearly independent, hence a basis for K(u).≤ ≤ − Q.E.D. If F=K is an extension and u F is algebraic over K then we define the minimal polynomial of u to be the unique monic2 irreducible polynomial p K[x] such that p(u) = 0. 2 Note that the minimal polynomial of u is also the unique monic generator of ker(φu) where φu is the evaluation homomorphism. We define the degree of u over K to be the degree of the minimal polynomial of u. One important observation to make from this theorem is that if u F is algebraic over a subfield K of degree n then every element c K(u) can be written uniquely2 in the form 2 n 1 c = a0 + a1u + + an 1u − ··· − for some a0; : : : ; an 1 K. − 2 Example: If we consider F = Q(p3 2) then since x3 2 is irreducible over Q, by Theorem 1.6 the set 1; p3 2; p3 4 is a Q-basis of F , hence every element− of v F can be written uniquely f 3 g 3 2 as v = a0 + a1p2 + a2p4 for some a0; a1; a2 Q. 2 We would like to start comparing different extensions of a field K. First, we can use the evaluation homomorphism to classify the simple algebraic extensions up to isomorphism. 3 Proposition 1.7 Let E=K and F=K be two field extensions and let u E and v F be algebraic over K. Then u and v are roots of the same irreducible polynomial2 p K[x]2if and only if there is an isomorphism of fields : K(u) K(v) such that (u) = v 2and (a) = a for all a K.
Recommended publications
  • Section V.1. Field Extensions
    V.1. Field Extensions 1 Section V.1. Field Extensions Note. In this section, we define extension fields, algebraic extensions, and tran- scendental extensions. We treat an extension field F as a vector space over the subfield K. This requires a brief review of the material in Sections IV.1 and IV.2 (though if time is limited, we may try to skip these sections). We start with the definition of vector space from Section IV.1. Definition IV.1.1. Let R be a ring. A (left) R-module is an additive abelian group A together with a function mapping R A A (the image of (r, a) being × → denoted ra) such that for all r, a R and a,b A: ∈ ∈ (i) r(a + b)= ra + rb; (ii) (r + s)a = ra + sa; (iii) r(sa)=(rs)a. If R has an identity 1R and (iv) 1Ra = a for all a A, ∈ then A is a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space. Note. A right R-module and vector space is similarly defined using a function mapping A R A. × → Definition V.1.1. A field F is an extension field of field K provided that K is a subfield of F . V.1. Field Extensions 2 Note. With R = K (the ring [or field] of “scalars”) and A = F (the additive abelian group of “vectors”), we see that F is a vector space over K. Definition. Let field F be an extension field of field K.
    [Show full text]
  • Computing Infeasibility Certificates for Combinatorial Problems Through
    1 Computing Infeasibility Certificates for Combinatorial Problems through Hilbert’s Nullstellensatz Jesus´ A. De Loera Department of Mathematics, University of California, Davis, Davis, CA Jon Lee IBM T.J. Watson Research Center, Yorktown Heights, NY Peter N. Malkin Department of Mathematics, University of California, Davis, Davis, CA Susan Margulies Computational and Applied Math Department, Rice University, Houston, TX Abstract Systems of polynomial equations with coefficients over a field K can be used to concisely model combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3- colorable, hamiltonian, etc.) if and only if a related system of polynomial equations has a solu- tion over the algebraic closure of the field K. In this paper, we investigate an algorithm aimed at proving combinatorial infeasibility based on the observed low degree of Hilbert’s Nullstellensatz certificates for polynomial systems arising in combinatorics, and based on fast large-scale linear- algebra computations over K. We also describe several mathematical ideas for optimizing our algorithm, such as using alternative forms of the Nullstellensatz for computation, adding care- fully constructed polynomials to our system, branching and exploiting symmetry. We report on experiments based on the problem of proving the non-3-colorability of graphs. We successfully solved graph instances with almost two thousand nodes and tens of thousands of edges. Key words: combinatorics, systems of polynomials, feasibility, Non-linear Optimization, Graph 3-coloring 1. Introduction It is well known that systems of polynomial equations over a field can yield compact models of difficult combinatorial problems. For example, it was first noted by D.
    [Show full text]
  • Gsm073-Endmatter.Pdf
    http://dx.doi.org/10.1090/gsm/073 Graduat e Algebra : Commutativ e Vie w This page intentionally left blank Graduat e Algebra : Commutativ e View Louis Halle Rowen Graduate Studies in Mathematics Volum e 73 KHSS^ K l|y|^| America n Mathematica l Societ y iSyiiU ^ Providence , Rhod e Islan d Contents Introduction xi List of symbols xv Chapter 0. Introduction and Prerequisites 1 Groups 2 Rings 6 Polynomials 9 Structure theories 12 Vector spaces and linear algebra 13 Bilinear forms and inner products 15 Appendix 0A: Quadratic Forms 18 Appendix OB: Ordered Monoids 23 Exercises - Chapter 0 25 Appendix 0A 28 Appendix OB 31 Part I. Modules Chapter 1. Introduction to Modules and their Structure Theory 35 Maps of modules 38 The lattice of submodules of a module 42 Appendix 1A: Categories 44 VI Contents Chapter 2. Finitely Generated Modules 51 Cyclic modules 51 Generating sets 52 Direct sums of two modules 53 The direct sum of any set of modules 54 Bases and free modules 56 Matrices over commutative rings 58 Torsion 61 The structure of finitely generated modules over a PID 62 The theory of a single linear transformation 71 Application to Abelian groups 77 Appendix 2A: Arithmetic Lattices 77 Chapter 3. Simple Modules and Composition Series 81 Simple modules 81 Composition series 82 A group-theoretic version of composition series 87 Exercises — Part I 89 Chapter 1 89 Appendix 1A 90 Chapter 2 94 Chapter 3 96 Part II. AfRne Algebras and Noetherian Rings Introduction to Part II 99 Chapter 4. Galois Theory of Fields 101 Field extensions 102 Adjoining
    [Show full text]
  • Section X.51. Separable Extensions
    X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F .
    [Show full text]
  • Math 545: Problem Set 6
    Math 545: Problem Set 6 Due Wednesday, March 4 1. Suppose that K is an arbitrary field, and consider K(t), the rational function field in one variable over K. Show that if f(X) 2 K[t][X] is reducible over K(t), then in fact f(X) is reducible over K[t]. [Hint: Note that just as Q is the fraction field of Z, so is K(t) the fraction field of K[t]. Carefully adapt the proof given in class for the analogous statement concerning f(X) 2 Z[X]. You will need to define the notion of a primitive polynomial in this new context, and prove a version of Gauss's Lemma.] 2. (A Generalized Eisenstein Criterion) Let R be an integral domain, and p ⊂ R a prime ideal. Suppose that n n−1 p(X) = X + rn−1X + ··· + r1X + r0 2 R[X] 2 satisfies r0; r1; : : : ; rn−1 2 p, and r0 2= p (i.e. p(X) is Eisenstein for p). Prove that p(X) is irreducible in R[X]. 3. This problem is designed to convince you that the Primitive Element Theorem fails in characteristic p > 0. Let K = Fp(S; T ) be the field of rational functions in two variables S; T with coefficients in the finite field with p elements. a) Prove that Xp −S is irreducible in K[X]. [Hint: Use the previous two problems and the fact that K = Fp(T )(S).] Hence p p p Fp( S; T ) = K[X]=(X − S) pp is a field extension of K of degree p (here S denotes thep coset p p p X+(X −S)).
    [Show full text]
  • MATH 4140/MATH 5140: Abstract Algebra II
    MATH 4140/MATH 5140: Abstract Algebra II Farid Aliniaeifard April 30, 2018 Contents 1 Rings and Isomorphism (See Chapter 3 of the textbook) 2 1.1 Definitions and examples . .2 1.2 Units and Zero-divisors . .6 1.3 Useful facts about fields and integral domains . .6 1.4 Homomorphism and isomorphism . .7 2 Polynomials Arithmetic and the Division algorithm 9 3 Ideals and Quotient Rings 11 3.1 Finitely Generated Ideals . 12 3.2 Congruence . 13 3.3 Quotient Ring . 13 4 The Structure of R=I When I Is Prime or Maximal 16 5 EPU 17 p 6 Z[ d], an integral domain which is not a UFD 22 7 The field of quotients of an integral domain 24 8 If R is a UDF, so is R[x] 26 9 Vector Spaces 28 10 Simple Extensions 30 11 Algebraic Extensions 33 12 Splitting Fields 35 13 Separability 38 14 Finite Fields 40 15 The Galois Group 43 1 16 The Fundamental Theorem of Galois Theory 45 16.1 Galois Extensions . 47 17 Solvability by Radicals 51 17.1 Solvable groups . 51 18 Roots of Unity 52 19 Representation Theory 53 19.1 G-modules and Group algebras . 54 19.2 Action of a group on a set yields a G-module . 54 20 Reducibility 57 21 Inner product space 58 22 Maschke's Theorem 59 1 Rings and Isomorphism (See Chapter 3 of the text- book) 1.1 Definitions and examples Definition. A ring is a nonempty set R equipped with two operations (usually written as addition (+) and multiplication(.) and we denote the ring with its operations by (R,+,.)) that satisfy the following axioms.
    [Show full text]
  • Finite Field
    Finite field From Wikipedia, the free encyclopedia In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod n when n is a prime number. TheFinite number field - Wikipedia,of elements the of free a finite encyclopedia field is called its order. A finite field of order q exists if and only if the order q is a prime power p18/09/15k (where 12:06p is a amprime number and k is a positive integer). All fields of a given order are isomorphic. In a field of order pk, adding p copies of any element always results in zero; that is, the characteristic of the field is p. In a finite field of order q, the polynomial Xq − X has all q elements of the finite field as roots. The non-zero elements of a finite field form a multiplicative group. This group is cyclic, so all non-zero elements can be expressed as powers of a single element called a primitive element of the field (in general there will be several primitive elements for a given field.) A field has, by definition, a commutative multiplication operation. A more general algebraic structure that satisfies all the other axioms of a field but isn't required to have a commutative multiplication is called a division ring (or sometimes skewfield).
    [Show full text]
  • FIELD EXTENSION REVIEW SHEET 1. Polynomials and Roots Suppose
    FIELD EXTENSION REVIEW SHEET MATH 435 SPRING 2011 1. Polynomials and roots Suppose that k is a field. Then for any element x (possibly in some field extension, possibly an indeterminate), we use • k[x] to denote the smallest ring containing both k and x. • k(x) to denote the smallest field containing both k and x. Given finitely many elements, x1; : : : ; xn, we can also construct k[x1; : : : ; xn] or k(x1; : : : ; xn) analogously. Likewise, we can perform similar constructions for infinite collections of ele- ments (which we denote similarly). Notice that sometimes Q[x] = Q(x) depending on what x is. For example: Exercise 1.1. Prove that Q[i] = Q(i). Now, suppose K is a field, and p(x) 2 K[x] is an irreducible polynomial. Then p(x) is also prime (since K[x] is a PID) and so K[x]=hp(x)i is automatically an integral domain. Exercise 1.2. Prove that K[x]=hp(x)i is a field by proving that hp(x)i is maximal (use the fact that K[x] is a PID). Definition 1.3. An extension field of k is another field K such that k ⊆ K. Given an irreducible p(x) 2 K[x] we view K[x]=hp(x)i as an extension field of k. In particular, one always has an injection k ! K[x]=hp(x)i which sends a 7! a + hp(x)i. We then identify k with its image in K[x]=hp(x)i. Exercise 1.4. Suppose that k ⊆ E is a field extension and α 2 E is a root of an irreducible polynomial p(x) 2 k[x].
    [Show full text]
  • 494 Lecture: Splitting Fields and the Primitive Element Theorem
    494 Lecture: Splitting fields and the primitive element theorem Ben Gould March 30, 2018 1 Splitting Fields We saw previously that for any field F and (let's say irreducible) polynomial f 2 F [x], that there is some extension K=F such that f splits over K, i.e. all of the roots of f lie in K. We consider such extensions in depth now. Definition 1.1. For F a field and f 2 F [x], we say that an extension K=F is a splitting field for f provided that • f splits completely over K, i.e. f(x) = (x − a1) ··· (x − ar) for ai 2 K, and • K is generated by the roots of f: K = F (a1; :::; ar). The second statement implies that for each β 2 K there is a polynomial p 2 F [x] such that p(a1; :::; ar) = β; in general such a polynomial is not unique (since the ai are algebraic over F ). When F contains Q, it is clear that the splitting field for f is unique (up to isomorphism of fields). In higher characteristic, one needs to construct the splitting field abstractly. A similar uniqueness result can be obtained. Proposition 1.2. Three things about splitting fields. 1. If K=L=F is a tower of fields such that K is the splitting field for some f 2 F [x], K is also the splitting field of f when considered in K[x]. 2. Every polynomial over any field (!) admits a splitting field. 3. A splitting field is a finite extension of the base field, and every finite extension is contained in a splitting field.
    [Show full text]
  • DISCRIMINANTS in TOWERS Let a Be a Dedekind Domain with Fraction
    DISCRIMINANTS IN TOWERS JOSEPH RABINOFF Let A be a Dedekind domain with fraction field F, let K=F be a finite separable ex- tension field, and let B be the integral closure of A in K. In this note, we will define the discriminant ideal B=A and the relative ideal norm NB=A(b). The goal is to prove the formula D [L:K] C=A = NB=A C=B B=A , D D ·D where C is the integral closure of B in a finite separable extension field L=K. See Theo- rem 6.1. The main tool we will use is localizations, and in some sense the main purpose of this note is to demonstrate the utility of localizations in algebraic number theory via the discriminants in towers formula. Our treatment is self-contained in that it only uses results from Samuel’s Algebraic Theory of Numbers, cited as [Samuel]. Remark. All finite extensions of a perfect field are separable, so one can replace “Let K=F be a separable extension” by “suppose F is perfect” here and throughout. Note that Samuel generally assumes the base has characteristic zero when it suffices to assume that an extension is separable. We will use the more general fact, while quoting [Samuel] for the proof. 1. Notation and review. Here we fix some notations and recall some facts proved in [Samuel]. Let K=F be a finite field extension of degree n, and let x1,..., xn K. We define 2 n D x1,..., xn det TrK=F xi x j .
    [Show full text]
  • Splitting Fields
    SPLITTING FIELDS KEITH CONRAD 1. Introduction When K is a field and f(T ) 2 K[T ] is nonconstant, there is a field extension K0=K in which f(T ) picks up a root, say α. Then f(T ) = (T − α)g(T ) where g(T ) 2 K0[T ] and deg g = deg f − 1. By applying the same process to g(T ) and continuing in this way finitely many times, we reach an extension L=K in which f(T ) splits into linear factors: in L[T ], f(T ) = c(T − α1) ··· (T − αn): We call the field K(α1; : : : ; αn) that is generated by the roots of f(T ) over K a splitting field of f(T ) over K. The idea is that in a splitting field we can find a full set of roots of f(T ) and no smaller field extension of K has that property. Let's look at some examples. Example 1.1. A splitting field of T 2 + 1 over R is R(i; −i) = R(i) = C. p p Example 1.2. A splitting field of T 2 − 2 over Q is Q( 2), since we pick up two roots ± 2 in the field generated by just one of the roots. A splitting field of T 2 − 2 over R is R since T 2 − 2 splits into linear factors in R[T ]. p p p p Example 1.3. In C[T ], a factorization of T 4 − 2 is (T − 4 2)(T + 4 2)(T − i 4 2)(T + i 4 2).
    [Show full text]
  • An Extension K ⊃ F Is a Splitting Field for F(X)
    What happened in 13.4. Let F be a field and f(x) 2 F [x]. An extension K ⊃ F is a splitting field for f(x) if it is the minimal extension of F over which f(x) splits into linear factors. More precisely, K is a splitting field for f(x) if it splits over K but does not split over any subfield of K. Theorem 1. For any field F and any f(x) 2 F [x], there exists a splitting field K for f(x). Idea of proof. We shall show that there exists a field over which f(x) splits, then take the intersection of all such fields, and call it K. Now, we decompose f(x) into irreducible factors 0 0 p1(x) : : : pk(x), and if deg(pj) > 1 consider extension F = f[x]=(pj(x)). Since F contains a 0 root of pj(x), we can decompose pj(x) over F . Then we continue by induction. Proposition 2. If f(x) 2 F [x], deg(f) = n, and an extension K ⊃ F is the splitting field for f(x), then [K : F ] 6 n! Proof. It is a nice and rather easy exercise. Theorem 3. Any two splitting fields for f(x) 2 F [x] are isomorphic. Idea of proof. This result can be proven by induction, using the fact that if α, β are roots of an irreducible polynomial p(x) 2 F [x] then F (α) ' F (β). A good example of splitting fields are the cyclotomic fields | they are splitting fields for polynomials xn − 1.
    [Show full text]