bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437019; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A fluorescent nanosensor paint reveals the heterogeneity of dopamine release from neurons at individual release sites Elizarova, S.1, 2, Chouaib, A. 3, Shaib, A.1,4, Mann, F.5, Brose, N.1, Kruss, S.*5,6,7, Daniel, J.A.*1 1 Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany. 2 Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Germany. 3 Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany. 4 Institute for Neuro- and Sensory Physiology, University Medical Center, Göttingen, Germany. 5 Institute of Physical Chemistry, University of Göttingen, Germany. 6 Physical Chemistry II, Faculty of Science, Ruhr University, Bochum, Germany. 7 Fraunhofer Institute of Microelectronic Circuits and Systems, Duisburg, Germany. * Co-corresponding authors –
[email protected],
[email protected] Abstract The neurotransmitter dopamine is released from discrete axonal structures called varicosities. Its release is essential in behaviour and is critically implicated in prevalent neuropsychiatric diseases. Existing dopamine detection methods are not able to detect and distinguish discrete dopamine release events from multiple varicosities. This prevents an understanding of how dopamine release is regulated across populations of discrete varicosities. Using a near infrared fluorescent (980 nm) dopamine nanosensor ‘paint’ (AndromeDA), we show that action potential-evoked dopamine release is highly heterogeneous across release sites and also requires molecular priming.