\AN OPTIMAL WITHDRAWAL POLICY FOR

SPENT FROM ON-SITE STORAGE,

by

David Wesley Swindle, Jr.

A Thesis submitted to the graduate Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Nuclear Science and Engineering

APPROVED:

H. A. Kursted Co-Chairman

a J. A. Nachlas, Co-Chairman G. H. acer

August 1977

Blacksburg, Virginia ib SEs Voss 97"? S94ny C.K ' ACKNOWLEDGEMENTS

The assistance of Dr. H. A. Kurstedt, Chairman, Nuclear Science and Engineering, and Dr. J. A. Nachlas, Industrial Engineering and

Operations Research, in selecting and developing the technical aspects of this paper is gratefully acknowledged. A special thanks is due the author's wife Carolyn, without whom the motivation to complete this work nor the typing of this work would have been possible.

Li TABLE OF CONTENTS

ACKNOWLEDGEMENTS»

TABLE OF CONTENTS

LIST OF TABLES* »*

LIST OF FIGURES e s e e ° e e » e . e e * * e e e a *

INTRODUCTIONs * © * © * © © © © © © © e© © © ee ee

A. Background and Motivation * * * + ** * *« se «+s

B. The Problem and the Objective * *+ + + * * * « + »

The Approach» e e e e e e ° e ° * e e e e ° ° e ° C.

Results ee © e® ® © © e e© 8@» © @® © © e@ &#© ® © #© &© 8 @ D.

DESCRIPTION OF THE SPENT+FUEL STORAGE PROBLEM «+ «+ « » 11

A. An Overview of the * * © * » » 11

Current Uncertainties Facing the Nuclear Fuel Cycle in the United States* * © * *+ © © © © « « « 16

Reprocessing of Nuclear Fuel in the United States 19

Examination of the Role of Nuclear Energy in Meeting America's Energy Needs» » + © * + ¢ «© « « 23

DERIVATION OF THE SPENT FUEL WITHDRAWAL MODEL « « « « 27

A. Characteristics of the Spent=Fuel Withdrawal Problem- 27

B. The Dynamic Programming Formulation «+ * + «+ « » . 29

Cc. The Hitchcock Problem Formulation * * + + * «© « « 35

D. The Linear Programming Formulations * * +¢ +© + « «» 40

THE EXAMINATION AND EVALUATION OF THE COMPONENTS OF THE SPENT~FUEL WITHDRAWAL PROBLEM «+ + + « « « «© «© © « « « 46

A. Characteristics of Nuclear Reactors in Regard to Nuclear Fuel + «© « «© 2» «© © «© «© © «© © © » © «© « 46

Lii TABLE OF CONTENTS

(Continued)

B. Spent-Fuel Supply and Demand Projections* * * * + °«

C. The Measure of Effectiveness - Profitability

e e per Assembly e P e e e ° e ° ° e a e e e . e e 63

D. Storage Costs * * * * * * © © © © © © © © # © # # » 81

APPLICATION OF THE SPENT=FUEL*WITHDRAWAL MODEL* »° 85

A. Model and Data Summary’ *- * * * * * * 2 2 e+ * © © & 85

B. Implementation of the Model and Procedural Summary: 88

RESULTS © © ee ee tee we ee he he eh we te te 100

A. Optimistic Reprocessing Scenarioe* * * * * * * * & » 100

B. Realistic Reprocessing Scenario * * * * * * * © » » 106

C. Pessimistic Reprocessing Scenario a 107

CONCLUS IONS e e ° e e e e e . ° e ° e e e ® e e e e e ° 118

SUMMARY AND RECOMMENDATIONS 120

BIBLIOGRAPHY* * * * * * © © © © © © © © © © © © ¢ # « ¢ 122

10. APPENDIX ° _ @ @ @ © e@© © #@ © © © © © © © @© © #@ © © @© #© @& 2@ 125

11. VITA e e e e e e e . e e e e e e e e ® e e e e e e . ° 244

iv LIST OF TABLES

Table Title Page

2.1 U.S. Electric Power Statistics 1947-1974- + >» 24

2.2 Installed Nuclear Capacity* + * + * «© © © s « « 26

3.1. Unit Measures of Profitability for the Linear

Programming Problem eo © ss» © © © © © @ e@© #© © 8 @ 42

4.1 LWR Fuel and Discharge Data + * * * * + © # « « 47

4.2 Spent-Fuel Discharge Characteristics» + * « « »« 50

4.3 Average Composition of Available for Recycle- 51

4.4 Installed Nuclear Capacity + + + + + + + e+ © ee eos 54

4.5 Discharge Quantities of Spent-—Fuel Per Gigawatt (electric) ee © e# © e © e© # @ e © © @ ee © @ @© @ @ 55

4.6 Spent-Fuel Supply Projections by Reactor Mix: »- 56

4.7 Reprocessing Plant Capacity Schedule* + * + «= » 59

4.8 Reprocessing Capability - Optimistic Scenario * 60

4.9 Reprocessing Capability - Realistic Scenarios + 61

4.10 Reprocessing Capability - Pessimistic Scenarios 62

4,11 Price Projections + + * * © «© «© #© « « « 73

4.12 Separative Work Cost Projection * * * * * * « « 75

4.13 Uranium Conversion Costs Forecast * * * * « « « > 76

4.14. Plutonium Value for Uranium Feed and Separative Work Equivalents* *© «© « «© © © «© © «© » « © © « « 83

4.15 On-Site Storage Costs Per Assembly~Year + + « » 84

5.1 Profitability Per Assembly - Westinghouse PWR > 89

5.2 Profitability Per Assembly B & W PWRe « «= « e 90

5.3 Profitability Per Assembly - Combustion Engineering 91

Cy 5.4 Profitability Per Assembly GE BWR/6 e e ° ® . e e 92 LIST OF FIGURES

Figure— Title

2.1 The Light Water Reactor Fuel Cycle + * * * * * * © &

4.1 Spent-Fuel Assembly Demand Rate - Westinghouse PWR >

4.2 Spent-Fuel Assembly Demand Rate - Babcock and Wilcox

PWR. ° e e ° e e e a s e s e e e e e e e e e * e * s 65

4.3 Spent-Fuel Assembly Demand Rate —- Combustion Engineering PWRe = * * © © * © © #© © #© © © #© © # © @ 66

4.4 Spent-Fuel Assembly Demand Rate - General Electric

BWR/6-° s ° e e e e e e e ° . e e ° e ° e e . ° ° ° ° 67

5.1 Profitability Per Assembly - lst Discharge

Westinghouse PWR * 2 e «© e@ e # @ 7. © © © 8 © @ @ @© @ | 93

5.2 Profitability Per Assembly ~ lst Discharge General Electric BWR/6 * e©= ee © © ee e@ # © @ ee ee 8 © # @ e@ © 28 94

5.3 Profitability Per Assembly - Ist Discharge No Plutonium Value; Westinghouse PWRe * * * * © » © @ » 97

5.4 Profitability Per Assembly - lst Discharge No Plutonium Value; General Electric BWR/6+ * + «© + » » 98

6.1 Optimal Selection Rule; Base Optimistic Reprocessing Scenario; Westinghouse PWR Base, +20Z SWU, +20% Storage, -20% Uranium, -20% SWU, -~20% Storage Costs + « © © © « «© «© © « © © «© # 8 © »® 101

6.2 Optimal Selection Rule; Base Optimistic Reprocessing Scenario; Westinghouse PWR +207 Uranium Coste 7 © @ e@ e © © © © 8® #© #© © e 2&© # # 102

6.3 Optimal Selection Rule; Base Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; Base Cost+ *© «© © © «© «6 « « « « » 104

6.4 Optimal Selection Rule; Base Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +204 Uranium Cost+ + + « « + « « 105

6.5 Optimal Selection Rule; Base Realistic Reprocessing Scenario-Westinghouse PWR No Plutonium Value; Base Costs « «+ *© + « « «© © « « « 108

vi Figure . Title Page

6.6 Optimal Selection Rule; Base Realistic Reprocessing Scenario —- Westinghouse PWR No Plutonium Value; +20% Uranium Costs* * * + + * * © © #109

6.7 Optimal Selection Rule; Base Realistic Reprocessing Scenario —- Westinghouse PWR Base, +20% SWU, +20% Storage, ~20% Uranium, -—20% SWU, ~20% Storage Cost * * * * * « « e © © © © © © © © we hl elhlcelUC UL

6.8 Optimal Selection Rule; Base Realistic Reprocessing Scenario —- Westinghouse PWR +207 Uranium Cost * * * * © © # # # # e e e © © © © # s& ¢ 11l

6.9 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; Base Costs* * * * * * * * © * © © *© #113

6.10 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium Cost * * * * * * ° © © «114

6.11 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR Base, +20% Uranium, +20% SWU, +202Z Storage, -20% Uranium, -20% SWU, -20% Storage Costs* * * * * * * * 115

. 6.12 Optimal Selection Rule; +30% Pessimistic. Reprocessing Scneario; Westinghouse PWR +2074 Uranium Cost ee 8© © © © © © © © © © 8 ©» &© &© © © @ 116

6.13 Optimal Selection Rule; +30% Pessimistic Reprocessing Scneario; Westinghouse PWR +20% SWU Cost ° * * * © © © © © © © © © © © © © © © © © © [U7

vii 1. INTRODUCTION

A. Background and Motivation

In order for an industrialized country like the United States to

continue to grow economically, abundant energy at a reasonable cost

must be available. Otherwise, as was recently evidenced by the Arab

Oil Embargo, there will be a decrease in economic growth and an in-

crease in inflation. As a result of these problems, which could con-

ceivably reduce the economic prosperity of this nation, the United

States government has stressed energy self-reliance and conservation.

To obtain this self-reliance, the energy needs of the nation must be

satisfied from domestic resources. In particular, of the domestic

sources of energy available, only two fuels, coal and uranium, are

abundant in the sense of providing a low-cost, high-energy resource.!3

Upon examining the primary uses of these two fuels, coal and uranium

are more suited for the production of electricity than for any other

purpose./3 ‘However at present, when considering environmental,

economic, and societal points of view, the energy obtained from uranium

appears more acceptable for the generation of electricity than coal-

burning and other technologies .?2

To specifically note the electrical energy picture in the United

States, generation of electricity is predicted to be the fastest grow-

ing area of energy use.13 Examining past history, approximately 13 per

cent of the fuel utilized in the United States in 1947 was for the production of electricity. By 1970, this figure had increased to 25 per cent. By the year 2000, it is predicted that between 40 and 50 per cent of the fuel consumed in the U.S. will be for the production of

electricity./3 An important fact to consider is that as demand for

electrical energy increases, there will be an associated demand in the

resources necessary to produce this electricity. It is evident that

oil and gas will become less important as supplies diminish and prices

increase. Coal will take on a much greater responsibility. However, coal will not be able to do the job alone. At least through the year

2000 and probably well beyond that time, the nuclear option has to be a

Major contributor to the U.S. energy mix if it expects to have an

adequate available electrical power supply.”

Several studies examined the current and projected role of nuclear

power, and concluded that must grow from its 1976 share

of 6.9% of total U.S. generating capacity to almost 50% by the year

2000.2 -.A study, conducted by Arthur D. Little, Inc. in February 1977,

forecast a fourfold increase in installed nuclear generating capacity

between 1975 and 1985.2 This represents the nuclear role as 21% of

the U.S. total generating capacity in 1985. Independent as well as

government studies indicate that nuclear power must increase through

this fourfold range if it is to be a major contributor of needed

electrical energy in the year 1985 and beyond.

Noting the above and many other similar projections, it seems

that the nuclear industry.is expanding and growing quickly. But

providing nuclear energy depends upon the fuel cycle, and there are

several problems to be resolved. Specifically, at the front end of the

cycle, there is a concern about the possibility of a uranium supply

shortage. At the enrichment stage, the Nuclear Fuel Assurance Act, which would have brought private capital into uranium enrichment, was

disapproved by Congress. However, at the back end of the cycle, the

situation is much worse. Despite the fact that proven technologies

exist for managing ,?® the political debates and

indecisions have lead to an executive order?’ stipulating that spent—

fuel be stored and that a moritorium on reprocessing be enforced until

the economic, political, and environmental implications are investigated

further. As a result of this interim prohibition on reprocessing,

recent governmental policy decisions dictate that strategies for

managing spent nuclear fuel be developed. In particular, a key problem

to be resolved includes the determination of optimal inventory with-

drawal policies for spent nuclear fuel from on-site storage pools to

respond to the re-initiation of reprocessing.

B. The Problem and Objective

The most serious problems within the nuclear industry today occur

at the back end of the fuel cycle. The present standstill of repro-

cessing in the U.S., and the uncertainties surrounding adequate

reprocessing capacity in the future, can be attributed at least in part

to the lack of an appropriate government regulatory policy declaration.

Despite the fact that the current Presidential administration has

declared a moratorium on reprocessing and plutonium recycle, analysts,

although pessimistic, are convinced that reprocessing will be available

in the future. 40 As a result, the examination of any phase of the nuclear fuel cycle should take this likelihood into account. A review of the literature has lead to the support of the con-

clusions reached in a 1976 report by the Nuclear Regulatory Commission.

In this report, the Commission expressed the situation quite clearly:

"Tt has been assumed in the past that the uranium and plutonium in spent fuel would be recovered and recycled. Therefore, detailed analyses of the technology of spent fuel disposal (disposition) are not to be found in the literature."!5, 36

Every year, each of the commercial nuclear reactors operating in

the U.S. replaces between 25 and 40 tonnes of spent—fuel in the form of

60 to 200 fuel assemblies.!4* Current reactor designs utilize the majority of the U-235 in the fuel augmented by the burnup of approxi-

mately 0.2% of the U-238.2% The burnup of the U-238 results in the

production of plutonium, a valuable fuel that can be recovered

through reprocessing. Unfortunately, these power systems usually

extract less than one per cent of the energy theoretically available

from uranium fuel. At best, the energy recovered is only about two per

cent. !* As a result of these low energy yields along with the

depletion of fissile fuel material, accumulation of fission products,

and other unfavorable irradiation effects, the fuel must be replaced

periodically. This replacement of nuclear fuel creates a stockpile of

spent-fuel at the reactor site. The direction the spent-fuel follows

at this point is in limbo and awaits resolution.

In order to close the back end of the fuel cycle, questions with

regard to the disposition of irradiated spent-fuel must be answered.

-Fuel discharged from light water reactors contains significant quantities of in the form of uranium and plutonium isotopes. These fissile quantities are equivalent to about 50% of the original amount loaded into the reactor.29 As a result, energy system forecasters in the past, well aware of the value of the residual uranium and plutonium, have assumed that this valuable fuel would be recycled into reactors.2+ However, as has been previously noted, no recycling has occurred on a commercial scale in the U.S. since the shutdownof Nuclear Fuel Service's West Valley Plant. The continued delay in the expected re-initiation of reprocessing has forced reactor operators to store spent-fuel beyond the normal "cooling-of £" period in which short-lived radioactive fission products decay to manageable levels. This unexpected long term storage at on-site pools has lead to the accumulation of spent~fuel in the form of numerous assemblies of varying ages. Also the lack of reprocessing capability (capacity and availability) in recent years has resulted in present and foreseeable spent-fuel storage capacity shortages. Therefore, it is imperative that strategies for managing spent nuclear fuel be developed, particu- larly if the questions, primarily societal and economic, surrounding nuclear power are to be answered and justified in an appropriate manner.

The objective of this effort is to address a key problem that must be resolved in determining strategies for managing spent nuclear fuel.

Specifically, the objective is to determine an optimal inventory with- drawal policy (or policies) for stored spent nuclear fuel from on-site facilities. The policies identified will indicate the optimal response to the re-initiation of reprocessing. A model that addresses the problem is developed and presented along with the associated detailed derivation. Results from analyzing and solving the spent-fuel-with- drawal model are also presented and the resulting specific policies are indentified.

This effort is being examined from the utility perspective as opposed to that of a fuel reprocessor. This allows the maximum economic gain from fuel recycle to be examined from the reactor operator's point of view. This in effect will contribute to the minimization of the nuclear fuel cycle costs.

C. The Approach

The spent-fuel-withdrawal problem involves the interaction of the spent~fuel generation, time and capacity dependent reprocessing demand, and the marketability of valuable products available from spent-fuel.

The amount of spent-fuel generated is dependent upon the type of reactor utilizing the nuclear fuel and the associated mode of oper- ation. In the United States, the pressurized water reactor (PWR) and (BWR) serve as the primary nuclear power systems commercially available today. As of January 1, 1977 the installed nuclear capacity of 41,887 megawatts-~electric (MWe) was divided between

24 BWRs and 35 PWRs. Each of these reactors have capacities varying from 48 to 1180 MWe.3° These reactors, produced by four major vendors of nuclear steam supply systems (Nsss) in the United States today, discharge spent-fuel in varying quantities and of various compositions.

Therefore, the characteristics of the spent nuclear fuel are important in analyzing the economic disposition of spent-fuel. Demand for spent-fuel can be examined from the standpoint of reprocessing availability and capacity. Probable dates for the re- initiation of reprocessing are projected on the basis of recent independent 2° and government!? studies.

The application of the spent-fuel-withdrawal model is done on a per-reactor basis. The examination includes systems from each of the four major NSSS suppliers. Specifically, three PWR systems and one BWR system serve as representative models of the light water reactor (LWR) industry. Since the analysis is conducted on a per-reactor basis, all parameters (supplies, demands, and associated costs) are based upon the unit-reactor basis. This is appropriate because the recommended policy is for a single reactor system. However, the determined policies are applicable globally to all existing and planned nuclear plants.

The spent-fuel-withdrawal problem is a time~dependent decision problem that is influenced by the uncertainties in the growth of nuclear power capacity, spent-fuel supply and demand, and the avail- ability of spent-fuel reprocessing. The determination of an appro- priate decision policy depends primarily upon the following:

i. the. time at which a particular decision has to be made,

2. the determination of an appropriate measure of effectiveness

that will lead to an interpretable solution, and

3. the determination of spent-fuel characteristics that allow for

the choice of an appropriate measure of effectiveness.

It is necessary that the decision as to the selection of an inven- tory withdrawal policy be based upon comparisons between the value of spent-fuel currently in inventory and that continually being generated.

The key to determining an appropriate policy is therefore to define and determine the economic gain realizable in spent-fuel and examine this gain dynamically. For this problem, an appropriate mathematical model is developed. However, the key to successful optimization of this model lies in the interaction of a computer oriented data set and the economic characteristics of spent~fuel. The data set must be designed to reflect the time-varying nature of the nuclear fuel cycle.

'- The primary purpose of this study is:

1. the identification and understanding of the key elements that

define the spent-fuel inventory withdrawal problen,

2. the development of an appropriate optimization model describ-

ing the dynamic behavior of spent-~fuel,

3. the implementation of an appropriate computer-oriented code

incorporating the developed mathematical model and associated

economic measures of effectiveness, and

4. the determination of appropriate cost-effective strategies

yielding definable withdrawal policies based upon the time-

dependent behavior of nuclear power systems and their gener-

ation of spent-fuel.

The thesis comprises eight chapters. Following the introductory remarks, additional material on the nuclear fuel cycle and uncer- tainties facing the nuclear industry today are found in Chapter 2.

Also included in the second chapter are examinations of the status of reprocessing in the U.S. and the role that nuclear energy has to play in meeting America's energy needs during the remainder of this centruy. Chapter 3 presents the derivation of the spent-fuel-withdrawal model from three perspectives. First, modeling is secured through a dynamic programming approach. Second, the dynamic model is transformed into a

Hitchcock problem designed to be solved as a minimum cost flow problem; and finally, modeling is completed through the derivation of a linear programming representation of the Hitchcock formulation. An economic measure of effectiveness is evaluated in Chapter 4 based upon potential economic gain that is realized by the recycle of fissile isotopes.

Along with the determination of an appropriate measure of effectiveness considering both uranium and plutonium recycle and with uranium only recycle, are spent-fuel supply and demand projections per Gigawatt

(electric) of installed nuclear capacity. Chapter 5 addresses the application and solution of the lLinear-transportation-modeled-spent—fuel- withdrawal model. Optimization results are presented in Chapter 6 and are organized according to the reprocessing scenarios examined. Con- clusions follow in Chapter 7 with the summary and recommendations discussed in Chapter 8. Additional results and a listing of the computer-oriented data-generating code are included in the appendix.

D. Results

A detailed discussion of the results is found in Chapter 6. Also, complete tabular results for all analyses are included in Appendix A.

These results present definitive policies that serve as foundations for management decisions upon the re-initiation of reprocessing. The principal results of this study are presented below:

1. Given recycle of both uranium and plutonium, and an associated 10

organized market for each, the analyses conducted indicate

that a last-in-first-out (LIFO) policy yields the maximum

economic benefit. This policy is shown to be optimal based

entirely upon the value associated with recovered uranium and

plutonium.

In the absence of marketability for plutonium (i.e. uranium

recycle only), the profitability of spent-fuel is minimized

and no discernable policy is determined that uniquely opti- mizes the recoverable value in spent-fuel over time. However

the solutions appear to lean towards a modified LIFO policy.

The results of this effort indicate that if the issues

surrounding plutonium recycle and reprocessing are not settled

as soon as possible, the valuable isotopes remaining in spent~-

fuel become economically unattractive to recover. This is

particularly true as storage and handling costs increase with

time awaiting resolution of the controversy, and as the probability for assembly failures increase while held in

storage, thus increasing storage costs. 2. DESCRIPTION OF THE SPENT-FUEL STORAGE PROBLEM

A. An Overview of the Nuclear Fuel Cycle

The nuclear fuel cycle is a sequence of operations and facilities which include all of the processes necessary for the utilization of nuclear fuel. This is separated into three categories that consist of the front end stages, irradiation stage, and the tail or back end stage. 3! This sequence of operations perform the functions necessary to process the nuclear fuel from the uranium ore through the reactor, to eventual disposal.

The front end of the nuclear fuel cycle consists of those processes necessary to fabricate fuel assemblies suitable for use in nuclear power systems. The steps of the front end of the nuclear fuel cycle shown.in Figure 2.1, and consists of mining and milling of natural uranium, conversion of uranium mill product to uranium hexaflouride

(UFg), enrichment of uranium, and the fabrication of fuel assemblies.

The mining and milling operations occur primarily in the western United

States. This is due to the fact that the majority of the domestic uranium ore is found in the sedimentary sandstone and mudstone deposits of the Colorado Plateau, the Wyoming Basins, and the Gulf Coastal Plain of Texas.23 Once mined, uranium ore is. processed in a mill which uses a number of conventional mechanical and chemical processes to separate the uranium from the host rock and other minerals. The uranium is recovered as yellowcake, a uranium salt containing between 70 and 80 per cent U30g.3!}

11 12

The Light Water Reactor Nuclear Fuel Cycle

oo EES > Sh URANIUM MINES CONVERSION ENRICHING CONVERSION and MILLS TO UF¢ y TO FUEL

: / RECOVERED URANIUM TAILS / URANIUM STOCKPILE J preterene ne eee i f

! T=ost afoot ae ( PLUTONIUM REACTOR ‘Oe \ eeee, REPROCESSING FUEL STORAGE a ' WASTE STORAGE ~«------”

Figure 2.1

13

The U30g concentrate extracted from the ore is then converted to

the compound uranium hexafluoride (UF¢) - The process utilized is the

fluoride volatility process which involves three steps and concludes

with a high-temperature fluoridation step. 3! This conversion from

yellowcake is necessary in preparation for the enriching process.

Following conversion to UF 6» the uranium must be enriched in its concentration of the fissile isotope U-235 in order to be effectively

used in existing light water reactors. This is usually done by means

of the gaseous diffusion process, a process which is based upon the

difference in rates at which gases of different molecular weights |

diffuse through a porous barrier. This process separates the natural

uranium feed stream in the form of UF, into two output streams:

enriched product and tails. The required product

enrichment for current generation reactors varies between 2.5 and 4 per

cent uranium-235. The remainder of the fuel consists

almost entirely of the fertile isotope, uranium~238.

The final step in the front end of the fuel cycle is fabrication.

The enriched uranium produced in the enrichment plant is converted to

pellets of uranium dioxide (U0,). The assembly of these pellets into a

fixed structure, when completed, yields a fuel assembly ready for

irradiation in the reactor.

The second stage, irradiation of nuclear fuel, is the step in

which energy is obtained from the fuel through the fission process.

Each assembly in the reactor is burned at a specific power that may be

the result of a complex decision process aimed at an overall economic

optimization to allow for a total burnup.! Irradiation of the fuel 14 occurs over a 3~ to 4-year period once the nuclear plant is operating at designed power levels. During this time, each kilogram of fuel will produce approximately 2000 million BTU resulting in the generation of

200,000 kw-hr (electric).3!

The remaining series of stages shown in Figure 2.1, temporary spent- fuel storage, reprocessing of. spent-fuel, and waste storage, constitutes the tail or back end of the fuel cycle. This segment consists of those processes and activities required to dispose of the radioactive wastes produced and to reclaim the remaining uranium and/or plutonium found in the discharged fuel.

Storage of spent-fuel is the first activity related to the back end of the fuel cycle after the irradiation in the reactor. In addition to uranium and plutonium, spent-fuel contains a variety of fission products. Most of these fission products are radioactive and constitute the principal sources of heat and . During the storage period, the radioactivity and heat output decrease approximately according to the law pee, where t. is the time after removal from the reactor.2° Minimal storage time, on the order of 120 to 180 days, is necessary to allow for cooling of the spent-fuel assembly and the decay of short-lived fission products. The purpose of this cooling period is primarily for safety reasons to allow the volatile isotope iodine-131, with a half-life of 8.14 days, to decay to manageable levels.?

Following storage for cooling, the spent-fuel is shipped to a reprocessing facility to reclaim the residual uranium and plutoniun, and to concentrate the radioactive fission products. In general, the reprocessing of spent-fuel consists of three steps: head-end treatment, 15

solvent extraction, and product purification. During the head-end

treatment, fuel elements are chopped into short sections and the fuel

material is dissolved out by nitric acid. The uranium and plutonium

are extracted from the fuel-acid solution using an organic solvent

such as tributyl phosphate (TBP) dissolved in a kerosine~like hydro-

carbon. + Through countercurrent mixing of organic and acid aqueous

‘solutions in vertical columns or centrifugal contactors, the substances

more soluble in one solution than in the other can be efficiently

separated.

Upon discharge from the reprocessing facility, radioactive wastes

have to be solidified into an insoluble, non-leachable form. The

solidified waste is packaged and placed in permanent repositories.

This long term solution is designed to isolate wastes in geologic

formations whose stability has been demonstrated over hundreds of

thousands of years. 3!

Note however that today, the once operable reprocessing and waste

storage segments of the nuclear fuel cycle are inoperable. This

portion of the fuel cycle is an area of primarily political and

economic, not technological uncertainties.38 As a result of this

inoperability of reprocessing and waste disposal, the fuel cycle has

not been closed.

The conclusion reached by this overview of the nuclear fuel cycle

is that uranium, the primary circulatory constituent of the fuel cycle,

can be limited by the capability to process it at both the "front" and

"back" ends. Therefore, if the energy from is to 16 contribute to the nation's energy needs, it is imperative that the fuel cycle be closed.

B. Current Uncertainties Facing the Nuclear

Fuel Cycle in the United States

Since the nuclear fuel cycle is a dynamic system, there is no constant relationship between the amount of uranium mined and the amount of uranium charged into nuclear power plants.3! In particular, the requirements at the front end of the fuel cycle for uranium and enrichment are affected by the resources available and the recovery efficiency of uranium and plutonium from the tail end.

At present, the nuclear industry is faced with continuing concerns for proliferation and waste disposal while at the same time having to cope with problems of an underdeveloped fuel cycle.°> According to a recent study by the Energy Research and Development Administration

(ERDA),2° the dilemma challenging the nuclear industry at the front end of the nuclear fuel cycle relates primarily to the availability of uranium resources and enrichment capacity to support the light water reactor (LWR) industry. The conclusions reached by this study indicate that in most phases of the fuel cycle for light water reactors, there exist present and/or foreseen constraints on the growth of the fission energy option. Specifically, there are insufficient known or projected supplies of uranium to support the growth of the LWR industry beyond about 1990-1995. Also established was that there currently exists insufficient enrichment capacity to support the projected growth of the industry beyond 1983. 17

The expected cumulative demand for uranium in the form of U30, ‘in the United States is expected to increase from the 1976 demand of

27,900 short tons to. over 2,194,800 short tons by the year 2000 if no recycle occurs. This figure can be reduced to 1,740,000 short tons in the year 2000 if plutonium and uranium recycle is allowed. These figures represent needed uranium resource if the diffusion plants operate at a 0.3% tails assay.°! As of August 1976, total uranium resources available at less than $35 per pound recovered were determined to be 1,275,000 short tons in the form of 130g. Of this amount, only 270,000 short tons are proven reserves with the remainder being only potential supplies.!? As can be immediately determined, a difference exists by a factor of two between the estimated cumulative demand for the uranium needed beyond the total consumption thru 1976 and the available resource. Note also that over half of the projected supply is speculative.

Also, it is not clear how adequate enrichment capacity will be supplied to support the nuclear industry beyond 1986. The ERDA diffusion plant complex is currently expanding and uprating through the

Cascade Improvement Program (CIP) and the Cascade Uprating Program

(cup).*! Included in present ERDA expansion plans is the capacity addition of 8.75 million SWU/yr to the Portsmouth Gaseous Diffusion

Plant. In total, upon completion of the CUP, CIP, and the Portsmouth add-on, total U.S. enrichment capacity will be 36.75 million SWU/yr. tt

Projections of annual separative work requirements in the United States exceeds that available, including new capacity, as early as 1985.27 »31 18

The contributing factor to much of the speculation is that processes at

the front end are highly investment-intensive with lead times ranging

from eight to ten years.

The most significant current uncertainties requiring solution are

those. which influence the back end of the fuel cycle. At present,

the back end is at a standstill because of regulatory uncertainties.

The conclusion reached by the Energy Research and Development Adminis-

tration (ERDA) in a recent study is that unless prompt and effective actions are taken for the safeguarding and handling of nuclear fuels,

the use of fission energy will be limited.39 ERDA also points out that

since the objection to closing the fuel cycle is primarily political and societal, there is concern as to whether or not industry, on its own, will be able to carry through with the commercialization of the

“back end". 39

The basic problem facing closure of the fuel cycle is realized as soon as the fuel is discharged from the reactor. As a result of a lack of a definitive decision to settle the controversy surrounding reprocessing and waste storage, utilities are forced to store their discharged fuel in on-site storage pools. This creates a problem due to the accumulation of spent~fuel beyond designed and regulatory capacity. This inability has also led to a delay in the issuance of construction permits for the reprocessing and mixed-oxide fuel fabrication plants that would be needed to initiate plutonium recycle.

On August 21, 1974, the Atomic Energy Commission (AEC) issued for comment.a draft report entitled "Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled 19

Reactors (GESMO)". The Nuclear Regulatory Commission's (NRC) view and the controversy surrounding the recycle issue has created diffi- culties in closing the LWR fuel cycle in the U.S.?4 The delay in the issuance of the Final-GESMO, which was published in August 1976, has also adversely influenced the licensing of construction permits for reprocessing and mixed-oxide fuel fabrication plants. The resolution of the questions surrounding nixed-oxide fuel utilization are currently awaiting acknowledgement while in the process of a public hearing.@!

Unless intelligent decisions are made now, the program along with millions of dollars spent towards developing fission technology will be in jeopardy.

C. Reprocessing of Nuclear Fuel

In The United States

At present, there is no operating capability in the United States for the processing of spent commercial nuclear fuels. The state of regulatory uncertainty has prevented the nuclear industry from implementing plans to proceed with the required technologically proven programs necessary to close the nuclear fuel cycle. Unlike the breeder reactor, there is no technical necessity that mandates the use of reprocessing with light water reactors. Instead, the benefits of reprocessing the spent-fuel from light water reactors are argued to be three: an increase in the energy available from uranium resources, a reduction of the costs of nuclear power, and an easing of the problem of disposal.*® 20

Interest in the reprocessing of nuclear fuels developed among

' suppliers of nuclear power equipment who felt the need to assure their

customers of a closed fuel cycle. The chemical companies had the

necessary technological skill and background, and the oil companies

hoped to expand their operations into other energy sources. 3

The first plant to be built for reprocessing light water reactor

fuels, was the West Valley, New York plant operated by Nuclear Fuel

Services, Inc. Nuclear Fuel Services (now owned jointly by the Getty

Oil Company and the Skelly Oil Company), designed and constructed a

reprocessing plant with a capacity of 300 tons of spent-fuel] per year.?

There were few power reactors when it opened in 1966, and fully two-

thirds of the fuel reprocessed until 1972 was military fuel. This fuel

was supplied by the Atomic Energy Commission under an agreement that

effectively subsidized the plant. This plant operated intermittently

from 1966 to 1972, when it shut down for modifications to increase its

capacity and efficiency. The plan at the time was that the facility

would be restarted in 1975. The planned expansion called for increas-

ing the capacity to 750 tons of spent-fuel per year. Improvements

specified in the modifications included improvements in the

environmental-—protection features and for the installation of waste

facilities needed to meet new regulatory requirements. 3 However, the

then Atomic Energy Commission decided that the modifications were so

extensive that a new construction permit and operating license would

be required. From last reports, the estimated costs of the modifi-

cations had risen from $15 million to $600 million and Nuclear Fuel 21

Services had withdrawn its application to the Nuclear Regulatory

Commission for permission to reopen the plant.? While West Valley operated, the plant processed a total of 600 tons of spent—fuel, 76 of which 244 tons were commercial LWR fuel. 2°

A second plant located at Morris, Illinois; was constructed by the

General Electric Company, Inc. The company was convinced that relatively small reprocessing plants might be built to serve a group of power reactors within a short shipping radius. As a result, the

Midwest Fuel Recovery Plant was designed and built with a capacity of

300 tons per year. The Morris plant included major departures from the typical Purex-TBP process, with the aim of minimizing the contribution of reprocessing costs to the cost of nuclear power. In the course of testing the plant equipment prior to startup, it was concluded that the problems of handling fine radioactive solids were far greater than anticipated. 3 These problems would preclude the successful operation of the plant, and as a result, General Electric decided to postpone the operation plans pending completion of further studies.39

In 1968, the Allied Chemical Corporation announced plans to build a 1500-ton-per-year fuel reprocessing plant in Barnwell, South Carolina.

Construction of the plant was begun in 1971, and the originally planned facilities are complete.? The design and construction at Barnwell of

"tail end" facilities for the solidification of the waste for shipment to a federal repository and for the conversion of plutonium nitrate to solid plutonium oxide await decisions by the NRC and ERDA on the specifications and destinations of those materials. So far, Allied

General has invested over $250 million in the plant with the additional 22 waste and plutonium handling facilities expected to cost another $250 million.3 At present, Allied General's request for an operating. license is in jeopardy. The President's Policy statement of April 20,

1977 specifically denied government subsidy to support the Barnwell facility. The President also recommended the indefinite post- ponement of commercial reprocessing in the United States.?

A fourth plant, to be built by Exxon Nuclear, is planned to have a nominal reprocessing capacity of 1500-tons-per-year. The proposed construction site has been announced as part of the ERDA acreage at

Oak Ridge, Tennessee.? The company is awaiting final approval of site acquisition and the NRC's satisfaction of company complience with siting and licensing regulations.

Although the past history reflects a great deal of uncertainty | with regard to spent-fuel reprocessing; analysts, although pessimistic, are convinced that reprocessing will eventually be available. A detailed study by Macek?> concluded that the earliest date reprocessing would be available would be 1979. This noted the start-up of the

Barnwell Plant in 1979, followed by Nuclear Fuel Services in 1981, and

Exxon in 1985. A fourth plant of 1500 tonnes per year capacity is projected to begin operation in 1987.

Macek determines that under his scenario of uranium pricing and developing reprocessing capacity, if reprocessing is not initiated prior to mid-1982, the back end of the fuel cycle will forever be a financial liability. 23

D. Examination of the Role of Nuclear Energy

In Meeting America's Energy Needs

Historically, the electric power generating industry has grown at

a rapid rate. In the past few decades, the electric power demand has

grown at an average annual rate of about 7%, resulting in a doubling of load every 10 years.!7 This growth has been related to two basic

trends--a growth in population of approximately 1.3% per year and an

increasing per capita use. Statistics for the United States electric

power industry are given in Table 2.1. As can be observed, in the 27

year span from 1947 to 1974, per capita consumption of electricity has

increased over four and one-half times.

Through its convenience and utility, electricity has become vital

to the function and growth of modern civilization. Although the rates

of growth in the consumption of energy and of electricity have

decreased in the past few years and are expected to be substantially

lower in the future than in the past, the gradual increase in the

fraction of energy devoted to production of electricity seems destined

to continue.!7

Forecasts of the demand for electricity in the future contain

Many uncertainties. As a result, the projections of different indi-

viduals or groups vary widely. Studies surveyed by the Nuclear

Regulatory Commision prior to August 1976!’ indicate that this differ-

ence increases to over 600 Gigawatt (electric) by the year 2000

between the lowest and highest estimates. 24

uotjdunsuoy uotjdunsuoy

eqtdey) eqtdey)

UM UM

0088 0088

009Z 009Z

OOTY OOTY

OOCE OOCE

0072 0072

0O8T 0O8T

OOSS OOSS tog tog

zy zy

(UMY (UMY

uotjdunsuo) uotjdunsuo) VLOT-LY6T VLOT-LY6T

Tei Tei

UOTTLE13) UOTTLE13)

99° 99°

€e°O €e°O

9¢°0 9¢°0

L8°T L8°T

90°T 90°T

¢L°0 ¢L°0

SS°0 SS°0

0L 0L

T T SYFASTIEIS SYFASTIEIS

eqtdeyg eqtdeyg

S22 S22

€6°0 €6°0

eEMOTTY eEMOTTY

70°C 70°C

69°0 69°0

L9°T L9°T co co

c?7°0 c?7°0

9€°0O 9€°0O

AOMOg AOMOg

aed aed SFAIIOTA SFAIIOTA

(My (My

BUT} BUT}

Aj Aj

UOT UOT

fFoedey fFoedey

O°STT O°STT

O° O°

O° O°

0° 0°

0°89T 0°89T

€°2S €°2S

6°89 6°89

e19Ua4) e19Ua4)

9EC 9EC

TVE TVE

7L¥ Cl? Cl? 7L¥

"SN "SN

TT TT

FW) FW) “T°? “T°?

uot uot

(SUuOTTTTwW) (SUuOTTTTwW)

STIPL STIPL

oSt oSt

YYT YYT

G0Z¢ G0Z¢

T8T T8T

99T 99T

76T 76T

ze ze [Tndog [Tndog

OL6T OL6T

096T 096T

OS6T OS6T

7L6T 7L6T

Alea Alea

SS6T SS6T

S96T S96T LY6T LY6T

25

In 1975, about 9 per cent of the electricity consumed in the U.S. came from nuclear plants.!? As of January 1977, 59 commercial nuclear power plants with a total generating capacity of 41,887 MWe had been completed and licensed to operate. In addition, 131 plants were under construction or on order. By the end of 1987, the installed nuclear capacity would be 182,418 MWe based upon a ten year lead time necessary to construct and begin operation of a nuclear power facility. S Current projections by the nrc, !? ERDA, and the Edison Electric Institute?!

(EEI) conclude that a low growth projection without breeder reactors appears to be the most likely nuclear capacity growth applicable through the year 2000. The NRC and ERDA forecast specifically projects an installed nuclear capacity of 156,000 MWe in 1985 and 507,000 MWE in the year 2000. The projection by the Edison Electric Institute for the low growth scenario is a few per cent lower. As a result of examining reactor demands and the aforementioned nuclear capacity projections, a compromised nuclear growth projection thru 1997 is presented in Table 2.2 according to the reactor mix, Nuclear generating capacity through 1987 is based upon those plants scheduled for start-up by the end of 1987, given a ten-year lead time as a firm commitment.

The projection beyond 1987 reflects the ERDA, NRC, and EEI low growth projections. This projection shall serve as a basis for this study.

While reports have varied and have been argumentative as to the extent nuclear will contribute to the total electric generating capacity in the future, nuclear energy is still expected to account for more than half of the total electrical generating capacity by the year

2000.13 26

Table 2.2. Installed Nuclear Capacity 35 17» 31

Total Capacity BWR Capacity PWR Capacity Year (GWe) (GWe) (GWe)

1976 41.887 16.033 25.854 1977 50.364 17.921 32.443 1978 55.292 17.921 37.371 1979 63.480 20.629 42.851 1980 74.641 24.950 49.691 1981 92.151 29.295 62.856 1982 107.552 33.240 74.312 1983 125.875 41.344 84.531 1984 145.659 47.060 98.599 1985 161.928 52.948 108.980 1986 176.736 56.453 120.283

1987 182.394 58.781 123.613 1988 195.000 62.983 132.017 1989 204.000 65.983 138.017 1990 213.000 68.983 144.017 1991 225.000 72.983 152.017 1992 246.000 79.983 166.017 1993 274.500 89.483 185.017 1994 313.500 102.483 211.017 1995 345.000 112.983 232.017 1996 381.000 124.983 256.017 1997 409.500 134.483 275.017

3. DERIVATIONOF THE SPENT~FUEL WITHDRAWAL MODEL

A. Characteristics of the Spent-Fuel-Withdrawal Problem

In the background information on the current status of the post-

reactor fuel cycle, it was pointed out that as nuclear power continues

to grow and contributes a larger share to America's energy needs, the

questions with regard to the disposition of irradiated fuel must be

answered. Spent-fuel discharged from the operating reactors will

continue to accumulate at on-site storage facilities. This problem

persists until reprocessing is once again an integral part of the fuel

cycle or until the government makes a decision to manage permanent

waste disposal.

Macek2° demonstrates that spent-fuel should be stored on-site

at the reactor as opposed to off-site at the reprocessing plant or at

a repository. Assuming future reprocessing start-up, the utility will

be faced with the decision of how to relieve large stores of spent-fuel

in the face of a continual spent-fuel supply.

The spent-fuel-withdrawal problem is a planning problem which can

be expanded into a decision model spanning a number of time periods.

Before the model can be constructed, decisions applicable to each

modeling approach must first be made. In particular, the length of

the planning horizon, the maximization or minimization of the objective

function, and the specific assumptions necessary for implementation

are required.

Irradiated fuel contains significant quantities of fissile

' Material; often as much as 504 of the amount originally loaded into the

27 28 reactor.29 Given the relative scarcity of the fissile isotope uranium-

235, in the absence of the breeder reactor program the recycleable uranium in the spent-fuel may constitute a valuable energy resource.

Also, as the need for additional energy sources appear,. the fissile plutonium found in spent~fuel also represents a valuable energy resource.

Activities relating to the management of spent-fuel in the back end of the fuel cycle are primarily controlled by economics. Thus, with the question of whether or not to proceed with reprocessing still unanswered, it is important that the economic gain realized with recycle be firmly understood and established. The greater the economic gain with recycle, the greater the incentive to reprocess. Therefore, for the above reasons, the logical approach is to choose the maxi- mization of the economic gain realized with the recycle of uranium and/or plutonium from the spent-fuel to be the objective.

For modeling purposes, a planning horizon of finite length will be chosen. The time period should be of sufficient length to include important occurances such as the resumption of reprocessing and/or any new developments in reactor technology. Also, since the majority of the commercial nuclear plants in operation and in particular the plants that will serve as reference in the model development, operate on an annual cycle, the planning horizon will be divided into periods of one- year duration. Consequentially, the horizon shall be taken as a twenty- year period extending from 1977 to 1997.

Particular assumptions are necessary for the satisfactory deriva- tion and application of a model. First, it is assumed that a reactor's 29

on-site storage capabilityis not constrained as to the number of

assemblies it can store. This assumes that reactor operators will

expand storage facilities as necessary. Second, upon the resumption

of reprocessing, it is assumed that a market exists to warrant recovery

of the uranium and plutonium from the spent-fuel. This is necessary

so that the potential economic gain can be analyzed. The situation

where no marketability for plutonium exists is being examined later.

Also to be assumed is that demand for reprocessing services in any

given year does not exceed reprocessing capacity.

B. The Dynamic Programming Formulation

The objective in formulating the spent~fuel~inventory-withdrawal

model is to provide a framework within which alternative inventory

depletion strategies can be evaluated and compared. Since the com-

position of spent~fuel changes with time (due to decay of fissile Pu-

241), and since the inventory level of spent-fuel also changes with

time, time dependence is a key attribute of the problem. Therefore,

Dynamic programming”? is an appropriate vehicle for modeling the

problem.

It is first necessary to distinguish the periods in the planning

horizon. This is necessary since the ability to make a decision rests with the developments occuring during a particular time period. For

this purpose, the index set T is defined:

T= {0, 1, 2,...,t,..., tel, (3.1) 30

where t denotes the particular time period and t¢ represents the number

of years in the planning horizon. For purposes of this study, the

number of years in the planning horizon is twenty years.

In order to distinguish and denote the particular characteristics

of each assembly, it is necessary to define an index that can singularly

distinguish each assembly from others as a result of different initial

enrichments, burnups, and other characteristics. Each classification

considers only those assemblies assigned to that class in any one time

period as a function of those discharged. For this purpose, the classi-

fication considers only those assemblies assigned to that class in any

one time period as a function of those discharged. For this purpose,

the classification is defined by the index set J as:

J={1, 2, ...,4, ... =, N(t)}, (3.2) where j denotes the particular classification and N(t) denotes the

number of spent-fuel classes generated in period t.

To be able to distinguish each assembly, it becomes necessary not only to identify by classification, but to also identify by the

particular age of the assembly. The age of an assembly is chosen to

represent the number of time periods in years that a spent-fuel assembly has resided outside of the reactor core in storage. The index set

K= {0, 1, 2, ...,k,..., th, (3.3)

is defined to represent the ages of the stored spent-fuel, where k

denotes the number of time periods residing in storage. Using the

defined index sets, it is now possible to describe the spent-fuel 31 stockpiles.

The quantity of fuel discharged in any one year, is distinguished as the number of fuel assemblies discharged in a particular year t.

In general, the quantity discharged less those withdrawn represents the number of assemblies available for withdrawal. Specifically, this spent-fuel stockpile is represented by:

S54, (t) = the number of spent-fuel assemblies of class j and age k

available for withdrawal at the start of year t.

When k = 0, the number of assemblies available is the number discharged in the given time period t.

Also important as a measure of the spent~fuel stockpile is the inventory level. This quantity is denoted by:

T54,(t) = the number of spent-fuel assemblies of class j and age k

remaining in inventory at the end of year t.

The demand for spent-fuel depends upon the reprocessing capability available as a function of time. This rate is determined from the anticipated growth of the reprocessing capability in any particular time period t. This demand is represented by:

D(t) = the number of spent-fuel assemblies demanded to satisfy

reprocessing capability in year t.

The assemblies furnished from the on-site storage pools to meet the demand for reprocessing denote the decision variables. The assemblies chosen to meet demand vary, since demand is not constant 32

over the horizon or planning period. The decision variables are defined

by:

X54, (t) = the number of spent-fuel assemblies of class j and age k

withdrawn from inventory for reprocessing in year t.

Implicit in these definitions are the assumptions that, at the end of each year, inventory charges are assessed on the material remaining

in inventory and that stockpiled spent-fuel left in inventory increases

in age at the start of each year. Therefore, it is necessary to define

the transition relationships indicating the inventory level from stage

(time period) to stage.

The transitions coupling the stages are: I a ct

o>~ ww = Si, (t) - X4,,(t) ¥oj,k, t (3.4) xy C4.

$4. (t) = Ting (t - 1) ¥oj,k,t (3.5) where ¥ is the nomenclature denoting "for the entire range of".

Implicit in the derivation and definition of the spent-fuel stock- pile quantities is the constraint:

0 < Xj1,(t) < S(t)» ¥ogj,k,t (3.6)

which expresses the fact that the number of assemblies chosen to meet demand is greater than or equal to zero but less than or equal to the available supply in inventory.

Since spent-fuel has a "cooling-off" period in order to allow the highly radioactive fission products to decay to a tolerable activity 33

level, the demand cannot be met from assemblies that have not resided

in storage for at least one time period. This constraint, denoted by:

reflects a minimum on-site storage of at least one time period. There-

fore, the assumption of at least one-year in storage is carried through-

out the entire model derivation and application.

By defining a unit holding cost and unit profit per assembly the

objective function is formulated. The objective is to maximize the

present value of the profits from spent-fuel reprocessing over a

planning horizon of te years. Profits are assumed to represent the

excess expenditures obtained by recycling residual fuel over the costs

of spent-fuel storage and reprocessing. This objective is expressed

as:

te ct Nt) Maximize ) } } aM PfP5q(t)Xyx(t)- Wyk (t)1jK(t)} (3.8) t=0 k=0 j=1

where:

a = (1 + interest rate) = the discount factor,

Hy, (t) = the unit holding cost for a spent-fuel assembly of class

j and age k in year t,

P34 (t) = the unit profit resulting from reprocessing a spent- fuel

assembly of class j and age k in year t, and 34

> . X = {X44,(0) X41), ee 8 4 X51 (t,_)} ¥oj,k

is the optimal solution vector which determines the

optimal withdrawal policy.

The time-dependent material decay costs are reflected in the profit

parameters. The objective equation does not include a term to represent

the value of the spent-fuel inventory remaining at the end of the

horizon. This is because numerous assumptions about the nature of the

spent-fuel-disposition problem at the end of the planning horizon are

plausible. For a specific problem application, the selection of this

boundary assumption is reflected in the values assigned to the para- meters Hy), (tg) and Pi, (tg).

Equations (3.4), (3.5), (3.6), and (3.8) define a dynamic program

that is decomposed first in terms of time and further in terms of spent-

fuel classes. For purposes of continuity, the spent-fuel-inventory- withdrawal model for the determination of an optimal withdrawal policy

is summarized as follows:

tr t N(t) Maximize bo oo ihn oT F{P 31 (t)X 5, (t) - Hay (t) Ts (t)} (3.8)

over the vector

X= {Kj (0), Xy(1), - 2 es Kylt), «+ +s Xex(te)} ¥ Gk subject to

Tjx(t) = S54 (t) - Xjx(t) ¥Voeogj, k, t (3.9) 35

$5 (t) = S44-1 (t-1) - X44-1 (t-1) ¥ oj, k>0O, t>0 (3.10)

O < Xjk(t) < SzK(t) ¥oej,k,t (3.11)

Xjo(t) = 0 ¥oj,t (3.12)

N(t) ; Xi, (t) < D(t). ¥ok,t (3.13) j=l

C. The Hitchcock Problem Formulation

The spent-fuel-inventory-withdrawal model presented in the previous

section may be solved both by static and dynamic optimization techniques.

In general, the choice among the techniques depends upon the character-

istics. of the model in question.

As defined, the dynamic programming formulation results in a very

large problem. For the general problem defined by equation (3.8), the

model has t¢(t¢ + 1)/2 stages.28 For a reduced problem that considers

only one spent-fuel class, the model still has t¢ stages. For either

problem, the number of state variable transformations is te(t +1)/2.

Therefore, it is unlikely that the dynamic program can be solved.

Fortunately, the dynamic-programming formulation structures the relation-

ships in the problem.

Upon examination of the dynamic-programming formulation, several

special features of the model can be observed. First, it should be

pointed out that the state-transition relationships (equations 3.9-3.11)

‘and the objective function (equation 3.8) are linear in terms of the

state variable, S3K(t), and also the decision variable, X5i(t). Note 36

also that the constraint on the decision variable (equation 3.13) is linear. Another useful property is that the state variables at any stage are dependent only upon the initial states (Ss o(t), Tio (t), ¥j, t), and past decision variables. Finally, it can be seen that the solution would depend solely upon the initial states at each stage.

Since the model displays this special linearity of the objective function, constraints, and state transitions, the problem is amenable to transformation to a linear program. The linear-programming approach offers an advantage of allowing the treatment of decision variables as continuous parameters. However, due to the features of the problem addressed, discrete solutions are more advantageous. Examination of the structure of the model and the fact that linearity exists, indicates the dynamic-programming formulation can be transformed into a Hitchcock problem. /8

The Hitchcock problem was originally designed to address a class of transportation or minimum-cost-flow problems. Although the present formulation is a maximization problem as opposed to a minimum-cost-flow problem, the structure indicates that the Hitchcock problem is applic-— able; and the same method of analysis can be used.

In the context of the Hitchcock problem formulation, the material sources correspond to the initial inventory at the start of the plan- ning horizon and to the annual supply of spent-fuel of class j generated in year t. The demands correspond to the available reprocessing capacity in each year and to the final remaining inventory. The age of the spent-fuel, when it is selected for reprocessing, is represented 37 implicity by the relation between the year in which it is reprocessed and the discharge date. The cost coefficients for the Hitchcock model represent the profit from reprocessing less the cumulative holding costs. Thus the problem becomes profit-maximization rather than a cost-minimization problem.

In terms of the dynamic-programming-model parameters, the associ- ated Hitchcock spent-fuel-withdrawal problemis determined by equivalent supply, demand, and costs parameters.

The supply, denoted by a;, is composed of two components. The first transition relationship for the supply is defined by:

az = Siq(t=0), i=l, oe © « 95 N(t=0). ¥ j (3.14)

This relationship denotes the supply of spent-fuel assemblies from the various classifications comprised in the initial discharge. The relationship that transforms the remaining supply of freshly discharged fuel is given by:

aj = Sjo(t), isN(t=0) +1, ...A4 ¥oj,t (3.15)

where

tf A= ) N(t).

t=

This defines the remaining supply as that from each of the different classifications beyond the first discharge that occurred at t=0.

Demand, denoted by b,, is defined in terms of the total unallocated 38

spent-—fuel-reprocessing capacity available for class j spent-—fuel

assemblies in year t. By defining U, (t) as the unallocated spent-fuel-

reprocessing capacity available for class j assemblies in year t, the

Hitchcock demand is formulated by the following transformation:

i U;(n), n= 1, 2, + + - 5 te jel

ba = (3.16)

A te

) aj ~ ) Dn> n=tpti1 i=1 n=1

The term for n=t¢+l represents the number of spent-fuel assemblies residing in inventory at the end of the horizon. This is an artificial demand necessary to satisfy the constraint that the total available supply equals the total demand.

The measure of effectiveness for the Hitchcock problem is the cost coefficient denoted by C in* As mentioned earlier, this cost coefficient represents the profit from reprocessing less the cumulative holding costs from time of discharge and placement into inventory, until with- drawn to meet demand. This cost is represented as:

n-D Cin = Pi-cyn-pD(™ — by Hi-c,g (Dt2) iB (3.17)

where

n-1 |

aD ) N(X), 2=0 39

n B= ) N(2), and 2=0

D is the time period of inventory insertion.

Due to the constraint that an assembly discharged at time t+l

cannot be utilized to meet demand in year t, a computational constraint

is imposed on the cost coefficient. Using the technique known as the

"Big M'' method,?? an arbitrarily large number (M) is chosen for the cost

coefficient to reflect an infeasible solution. For the case of the maximum profit problem, a negative m is chosen to force the cost coefficient for a particular decision element to a value that would reflect an infeasible solution. This constraint is given by:

int | BB (3.18)

where

n B=) N(2). 2=0

by redefining the decision variable X54, (t) as:

Yin = the number of spent fuel assemblies from source i allocated

to demand period n, the corresponding objective function can be written as:

A t ¢tl Maximize » > Ci. Yan (3.19) i=l n=1 40

£ Subject to: ) Yan = ais i=l, ...,A

A Y Yan = bp i=1

A t +1 £ ) a; - ) b, = 0 i=1 n=1

Y > 0 ¥ odi,on

The maximization problem is converted to a minimization problem by

the standard approach of subtracting all cost coefficients, C;,, from

the maximum of the Cj, and replacing the original coefficients with —

these new corresponding computed values.2®8 Given the defined correspon-

dence between the spent-fuel classes, years of generation, and the

sources, along with that between the reprocessing capacities and the

demands, the interpretation is therefore straightforward. Thus, the problem has been converted into a Hitchcock problem that is far more readily analyzed computationally than the dynamic program.

D. The Linear Programming Formulations

The Hitchcock problem was originally designed to address a class of transportation problems or minimum-cost-flow problems. The formu- lation presented in Section C transforms the dynamic programming formulation into a minimum-cost-flow formulation. The purpose of this section is to develop an appropriate representation of the Hitchcock 41 model that is amenable to solution as a linear program.

The basis for this alternative representation results from the work of Bowman,® in which production scheduling was achieved using the transportation method of linear programming. This approach is partic~ ularly amenable to the Hitchcock model since the Hitchcock model is a formulation of the standard linear programming transportation problem.

Bowman proposed the use of the transportation model with the objective of assigning units of productive capacity in such a way that combined production plus storage costs are minimized and sales demands met, within the constraints of available capacity.’ An appropriate representation of the problem can be seen in Table 3.1 which denotes the activity matrix representation of the spent-fuel-withdrawal problem.

Before trying to understand the representation, it is first necessary to. redefine some parameters from the Hitchcock problem and to also define some new elements.

To begin with, note that for the linear programming formulation, the index set J, (equation 3.2) has been reduced to denote a single class of assemblies {N(t) = 1, ¥ t}, and therefore, it can be eliminated entirely for notational purposes. Also, the number of time periods defined by the index set T (equation 3.1) remain the same. The measure of effectiveness for this representation is the cost coefficient defined as C,_, where i = {0, 1, . Ls teh and n = {1, 2, ..., tet. The cost coefficient represents the profit from reprocessing less the cumulative holding costs in the feasible region. Otherwise the infeasible region has cost coefficients given by a negative "big M". 42

Aqtoedeg (AqTddngs) TeqO0L T -3 4, Oe Ce Cp Te e

te Tepom Tepom »

Ai0JUSAUT ZuruMersoig ZuruMersoig (1-72) (73) T4+"4q (FST (0) (1) (Z) (¢) ; S s St SI Sy °I °I 81 SS

YTS AesUuTYT AesUuTYT 34 4 730. J 4 4

(SuUOTIEUTISSed) ey} ey} J 4e4 +19 IE, 67-3 W- 4q

0°T AOZ AOZ 45 T T-?3 T-39

q-"4 AATTTQeATJorAg AATTTQeATJorAg ~34 44 34 Tr"Aq T3790 ose W- j On s < « Ty a SEQ Spotieg ttt te soe ree ttt eee

ose

cee Jo Jo pueusgd tte eee ee tee ttt eee

cee

eee sainseoW sainseoW £09 ETy (CE) 2. W- ee fq 209 Cly (ZC) K- ee @q

We ATug ATug TO9 W~ W- We Tq We

| “T° “T°

pueweg asrzeyostg¢ Sjuswertnbey (88940)

spoTiog eTqeL eTqeL {-F3 0 T z ¢ #4 Teq0L

43

The coefficient is represented by:

c= (3.20)

where

Pin = the unit profit resulting from reprocessing a spent-fuel

assembly in period n that was discharged in period i and,

Hig = the unit holding cost for a spent-fuel assembly in period

& that was discharged in period i.

The supply, denoted by ass and the demand, denoted by bo> are re- defined as: I ~

(3.21) Go N D(t=n), ¥et

Also necessary to complete this model is the definition of the slack inventory term 1, (i) as the number of spent-fuel assemblies dis- charged in period i that are left in inventory at the end of the horizon.

This added term applies the constraint on the model that:

a,= ) Y.+ 1, ¥i | (3.22) 44

where

Yin = the number of spent-fuel assemblies discharged in period i

allocated to meet demand in period n.

An additional constraint imposed is:

CE beat = ) Iga) (3.23) f i=0

and that for supply to equal demand, the condition:

tr t etl } aj - ) by = 0 (3.24) i=0 n=1

must be satisfied.

Summarizing the linear programming formulation by including the

objective function, the problem becomes:

Maximize — y ) C.in in (3.25) i=0 n=1

subject to:

tptl ) Yan tIg(i) = ay ¥ i n=1 45

Yin = dy

ee aj - b n=1 "

te 4, THE EXAMINATION AND EVALUATION OF THE COMPONENTS

OF THE SPENT-FUEL WITHDRAWAL PROBLEM

A. Characteristics of Nuclear Reactors in Regard to Nuclear Fuel

In order to demonstrate the utility of the models developed, it is necessary to first gain an understanding of the characteristics of nuclear fuel. This is a prerequisite for the implementation of the model, since the decisions rest upon the discharge characteristics of the spent-fuel.

At present, there are 59 commercial operating reactors within the

United States ranging in capacity from 48 to 1180 MWe. 3° Over the next decade, as vendors attempt system standardization, the largest plants on-line will have a capacity of up to 1300 MWe. For purposes of this study, the systems to be examined will be standardized designs of the four vendors currently producing nuclear steam supply systems within the United States.

The standardized system of the four vendors, Westinghouse (W),

Babcock and Wilcox (B & W), Combustion Engineering (CE), and General

Electric (GE) ; have nominal ratings of 1150, 1200, 1300, and 1200 MWe each, respectively. As a result of the variations in capacity plus individualized company designs, the nuclear fuel for each system has unique characteristics. This is true for initial and subsequent loadings of fresh fuel, along with the fuel discharged. Listed in

Table 4.1 are discharge and initial fueling data for the four light water reactor systems. The data given in this table will serve as the basis for parameters to’ be. established subsequently.

46 47

8109) 006°2Z uM QOOLT €0°? 78°O OOcT €8T oT BT Coe S88t c9oT c38°0 CEL (a9) . . . . ¥/T , .

e109 000 000472 umd 08 6°T 6°¢ €9°7 Z8°0 OOET TV? VLe4 7°¢ S3°0 LOLE (49) . . . ‘EE €/T

. , zi zi

“zzeved “zzeved 2109 (M 000‘€€ 000472 daMd OO0cT 89 16°C T6°¢ 6L£°S 669% T6"¢ S8°0 €8°0 S0Z [80% ® . . . . @)

€/T eszeyostq eszeyostq , .

2109 000‘°EE umd OSTTL Ocly 00072 te €9°7 €6T 9°¢ te Z8°0 7L94 ¢38°0 "9 (M) . .

. . . . pue pue €/T .

. Teng Teng

(Z (€

(IT YMI YMI sszeyoOSTq) esreyostTq) ATTenuuy S82eyostq) (QIW/GMW) (S€Z7-N (QIW/GMN) ATquessy

ATquiessy “T*y “T*y

(Sez—-n (S€z-N eTqIeL eTqIeL (SesreyoSTd %) peszeyostq JUswYyoTAaug YUuswyoTAuY %) JUueMYyoTAuY %) tag [ese] Tease] JUSMYyOTAug 20g SPpeOTey Aessy Aessy s8aeyosTq e8reyostq uoTzepTpessy uot eszeyostTq o8ieyosTq 3ST) seT{quiessy asieyostq 2109 eTpezszyl 810) [TelITuUl [eTITul TerIIuy peoTey e109 untaqrTinby ejewpxoaddy ezewrxoaddy /SeTTquessy (S€z-N (S€c-N (S€Z-N (¢ eSerzsay eserzsay eserzsay eserzsay eserzsay esersay e3erzsay Ter eseszsay jo Tenuuy on-Li) (A.W) ad TUL oMN ‘oN AL 4%) %) %)

48

During start-up and initial testing of the nuclear steam supply

system, variations in burnup are to be noted between the initial core

and the equilibrium core. These burnups, determined to be an average of

24,000 and 17,000 megawatt-days per metric tonne of uranium (MWD/MTU)

for the initial core of the PWR and BWR systems respectively, yield fuel

at discharge with a uranium assay of 0.85% U-235 and 0.864 U-235 respec-

tively. Similar interpretation can be established for the equilibrium-

core loading data. The difference in design and operating charac-

teristics for the BWR and PWR results in the difference in burnups

established for each system.

At best, nuclear power systems can extract only about 24 of the

energy theoretically available from uranium fuel. As a result of this

low energy yield with respect to what is theoretically available, | fuel must be replaced periodically. Current generation reactors systems operate on a cycle in which a portion of the core is replaced annually. Each of the PWR systems discharge one-third of

their core annually, while the BWR system discharges one-fourth of its core annually. This difference between the PWR and BWR can once again be attributed to a difference in the basic design and operating characteristics of each system.

As a result of irradiation in the reactor, in which energy is produced by the fission process, a fraction of the uranium originally charged into the core is bred into plutonium and/or converted into fission products. At discharge, over 98% of the original uranium charged into the reactor remains.!? For the purpose of this study, the 49

negligible difference was ignored and the uranium discharged was

calculated based upon the initial charging.

Listed in Table 4.2 are discharge quantities of uranium and

plutonium found in spent-fuel. The calculations for plutonium quantities

are based on an average fissile plutonium discharge of 4.824 kg/MTU and

5.930 kg/MTU for the initial and replacement cores of a BWR; and 5.829

kg/MTU and 6.633 kg/MTU for the initial and replacement cores of a PWR.27

‘The isotopic composition of discharged plutonium varies with fuel

exposure and with repeated recycle of recovered plutonium in LWR's.!7

With successive recycles, the build up of Pu-236, Pu-238, Pu-240, and

Pu-242 increases and a greater amount of fissile plutonium, Pu-239 and

Pu-241, is required to compensate for parasitic capture. This is

illustrated by Deonigi!l? in which it is noted that during the next

decade, the nuclear industry will pass through a transition where most

of the fuel discharged will be at a low, variational exposure, to a

situation in the year 1985 where the discharged fuel will be pre- dominantly at equilibrium exposures. The results of testing fuel to

date show this assumption to be true.!7 Thus, it will be assumed for

this study that the average composition of plutonium in discharged fuel

is that given in Table 4.3. Also assumed is that the composition given

for plutonium in 1975 applies through 1979; that for 1980 applies through

1984; and that for 1985 applies through the remainder of the century.

Also included in Table 4.3 is the percent of the fissile plutonium in

the spent-fuel at discharge. 50

Table 4.2. Spent Fuel Discharge Characteristics

PWR PWR PWR BWR TEE w) | @Bew | (cE) (GE)

Initial Core

Discharge per Assembly (kg U) 412.0. 408.1 . 376.1. 1 66.2

Discharge per Assembly (kg fissile Pu) 2.4015 2.3788 2.1958 0.8017

Equilibrium Core

Discharge Per Assembly 412.0 408.1 376.1 166.2

(kg U) s e . } s

Discharge Per Assembly | 5 7328 | 2.7069 | 2.4987 | 0.9856 (kg fissile Pu)

51

Table 4.3. Average Composition of Plutonium Available for Recycle

Per Cent!’

YEAR | Pu-236 | Pu-238 | Pu-239 | Pu-240 | Pu-241 | Pu-242 | Fissile Pu

1975 | 0.006 1.0 64 . 22 10 3 74

1980 | 0.007 1.5 58 24 11 5 69 1985 | 0.007 1.7 54 25 12 7 66

52

Plutonium-241 is radioactive and undergoes a beta decay to

americium-241 with a half-life of 13.2 years. As a result, there is a

decrease of fissile plutonium content in the spent-fuel with time. This

effect tends to reduce the profitability of the spent-fuel from

reprocessing. The effect of this Pu-241 decay on the fissile plutonium

in the spent-fuel assembly is expressed by:

Pug(t) = Pug (0) {1 ~ r(l-e-At)} (4.1)

where

Pug(t) = quantity of fissile. plutonium (239 + 241) at time t,

Pug(0) = quantity of fissile plutonium (239 + 241) at discharge,

r = the ratio of Pu-241 at: time t=0 to the total fissile

Pu (239 + 241) at time t=0, and

X = the decay constant for Pu-241, A=.05251 year7l,

Equation 4.1 represents the correction for Pu-241 decay in stored spent-

fuel.

Having established the essential characteristics of spent-fuel, it is appropriate to determine the spent-fuel supply and the spent-fuel

demand. These prerequisites for implementation and solution of the model

are represented in the following section.

B. Spent-Fuel Supply and Demand Projections

It is necessary to first examine the supply of spent-fuel globally

in order to determine the reprocessing capacity based on reactor mix.

ERDA has published projections for quantities of spent-fuel generated 53

over the interval 1976-1985.** This projection is based on reactors on-line and those anticipated to be on-line through the end of 1985.

Based upon the projected growth of nuclear generating capacity presented in Table 4.4, a comparison is made to determine an average spent-fuel supply per GWe (1000 MWe). As a result of this comparison through the year 1985, the discharged quantities of spent-fuel in terms of tonnes of uranium and also the number of assemblies per gigawatt

(1000 megawatt) electric were determined. These quantities, given in

Table 4.5, represent the basis for the projected spent-fuel supply by reactor type to be established beyond 1985. By assuming an installed capacity of 1 BWR to 2 PWR's beyond 1987, nuclear growth capacity by reactor mix is established. This projection, coupled with the average discharge quantities of spent-fuel presented in Table 4.5, result in the global spent-fuel supply projections given in Table 4.6. In Table

4.6, tonnes of uranium as well as the number of assemblies of spent-fuel discharged per year are displayed. Calculations of the projected quantities in a given year are based on the installed capacity the previous year, indicating the one year lag in fuel loading and subsequent discharge. Having established the global quantities of spent-fuel discharged per year, it is necessary to establish the spent-fuel discharge per reactor. These quantities are established for the standardized systems examined in Table 4.1 and represent the annual supply available. As discussed earlier, these systems are the repre- sentative models of the reactors to be analyzed. Discharge quantities are 64, 68, 80, 183 assemblies per year for the Westinghouse, Babcock 54

Table 4.4. Installed Nuclear Capacity

Year Total Capacity BWR Capacity PWR Capacity (GWe) (GWe) (GWe)

1976 41.887 16.033 25.854 1977 50.364 17.921 32.443 1978 55.292 17.921 37.371 1979 63.480 20.629 42.851 1980 74.641 24.950 49.691 1981 92.151 29.295 62.856 1982 107.552 33.240 74.312 1983 125.875 41.344 84.531 1984 145.659 47.060 98.599 1985 161.928 52.948 108.980 1986 176.736 56.453 120.283

1987 182.394 58.781 123.613 1988 195.000 62.983 132.017 1989 204.000 65.483 138.017 1990 213.000 68.483 144.017 1991 225.000 72.483 152.017 1992 246.000 79.483 166.017 1993 274.500 89.483 185.017 1994 313.500 102.483 211.017 1995 345.000 112.983 232.017 1996 381.000 124.983 256.017 1997 409.500 134.483 275.017

55

Table 4.5. Discharge Quantities of Spent Fuel

Per Gigawatt (electric)

Reactor Type PWR BWR

Average Discharge (MTU/GWe) 29.002 | 35.329

Average Discharge (Assemblies/GWe) 67 192

56

SeT[quessy SeT[quessy

aATReTNUNY aATReTNUNY

9C8T0V 9C8T0V

9L909€ 9L909€ SEVECE SEVECE

€7968 €7968

99SEET 99SEET 970092 89€602 89€602

OC9EVT OC9EVT

TELeL TELeL CELEBS CELEBS

PLY98T PLY98T

8SSv79OT 8SSv79OT

cSOVCT cSOVCT

98928 98928

V9OCLY V9OCLY

CLBLE CLBLE

6ScOE 6ScOE

COLES COLES TTO8T TTO8T

€Sccl €Sccl 7198 7198

yOTSOT yOTSOT

jo jo

°on °on XT XT

AoR08ey AoR08ey

Sot[Tquessy Sot[Tquessy

L£SEst L£SEst

€69T2 €69T2 T8TLT T8TLT

TL89 TL89

7C6E 7C6E CSTE CSTE

LO6E72 LO6E72

LL96T LL96T

€TOvT €TOvT

CvVcet CvVcet

699¢T 699¢T £6021 £6021

6€80T 6€80T 98cIT

99TOT 99TOT €L78 €L78

S9SS S9SS

€LL4e €LL4e LYUL? LYUL?

LE%8 LE%8

CVY CVY

Aq Aq

- -

pesazeyostq pesazeyostq

Jo Jo

suoTz.eforzg suoTz.eforzg

UME UME *oNn *oNn

Junouwy Junouwy ¢° ¢°

C°CLL C°CLL

9° 9°

9° 9°

6° 6° 9° 9°

9°SLGC 9°SLGC 7° 7°

9° 9°

o°766T o°766T

O°8EsT O°8EsT

9° 9°

T° T°

7°8€9 7°8€9 6° 6°

L°CCte L°CCte

7° 7°

G°898T G°898T S°EVcT S°EVcT 6° 7°?T8. 7°?T8.

OIn OIn

€9S €9S

OT7¥ OT7¥ 9T9E 9T9E

L£STE L£STE

AtTddng AtTddng

CC8C CC8C

VEZ VEZ 8cEC 8cEC

798 798

LSS LSS

L86E L86E

7L02 7L02

70ST 70ST ~ ~

Teng Teng

SoeTTquessy SoeTTquessy

quedg quedg

SETVT SETVT 96€CT 96€CT

€762 €762

ecrit ecrit

O6TE O6TE

cee cee

ESTLT ESTLT

S8Tot S8Tot

6796 6796

C88 C88

6508 6508

cOEL cOEL 8TS9 8TS9

86S% 86S%

LE8E LE8E

8092 8092 GLO0e GLO0e

GYSST GYSST

S788 S788 L776

GcLS GcLS

- -

Jo Jo

‘g°y ‘g°y

wWMd wWMd

°oN °oN aTqey aTqey

L£°8StT L£°8StT

c°96L9 c°96L9

€° €° 0°€OL9

¢° ¢°

8° 8°

O° O° O°SLVE O°SLVE

1°898 1°898 9° 9°

7° 7°

9° 9°

€° €°

c°ILSE c°ILSE

9° 9° €° €°

8° 8° 6°CLUC 7° 7° 6°S9CT 6°S9CT

L£°OT?T L£°OT?T

OLW OLW

96EL 96EL 9609 9609

O9TY O9TY

6SS 6SS

T6E% T6E%

SECS SECS

8YTE 8YTE 8E8~C 8E8~C 9L6T 9L6T

VTE VTE

L86€ L86€

7ZE9T 7ZE9T - -

966T 966T

£66T £66T

9L6T 9L6T

1eaz 1eaz

066T 066T

C86T C86T

O86T O86T T86T SL6T SL6T

Y66T Y66T

CO6T CO6T T66T T66T

S86l S86l 686T

986T 986T E86. E86. 786T

6L6T 6L6T

L66T L66T S66T S66T

L86T L86T

S86T S86T LLOT LLOT

57

and Wilcox, Combustion Engineering, and General Electric systems, res-

pectively.!4

With the spent-fuel supply projections established, it is nec-

essary to determine the reprocessing capability. For the purpose of

this study, the amount of reprocessing available per reactor in any

year is based upon:

“1. the reprocessing capability in the given year,

2. the amount of spent-fuel generated in a given year, and

3. the reactor mix in which the reprocessing capability is

distributed.

As a result of the first and second statements above, the re-

processing capability in any given year are distributed to process

only the additional new fuel added to the supply each year. This es-

tablishes a reprocessing demand distribution in which per-reactor re-

processing demands can be established. From the third statement

above, the assumed reactor mix is 2 PWR’s to 1 BWR. This in effect

allots reprocessing capacity by two-thirds of the total to PWR's, and one-third of the total to BWR's. This is necessary since both

systems are to be examined on a unit-reactor basis.

Before proceeding further, the next question to be answered re-

lates to the availability of reprocessing capacity during the time

frame examined. As a result of a study by Macek,!7 three scenarios reflecting reprocessing plant start-up are established. They are: 58

1. Optimistic, with. start-up mid-1979,

2. Realistic, with start-up 1981, and

3. Pessimistic, with start-up 1983.

For purposes of plant start-up, it is assumed that the plants op-

erate at one-third and two-thirds capacity in their first and second

years of operation, respectively; and at their rated capacities

thereafter.!? This is in accord with recent government and indepen-

dent studies of reprocessing capability.’ 0 The earliest start-up

date (optimistic scenario) projects start-up of Allied General Nuclear

Services (AGNS) plant at Barnwell in 1978, Nuclear Fuel Services (NFS)

in 1983, Exxon in 1985, and a fourth plant in 1987. The rated capac- “ities of the plants are 1500, 750, 2000, and 2000 metric ton heavy

metal per year (MTHM/yr) respectively. Listed in Table 4.7 is the

reprocessing plant capacity schedule. Assuming the sequence of

reprocessing capacity additions over time remains the same for all

scenarios, the different scenarios to be examined differ only by

the start-up date of the reprocessing activity. Under this assump-

tion, the three reprocessing scenarios to be examined are presented in

Tables 4.8 through 4.10 based upon reactor mix. These projections are

compared to a recent independent study +? and prove to be conservative

by an average difference of 7 per cent.

To establish the reprocessing demand rate, in number of assemblies

per year, for a particular system, the discharge characteristics of

spent~fuel from Table 4.2 are utilized. Using average heavy metal

discharge quantities for each of the systems, the unit reactor 59

Table 4.7. Reprocessing Plant Capacity Schedule

Capacity -— MTHM

Year AGNS NFS Exxon 4th Plant

1977 - ~ = -

1978 - - - -

1979 500 = - -

1980 1000 - ~ -

1981 1500 - ~ - 1982 | 1500 - ~ -

1983 1500 250 ~ -

1984 1500 500 - -

1985 1500 750 750 -

1986 1500 750 1400 -

1987 1500 750 2000 750

1988 1500 750 2000 1400

1989 1500 750 2000 2000

1990 1500 750 2000 2000

1991 1500 750 2000 2000

1997 1500 750 2000 2000

60

Table 4.8. Reprocessing Capability - Optimistic Scenario

(MTU)

Year Total BWR PWR Year Total BWR PWR

1977 0 0 0 1988 5650 1883 3767 1978 0 0 0 1989 6250 2083 4167 1979 500 167 333 1990 6250 2083 4167 1980 1000 333. 667 1991 6250 2083 4167 1981 1500 500 1000 1992 6250 2083 4167 1982 1500 500 1000 1993 6250 2083 4167 1983 1750 583 1167 1994 6250 2083 4167 1984 2000 667 1333 1995 6250 2083 4167 1985 3000 1000 2000 1996 6250 2083 4167 1986 3650 1217 2433 1997 6250 2083 4167 1987 5000 1667 3333

61

Table 4.9. Reprocessing Capability - Realistic Scenario

(MTU)

Year Total BWR PWR Year Total BWR PWR

1977 0 0 0 1988 3650 1217 § 2433

1978 0 O- 0 1989 5000 1667 3333 1979 0 0 0 1990 5650 1883 3767 1980 0 0 0 1991 6250 2083 4167

1981 500 167 333 1992 6250 2083 4167

1982 1000 333 667 1993 6250 2083 4167

1983 1500 500 1000 1994 6250 2083 4167

1984 1500 500 1000 1995 6250 2083 4167

1985 1750 583 1167 1996 6250 2083 4167

1986 2000 667 1333 1997 6250 2083 4167 1987 3060 1000 2000

62

Table 4.10. Reprocessing Capability - Pesimistic Scenario

(MTU)

Year Total BWR PWR Year Total BWR PWR

1977 0 0 0 1988 2000 667 1333

1978 0 0 0 1989 3000 1000 2000

1979 0 0 0 1990 3650 1217 2433

1980 0 0 0 1991 5000 1667 3333

| 1981 0 0 0 1992 5650 1883 3767

1982 0 0 0 1993 6250 2083 — 4167

1983 500 167 333 1994 6250 2083 4167

1984 1000 333 667 1995 6250 2083 4167

1985 1500 500 1000 1996 6250 2083 4167

1986 1500 500 1000: 1997 6250 2083 1987 1750 583 1167

63

discharge demands are established. These demands, in terms of number of assemblies demanded per year, are represented in Figures

4.1 through 4.4 for each of the systems under examination. By plotting the annual discharge, as long as the demand curves remain below this rate, there is always a backlog of spent-fuel. When the yearly rate of demand exceeds the annual discharge, the backlog begins to reduce, with the possibility of consuming the entire backlog until the supply equals demand. For purposes of sensitivity analyses, the projected demand rates for each of the scenarios ex- amined are varied by +152 and +30% from the base projections. These demand profiles are also included in the figures. |

The remaining elements of the spent-fuel withdrawal model to be determined are the cost coefficients. Their derivation is discussed in the next section.

C. The Measure of Effectiveness - Profitability per Assembly

1. Independent Value Components

The choice of an optimal withdrawal policy for spent nuclear fuel rests primarily with the economics of the spent-fuel. Spent-fuel may be considered as a "mineral" which can be "mined" (reprocessed) to recover the unused nuclear fuel.2° A measure of the net value of unreprocessed fuel is given by equation 4.217 where

Net Value = U Value+ Pu Value - Fuel Storage Costs

~ Reprocessing Costs - Waste Disposal Costs (4.2) 64

G6 G6

OFISTTESY

UMd UMd

OTASsTWTsseg OTASsTWTsseg £6 £6

| esnoysutisem esnoysutisem

YST+ 40E+

T6 T6

- -

ajiey ajiey

pueweq pueweq ATquessy ATquessy

aseg hOE+ %ST+})

Teng Teng

oTastut3do oTastut3do

queds queds

“T'y “T'y van3ty van3ty OST T

r OOT Sct

10}.eayY Jeg pepueweq SeT[Tquessy jo rzequny 65

f

OFISTTPOY

YUMd YUMd DTASTUTSSag DTASTUTSSag

¢ XOOTTM XOOTTM

LOE+ yc

ty

pue pue yoooqeg yoooqeg

- -

ajey ajey

pueuegd pueuegd

ATquessy ATquessy aseg aseg 4“4ST+

> esieyostq esieyostq

OTasturadg

Teng Teng

quedg quedg

Tenuuy Tenuuy

‘*z*y ‘*z*y ean3ty ean3ty

LL 7

T

~

OS

OOT

OST

JojJOeSY Jaq pepueweg seT[Tquessy jo Jequny 66

$$ G6 +}

YUMd OF ASTTESY

ButszssuTsuq + -——_ OFISTUTSSAd €6 + oseg—~\ —~ LOE+ —_+-—_+—_+ T6

uotysnquoy | oseg L0E+ y¢T+ 4

-—

9}zey

pueusog

ATqumessy asieyostq

Tong oTastutido

jusdsg Tenuuy

Vv

‘“E*y

esan3Ty LL Tos 7

~

0

OST OOT

1ojJDeeaY Jeg pepueUseg SeT[quessy jo Azoquny

67 L6 L6

}

+ G6 G6 + VTISTTeoyY Q9/YMG

4 £6 £6 OTA}0eTY DTISTWTSSog LOC+ YCT+ +

Terzsuey — Nz J 4 ZOE+ eseg “ST+ - ; ajzey puewsq ATquessy

Teng jueds

a | LL TOOT FOST TOO TSLE TOOE TOSZ toon 0 hc

zoj0eay Jog pepuewaq seT[Tquessy jo azsquny 68

Of the five components of the value of spent-fuel, only three components have been established with reasonable assurance and validity. Speci- fically, uranium value, plutonium value, and storage costs have been studied» 19 517 ana pricing methods established; whereas, due to the uncertainties surrounding the back end of the fuel cycle, repro- cessing and waste disposal costs are debateable and uncertain.

When considering the question of the reprocessing alternative, it is to be noted that certain costs must be met if a profit is to be | realized. This is particularly true of reprocessing and waste disposal costs. These two components of the value equation (4.1) are costs to be incurred if any measure of profitability is to be realized. There- fore, when considering the establishing of an economic measure of effectiveness, these costs do not have to be included in the profit- ability of spent-fuel for the analyses of this particular problem.

As a result, equation 4.2 is redefined to reflect the profitability per assembly in terms of the time and characteristic dependent costs.

Thus equation 4.2 becomes:

Profitability| _ [U Value Per] 4+ |Pu Value _ |Storage Costsir4 . 3) Per Assembly |. Assembly Per Assembly Per Assembly

When each of these parameters are taken into consideration, the salvage value of the spent~fuel is utilized as the measure of the effective economic gain. Thus, the basis for the cost coefficients of the models derived is that given above by equation 4.3.

2. Uranium Value of Spent-Fuel 69

The uranium recovered in the reprocessing facility can be recycled into the feed steam of the nuclear fuel cycle. Since the discharged fuel from the operating light water reactors under equilibrium conditions contains fissile uranium (U-235) that is higher in concen- tration than that of natural uranium, use of spent-fuel provides a savings in natural uranium feed and separative work.

The potential savings in natural uranium feed and separative work are proportional to the price of the enriched product from the enrich- ment plant. Enrichment expenses in a gaseous diffusion plant are proportional to separative work, whose cost reflects energy consumption needed to produce enriched uranium. Upon analysis of the gaseous diffusion cascade, ?4t this value of the enriched uranium product based upon the unit cost of separative work and the unit cost of natural uranium feed is given by:

D = C.{(2x.-1) gn __“P_ ~ (2x ~1)£n_7*w__+ Ss P 1-xp ~Ky

_*p7*w_Ey ((2x,-1) Qn Ix,“woe (2x_-1) an IKfy}

+ C, *p7*w (4.4) Kp Ky where

D = price of the enriched product, $/kg;

Cs= unit cost of separative work, $/kg;

70

Cy = unit cost of natural uranium feed, $/kg;

x. = assay of uranium-235 in the enriched product weight fraction;

X- = assay of uranium-235 in the feed stream, weight fraction; and

x = assay of uranium-235 in the diffusion plant tails, weight

fraction.

Also included in the original analysis of the diffusion plant cascade

for the enriched product is a unit cost assigned to the diffusion tails.

At present, no value is assigned to the tails and as a result, it is ©

not included in equation 4.4.

Utilizing the discharge assays of the spent nuclear fuel for the

PWR and BWR systems given in Table 4.1, the uranium-value equations

are established for the intial- and equilibrium-core discharges. The

uranium-value equations are determined on the basis of an enrichment

plant tails assay of 0.304 and the product enrichment being the spent-

fuel assay. By substituting this data into equation 4.4, the value of

recovered uranium for the initial core discharge is given by:

1. BWR

D= (0.12397)C_ + (1.36253)Ce- Co (4.5)

2. PWR

D = (0.11456)C_ + (1.33820)C, - C, (4.6)

are for the equilibrium core discharges, the value of recovered uranium

is given by: 71

1. BWR

D= (0.10529)C. + (1.31387)C, = Cc. (4.7)

2. PWR

D= (0.08719)C_ + (1.26521)C. - Cc. (4.8) where C, is added to represent the unit cost of conversion of uranium to UF¢ gas.

These value equations can be interpreted to indicate (using equation 4.5) that one unit of recovered uranium can serve to reduce the front end requirement for natural uranium by 1.36 units and for separative work by 0.124 units. Similar interpretation can be applied to equations 4.6-4.8. Formulas 4.5~-4.8 corrected for losses during reprocessing and fabrication are rewritten as:

D = {(0.12397)C, + (1.36253)C, - C,}{1 - ny- no} (4.9)

D = £(0.11456)¢, + (1.33820)C, - C,H1- n, - no} (4.10)

D= {(0.10529)C. + (1.31387)C, - CHI -1 7 No} (4.11)

D = {(0.08719)C_ + (1.26521)c, - C Hl - ny - no} (4.12) where

ny = loss during reprocessing!’ (=0.005)

7 = loss during fabrication!’ (#0 .003)

A reduction in uranium value is noted between the initial- and 72

equilibrium-core discharges due to higher burnups which result in a

greater utilization of the fissile U-235.

From the formulas derived, it is shown that the values of recovered

uranium from spent-fuel is related to the prices of uranium and sepa- rative work less the conversion costs. The price of uranium is in- fluenced by the uranium market, but eventually the price depends on

the balance: between supply and demand. Projections made by the Energy

Research and Development Administration? indicate that as the cumulative production of U,0g increases, the value of the uranium will also increase. This projection results approximately in an 18% increase in the price of U,0g as the cumulative production increases by one million short tons. Correlating this projection with a historical analysis of the uranium mining industry by Liebermann,? the price of uranium is projected to increase at an average rate of 5.5% per year. This average rate is determined based upon proven reserves cf less than $30 per pound forward cost. A study by Voltin and Draper!! estimated that the rate of uranium price increase is reduced as more reserves are proven and as international trade increases; the rate of 5.52% per year is effective only through the year 1985. Afterwards, as a result of the increased supply, the price is assumed to increase at a reduced rate of 3.9% per year./1 it is forecasted that the present U30g price of $41 per pound?" increases to $63.66 by 1985, and reaches $101.65 by

1997, The forecasts of future uranium prices are summarized in Table

4.11.

In the U.S. today, the only major supplier of enrichment is the

ERDA diffusion plant complex. The diffusion process is energy 73

Table 4.11. Uranium Price Projections

Price Price | Price Price Year Year $/1b U0 $/kg U302 $/1b U302 $/kg U308

1977 41.00 90.39 1988 71.56 157.77

1978 43.32 95.50 1989 74.41 164.04

1979 45.77 100.90 1990 77.37 120.57

1980 48.36 106.60 1991 80.44 177.35

1981 51.09 112.63 1992 83.64 184.40

1982 53.98 119.00 1993 86.97 191.74

1983 57.03 125.73 1994 90.43 197.36

1984 60.25 132.84 1995 94.03 207.29

1985 63.66 140.35 1996 97.77 215.54

1986 66.19 145.93 1997 101.65 224.11 1987 68.83 151.73

74 intensive; and as a result, a sharp increase from $26 per kg of sepa- ative work for fixed-commitment contracts is projected to escalate at

1.4% annually by Voltin and Draper in 1976.!! This is to allow for the increase costs due to the required energy input per SWU. The reason that the escalation is not greater after 1985, when energy costs are expected to rise sharply, is that it is assumed that new technology

(centrifuge, nozzle, and/or laser separation) will make a contribution to lowering costs. . However, upon comparison of this projected rate with recent ERDA projections,» the estimate is changed to an increase of

2.44 annually, to more accurately reflect recent trends. Separative work cost projections for the time frame of this study are summarized in Table 4.12. Also as a result of the work of Voltin and Draper, the conversion costs are forecast to increase by 2% per year from the 1977 price of $4.41 per kg.° Table 4.13 presents the forecast of uranium conversion (to UF ¢ gas) costs.

3. Plutonium Value

The value of the residual plutonium in the spent-fuel is deter- mined by the manner in which plutonium is used. In order to establish a value, it is necessary to distinguish between plutonium price and plutonium value.?° A "use value" is understood to be the sum of money paid in order to use a commodity. A "market price" depends upon the balance between supply and demand. When considering the current stand- still of reprocessing capability in the U.S., the establishment of a firm market price for plutonium is impractical.

However, for the purpose of this study, an artificial "market" is 75

Table 4.12. Separative Work Cost Projection

SWU Cost SWU Cost Year Year $/kg-SWU $/kg-SWU

1977 69.80 1988 90.84 1978 71.50 1989 93.10 1979 73.23 1990 95.36 1980 75.01 1991 97.67 1981 76.83 1992 100.65 1982 78.70 1993 102.48 1983 80.61 1994 104.97 1984 82.57 1995 107.52 1985 84.57 1996 110.13 1986 86.63 1997 112.80 1987 88.73

76

Table 4.13. Uranium Conversion Costs Forecast

Cost Cost Year Year $/kg-U $/kg-U

1977 | 4.41 1988 | 5.59 1978 | 4.50 1989 | 5.70 1979 | 4.59 1990 | 5.82 1980 | 4.68 1991 | 5.93 1981 | 4.77 1992 | 6.05 1982 | 4.87 1993 | 6.17 1983 | 4.97 1994 | 6.30 1984 | 5.06 1995 | 6.42 1985 | 5.17 1996 | 6.55. 1986 | 5.27 1997 | 6.68 1987 | 5.48

77 established for plutonium based upon the use value (limiting value for plutonium in the plutonium market). To define the use value, it is necessary to know the technical and economical circumstances of plutonium utilization.2? Obviously, the plutonium market, when esta- blished in this manner, is linked with uranium and enrichment services since if recycled, fissile plutonium can replace some U-235.

Plutonium generated in light water reactors can be used in several different modes. Among the utilizations established are: in-situ (the plutonium, when formed in the reactor, is consumed before recycle), for recycle in LWR's, for the High Temperature Gas Cooled Reactor based upon plutonium fuel design, and for early fuelings of the fast breeders. 25 Only light water reactors are expected to contribute to the nuclear generating capacity through the end of this century. This is due to the establishment of firm technology and services.to support it.17 Thus, for the time frame of this study, it is assumed that only piutonium use in-situ and in recycle contributes to the establishment of a plutonium market.

Fissile plutonium is formed in the reactor core as a result of the radiative capture of in the U-238 nucleus. When formed, the fissile plutonium (Pu-239 and Pu-241) participates in a similar fashion to U-235 in the general fission reactions. The more fissile plutonium that is formed in the reactor, the more important it is in-situ con- sumption. The quantity of fissile plutonium available to participate in the fission process depends upon the degree of core burnup and the neutronic characteristics of the reactor. No value can be assigned to this plutonium since it is a general product of capture in U-238 78 and since it is freely available to be utilized without reprocessing.

Plutonium remaining in the spent-fuel can be chemically separated

(reprocessed) from the uranium and fission products contained in the spent-fuel. It can be utilized as a fuel again by mixing it with natu~ ral, depleted, or enriched uranium to form a mixed-oxide fuel. Thus, the separated plutonium can be reintroduced into the same reactor.

As discussed in section A of this chapter, there will be a tran- sition from fuel discharged at low exposures, to a situation in 1983, where the fuel will be discharged predominantly at equilbrium exposures.

The effect of the recycled plutonium depends on this situation, since the operating characteristic of the recycle reactor will depend on the composition of the plutonium. Referring back to Table 4.3, the numbers presented are useful in determining the average value of plutonium in the time periods when it can be expected that the reprocessing plants will be operational. As mentioned earlier, for this study, this recycle mode is primarily for the purpose of creating an “artificial market" to establish a value for plutonium.

The value of plutonium can be established in several ways. The method most frequently used is the indifference or break-even method proposed by Eselbach.!© The indifference method defines plutonium values as the value yielding the same fuel cycle costs whether the plutonium discharged is sold or recycled. For this method, firm’ numerical values for each fuel cycle cost component for both enriched uranium fuel and plutonium recycle must be known, leaving only the value of plutonium unknown. Obviously this method depends heavily upon a mixed-oxide fuel cycle and the establishment of a well defined 79 plutonium market. Therefore, it seems that this method does not appear useful in the present situation of a non-existent firm plutonium market.

This results from the present uncertainties surrounding reprocessing and recycle.

A generalized equation for plutonium value is derived by Deonigi which establishes relationships with fully enriched uranium, Plutonium-

242 penalty factor, and the differential fabrication cost correction for mixed-oxide fuel above that of uranium fuel.!’ Deonigi shows that

the plutonium value is VPu) = U(ie1.6R) - Pu fabsication penateys S/kgwOK (4.13) where

A = plutonium replacement value (relative worth of Pu-239 to U-235

as a fissile material - gm U-235/em Pu — fissile),

U = the cost of fully enriched uranium (93% wt) at the fabrication

plant - $/kg, and

R = ratio of concentration of Pu-242 to the concentration of

fissile plutonium, (Pu-239 and Pu-241).

For purposes of this study, the value of plutonium is best estab- lished by considering the savings realized in the reduction of require- ments for uranium ore and separative work units that results from re- processing.

In the GESMO study, an estimate of savings in uranium ore and separative work realized by plutonium recycle is evaluated.!” This 80

evaluation establishes equivalent savings based on the present offer-

ings of major fuel suppliers. It is found that one gram of fissile

plutonium in a PWR is equivalent to 0.1906 kgs of separative work plus

0.180 kgs of natural uranium. A similar analysis for BWR recycle is

that 0.2037 kgs of separative work plus 0.1870 kgs of natural uranium

is equivalent to one gram of fissile plutonium. The amount of savings realizable is dependent on the price that must be paid for natural

uranium and separative work during the year that recycle occurs. Since

the actual value of the plutonium at a specific time is dependent upon

the quantity of fissile plutonium available at that time, a correction

is allowed for the decay of Pu-241. Accounting for losses during re-

processing and fabrication, the effective plutonium value is determined

by:

V(Pu) = (Cg * A+ Ce * BY) (1 - ny - ng - 13) (4.14) u rg

G plutonium value, $/gm - fissile;

C_ = unit cost of separative work, $/kg;

Ce = unit cost of natural uranium feed, $/kg;

nL = loss during reprocessing!” (= 0.005);

= loss during fabrication!’ ( 0.003); and

= loss in fissile Pu during reprocessing and fabrication due

to decay of Pu-2412° (= 0.01).

The factors A (equivalent of one gram of fissile plutonium in terms of separative work units), and B (equivalent to one gram of fissile 81

plutonium in terms of natural uranium), which vary with the type of reactor, are summarized in Table 4.14. This equivalency approach serves as the method of determining the value of plutonium. The cor- rection for decay of: plutonium-241 with time is reflected in the com- puter code developed to determine the profit realizable from recycle of the plutonium and uranium. It is appropriate to note that equation

4.14 does not include a fabrication penalty for mixed-oxide fabrication.

This penalty is a cost factor that is incurred if recycle and subse- quently an economic gain is to be realized.

D. Storage Costs

An examination of the storage costs is conducted by Macek.2° From the examination, it is established that the range of the costs of spent- fuel storage extends from $5500/MT-spent-fuel per year for a utility- owned storage facility, to $20,000/MI-spent-fuel per year for a commer- cial facility. Macek establishes a figure of $7000 per tonne of fuel per year as typical cost for facilities where utilities supply some form of long term commitment or front-end money. It is expected that the storage costs will increase at the annual rate of inflation. For the current decade, this rate will be at 8% per year, during the 1980's at 6%/yr, and during the 1990's at 4%/yr. Decrease in the rates for the 1980's and 1990's are attributed to a slowing in the rate of inflation

Based upon the assumptions above, on-site storage costs per assembly- year for each of the reactor systems are summerized in Table 4.15.

Each of the parameters discussed in this section are utilized in 82 developing a data generating code. The implementation of the code, plus the solution technique is discussed in the next chapter. 83

Table 4.14. ‘Plutonium Value for Uranium Feed

and Separative Work Equivalents!7

Type of Reactor Equivalents to 1 gm of Pu (fissile)

. PWR BWR

SWU Equivalent - Kg 0.1906 | 0.180 Natural U Equivalent ~- Kg 0.2037 | 0.1870

84

Table 4.15. On-Site Storage Costs Per Assembly - Year

$/Assembly

PWR PWR PWR BWR Year (W) (B & W) (CE) (GE)

1977 3271 3240 2991 1319 1978 3543 3510 3240 1429 1979 3839 3802 3510 1548 1980 4158 4119 3803 1677 1981 4416 4374 4038 1781 1982 4689 4644 4288 1891 1983 4979 4931 4553 2008 1984 5286 5236 4834 2132 1985 | 5613 5560 5133 2264 1986 5961 5904 5451 2404 1987 6329 6269 5788 2553

1988 6721 6657 6146 2711 1989 7136 7069 6526 2878 1990 7577 7506 6929 3056 1991 7887. 7812 7212 3181 1992 8209 8131 7507 5311 1993 8544 8463 7813 3446 1994 8892 8808 8132 3587 1995 9255 9168 8464 3733 1996 ~—-9633 9542 8809 3886 1997 10026 9931 9169 4044

5. APPLICATIONOF THE SPENT-—FUEL-WITHDRAWAL MODEL

A. Model and Data Summary

The linear models for the spent-fuel-withdrawal problem developed in Sections C and D of Chapter 3 are analyzed from an optimization standpoint. These models are chosen to be applied to the optimization of the inventory withdrawal problem because standard methods exist for their solution. Before discussing these models, it is necessary first to discuss the dynamic programming formulation and the problems to -be encountered in its implementation.

The dynamic program formulated in Section 3-B is, computationally a large problem. For the general problem, considering N(t) classes of spent-fuel for each time period t, the model has te(t,t1)/2 stages.

Considering N(t)=1 for all t in order to reduce the dimensionality of the problem, the program has tr stages. For either problem the number of state variable transformations is tg(tgtl)/2.28 At each stage, the number of state variables exceeds or is equal to the number of decision variables. This adds additional computational difficulty, if not impossibility, in obtaining a dynamic programming solution of the model.

As a result of these difficulties encountered with the dynamic program, the linear approach is determined to be the best.

Upon considering the linear models developed in Chapter 3, a reduction in dimensionality is obtained for the Hitchcock formulation when considering only one spent-fuel class at each discharge period.

Upon reduction in dimensionality, the Hitchcock problem formulation reduces to the Linear Programming Problem or Transportation model

85 86

developed in section 3-D. The model that is applied to the actual

optimization of the inventory model is analyzed from the point of view

of only one class of spent-fuel at a given discharge period. This one

classification represents the average characteristics of the spent-fuel

in the discharge. Having examined actual discharge data for the H. B.

Robinson plant, ® it is found that each assembly can be uniquely classi- fied according to the burnup it has experienced. For this particular

plant, this results in 53 different classifications at each discharge.

Statistically, for each of the assemblies examined from any given dis-

charge period, deviation from mean burnup is at a maximum, only 92%.

Thus, for the purposes of reduction in dimensionality of the problem,

only one classification of assemblies in a discharge period is examined.

It should be noted that differences in burnups experienced by the aver-

age assemblies are reflected in the economic measure of effectiveness

to be determined. This measure is based upon the characteristics of

the spent-fuel from each discharge period.

The specific model to be solved is given as:

Maximize ) y Cia Yin . i=0 n=l

subject to: | (5.1)

tptl 1) )} Yip tigi) =a, ¥ i 87

te 2) )} Yan = Dy ¥on i=0

3) ) aj 7 } by = 0 i= =]

5) Y¥.,. > 0 ¥oi,on

where Y;,, n is the decision variable to be determined to yield optimal results.

Based upon the evaluation and determination of the components of the measure of effectiveness for the problem as presented in Chapter 4, a computer code is developed. This code is used specifically for the purpose of cost data preparation. Included in Appendix B, this code is developed for more use than that needed for this study. However, for this study, the code determines the effective value of the spent-fuel based upon the value of residual uranium and plutonium less cumulative storage costs during the period of examination. Included in this code are corrections for the decay of fissile Pu-241 which reduce the effective plutonium value while in storage. Based upon the developments in Chapter 4, the profitability or measure of effectiveness that serves as cost coefficients (Cc, are determined for each pair of discharge periods i and demand periods n in the feasible region. Summarized 88 in Table 5.1 are the profitability or cost coefficients for spent~ fuel discharge in the first, fifth, tenth, fifteenth, and twentieth year of the horizon. In the base case, this is for a Westinghouse assembly. As is determined from the data, assemblies discharged later in the horizon actually decrease in value. This is due to the rate of increase in storage costs exceeding the cumulative rate of increase in the value of uranium and plutonium in the spent-fuel. Similar data is obtained for the other PWR systems and the BWR system. This data is listed in Tables 5.2-5.4.

B. Implementation of the Model and Procedural Summary

The spent-fuel-inventory~-withdrawal model is implemented on the

Virginia Polytechnic Institute and State University IBM computer

System/370 Model 1585 using a proprietory mathematical. programming system--MPS IIr,26 and by using the Out-of-Kilter- algorithm. 19

The Out-of-Kilter algorithm developed by Fulkerson is a method of solving minimal-cost network flow problems. The method begins with an arbitrary flow, feasible or not, together with an arbitrary pricing vector, and then uses a labeling procedure to adjust an arc of the net- work that fails to satisfy the appropriate optimality properties. This algorithm is particularly applicable to the Hitchcock problem formula- tion. |

MPS III is a modular mathematical programming system consisting of several components. Its BASIC system provides the system control and the standard optimization procedure. This system incorporates a very high-speed matrix inversion method utilizing the preassigned pivot 89

O7T# O7T#

ATquesse/s ATquesse/s

cCOTEOE cCOTEOE

e8reYyoSTG e8reYyoSTG

€cccOE €cccOE

-— -—

~~ ~~

-- --

-- --

-- --

-- --

-— -— -- -- -~ -~

-- --

-- --

-~ -~ -- --

-- -- -~ -~ -- --

-- --

“—- “—-

7 7 UMd UMd

CI# CI#

Bsnoysut Bsnoysut

ATquesse/$ ATquesse/$

C9TTSZ C9TTSZ

e8reyostq e8reyostq

7196472 7196472

8cOTSZ 8cOTSZ T96CSZ T96CSZ

YYTOSZ YYTOSZ SE90SZ SE90SZ

VIATATA VIATATA

-- --

-- --

-~ -~

-~ -~ -- --

-- --

-~ -~

“— “—

—- —- -~ -~

-~ -~

------

—— —— som som

— —

ATquessy ATquessy

OT# OT#

ATquesse/s ATquesse/s

0890T7¢ 0890T7¢

OT8TT2 OT8TT2

esreyostq esreyostq

$97602 $97602

T¥7602 T¥7602 EL9I0TZ EL9I0TZ

T9ETIZ T9ETIZ

€S9602 €S9602 £L8602 £L8602

VTOTTZ VTOTTZ

SLSTT? SLSTT? 6ELTIZ 6ELTIZ

£67602 £67602

ase) ase)

-~ -~

-- --

-~ -~ -- --

-— -— — —

“7 “7

7-7 7-7

7 7

tog tog

oseg oseg AITTTQeITjorg AITTTQeITjorg

C# C#

ATquesse/s ATquesse/s

esz1eyosTGq esz1eyosTGq

TOVC8T TOVC8T OT¢csTt OT¢csTt

eTOT8T eTOT8T

OOCT8T OOCT8T

TEOVLT TEOVLT OLZTLT OLZTLT

76SC8T 76SC8T

6€0c8T 6€0c8T 80ZT8T 80ZT8T

£TO0c8T £TO0c8T

T¢eST8t T¢eST8t

90S081 90S081 €cO08T €cO08T

GO608T GO608T

7S69LT 7S69LT L7989T L7989T

TEVTST TEVTST

-- --

-~ -~ -- --

“7 “7 “T°S “T°S

| |

eTqQeBL eTqQeBL

T# T#

ATquesse/s ATquesse/s

esreyostq esreyostq

OZ69ST OZ69ST

STOSST STOSST

E88srvl E88srvl

O€094VT O€094VT cOLOVT cOLOVT

CECBET CECBET 607EET 607EET

CCVSst CCVSst

TEO8ST TEO8ST

99cLST 99cLST

68S9GT 68S9GT

9LT9ST 9LT9ST

979SST 979SST

V88IST V88IST cOEEVT cOEEVT

66LSET 66LSET

L86LST L86LST

LOLLST LOLLST 860LST 860LST

LESLST LESLST TEC8ST TEC8ST

cb66L cb66L

O86. O86.

qeaz qeaz

€86T €86T

C86T C86T

6L6T 6L6T 8L6T 8L6T

€66T €66T

T66T1 T66T1

O66T O66T

686T 686T 886T 886T

9861 9861 Ss6rl Ss6rl

T86L T86L

LL6. LL6.

966T 966T 766T 766T

L86L L86L

Y86T Y86T

L66T L66T G66T G66T

90

OZ# OZ#

ATquesse/¢ ATquesse/¢

Be8reYyoSTG Be8reYyoSTG

O09€66¢ O09€66¢

TECOOE TECOOE

-- -- -~ -~

-= -= -- -- -~ -~

-7 -7 -- --

-- -- -~ -~

-- --

-— -— -~ -~ ~~ ~~ —— ——

-- --

-— -— -— -— -= -= = =

CL# CL#

Ud Ud

ATquesse/s ATquesse/s

eSsa2eyostq eSsa2eyostq

T9C8492 T9C8492

0S9872 0S9872 $9S0SZ $9S0SZ

60EL4VC 60EL4VC

78L89C 78L89C TECOSZ TECOSZ

GLLLYZ GLLLYZ

MY MY

-- -- 77 77

-- -- ~~ ~~ -- --

-~ -~ -~ -~ -—— -——

------

-— -— “7 “7

7 7

7 7

a - - a ATquossy ATquossy

OT# OT#

ATquesse/¢ ATquesse/¢

eszeyostq eszeyostq

€€L602 €€L602

708602 708602

068L0¢ 068L0¢

9T0602 9T0602 6S€602 6S€602

899L0Z 899L0Z 8L9802 8L9802

€8cL0Z €8cL0Z

CLYLO~ CLYLO~

LS%L02 LS%L02 S89802 S89802

T£S602 T£S602

ase) ase)

teqg teqg

-— -—

-- --

-= -=

~— ~— -- -- “= “=

—— —— -— -—

-—- -—-

AITTTqQeITJOI[g AITTTqQeITJOI[g aseg aseg

C#

ATquesse/s ATquesse/s 6Y0L9T 6Y0L9T

eszeyostq

C8ECLT C8ECLT 87969T 87969T

T6TSLT T6TSLT 96L8LT 96L8LT STE8SLT STE8SLT SLCSLT SLCSLT

TOS6LT TOS6LT ETL6ZT ETL6ZT €876LT €876LT

COVELT COVELT €6c08T €6c08T €686LT €686LT

7L908T 7L908T

STEO8T STEO8T

S8708T S8708T

[9808T [9808T

—- —- ~~ ~~

-- --

-- --

°Z"G °Z"G STqPL STqPL

T# T#

AT AT

quasse/¢ quasse/¢

es8reyostg es8reyostg

COVVET COVVET

OCSVYT OCSVYT

6£0CET 6£0CET

CVELYT CVELYT

ZC8T4VI ZC8T4VI TSZ6ET TSZ6ET 6089€T 6089€T

60€0ST 60€0ST

9VSYST 9VSYST 9¢07ST 9¢07ST SOVEST SOVEST

8E09ST 8E09ST 979SST 979SST VLCECST VLCECST

9ST9ST 9ST9ST LOOSST LOOSST

SIL9ST SIL9ST

EVE9ST EVE9ST

TS67ST TS67ST

GES9ST GES9ST TZESST TZESST

1zaR 1zaR

O86T O86T SL6T SL6T

€86T €86T C86T C86T T86T T86T

6L6T 6L6T LL61 LL61

O66T O66T

986T 986T 786T 786T

886T 886T

S86T S86T

€66T €66T c66L c66L T66T T66T

686T 686T L86T L86T

766T 766T

L66T L66T 966T 966T C66T C66T

91

Oc# Oc#

ATquesse/s ATquesse/s

Bsaeyostg Bsaeyostg

VCLOLT VCLOLT

LE69L7 LE69L7

-- -- -— -- --

------~ -~ -~ ~~ --

~~ ~~ “ “ -- -~ -~ -- --

-—— -——

UMd UMd Sup~AssuyZuyq Sup~AssuyZuyq

CT# kjquesse/s kjquesse/s

esreyostq

OT80EZ OT80EZ

TVE6TC TVE6TC 6976770 OL08272 OL08272

O9CTIES O9CTIES £96822 £96822

60687272 60687272

-~ -~

------— -— -- -—-

------—- -—- -—-

-—~ -—~

-—- -—- uopisnquog uopisnquog

OT# OT#

- -

ATquesse/s ATquesse/s

ATquessy ATquessy

esazeyostq esazeyostq

cOEC6I cOEC6I

6cSC6L 6cSC6L 8SVC6T 660£6T 660£6T GLLC6L GLLC6L C97C6T VIET6L C67IST C67IST TOE TOE STTT6T STTT6T

SOLT6I SOLT6I 8S77C6T 8S77C6T

s) oseg ase)

~~ ~~ ------——

-- -- -~ -~ ------—-

T6L T6L teg teg

AITTTqeqrTyorg AITTTqeqrTyorg

G# G#

ATquesse/¢ ATquesse/¢

e31eyoOsTG e31eyoOsTG

89779T 89779T

c9CS9T c9CS9T €0679T €0679T O€LS9T V607ST V607ST ”006ST 9879ST 9879ST

G¢CSS9T G¢CSS9T 699T9T 699T9T SOSS9T SOSS9T cC88s9T ”V7C99T 87¢99T 6cL99T 6cL99T

967991 967991 96C99T 96C99T

T9S99T T9S99T

------

-- -- —-

"e°CS "e°CS

T#

ATquesse ATquesse aTqey aTqey

e8reyostq

CST9CT CST9CT

O€ O€ TSccel T9VTVT O6LTCT O6LTCT

6098ET 6098ET L6LOET L6LOET 8L8SET 9c0CVT SOECVT

667C7T 667C7T 998¢VT LSTEVT LSTEVT L96ECT L96ECT 677E7T 677E7T

6E8CVT 6E8CVT C9CVVT C9CVVT

69TEVT 69TEVT 76074T 76074T

TE6EvT TE6EvT Tevevt Tevevt

78ZT 78ZT /¢ /¢

_T66T _T66T

Te98K Te98K

6L6T 6L6T O86T TS6T €S6T CS6T CS6T

986T 986T S86T S86T Y86L Y86L LL6T LL6T SL6T 056T

LS6T LS6T 686T 686T S86T S86T €66T €66T 266T 266T

7667 7667

C66T C66T 966T 966T L66T L66T

92

O@#

ATquesse/s ATquesse/s

vOECIT vOECIT

eszeyostq L9LTIT

-~ -~

------a a

-- --

-~ -~

-- -- -~ -~ -- -- -— -—

-- --

“7 “7

~— ~—

-- --

-~ -~ “= “=

-- -- 7“ 7“ — —

CT#

ATquesse/s ATquesse/s g/ama g/ama

esreyostq

€8S¢6 €8S¢6

699€6 699€6

77776 77776 C7676 C7676 67916 67916

GSEE6 GSEE6

-~ -~

~~ ~~

~~ ~~

~~ ~~ -- --

-- --

— —

-— -—

-- --

-~ -~ -~ -~

“7 “7

~— ~—

7 7

aD aD

- - ATquessy ATquessy

Ol# ATquesse/s ATquesse/s

BPSrzeyosTg C6LLL C6LLL

s) oseg ase)

O8e8Z O8e8Z

ScO8L ScO8L

967LL 967LL

VOOLL VOOLL €SE9l

8TO9L 8TO9L

6TLSL 6TLSL €T7SL €T7SL Jog Jog

Gccsl Gccsl

STE9L STE9L

L6TLL L6TLL

-~ -~ -~ -~

-— -—

-- --

-- --

-- -- —~ —~

—— ——

7 7 AVTTTQeITJOAg AVTTTQeITJOAg

G# G#

ATquesse/s ATquesse/s

e8reyostaq e8reyostaq

GSGLS9 GSGLS9

OcECYI OcECYI

06199 06199 £6199 £6199

06TS9 06TS9

VET?O VET?O

S799 S799

cT6S9 cT6S9

78299 78299

8TTS9 8TTS9 05679 05679 CLLY9 CLLY9

GOCE9 GOCE9

LTTS9 LTTS9

S7T99 S7T99 66999 66999

19099 19099

-~ -~

-~ -~ -~ -~ ~~ ~~

‘*y"G ‘*y"G STqeL STqeL

T# Ajquesse/s Ajquesse/s

esaeyostq

8ES67 8ES67

T6éL¥ T6éL¥

9cE0S 9cE0S

OSTTS OSTTS 600¢S 600¢S

OT6¢S OT6¢S

OT8Es OT8Es SOLES SOLES 8SSEes 8SSEes

LEO87 LEO87 L8L8¥ L8L8¥

LY8ES LY8ES

9€6¢S 9€6¢S

€70¢S €70¢S €€V7TS €€V7TS

7OB8ES 7OB8ES

9EEES 9EEES GSECS GSECS

L60ES L60ES LCECS LCECS LYLTS LYLTS

_T66T _T66T

1eaK 1eaK

8L6T 8L6T

O86T O86T T86T T86T

066T 066T

6L6T 6L6T

C86T C86T €86T €86T

986T 986T

886T 886T

c66T c66T €66T €66T

L£L6T L£L6T

Y86T Y86T C86T C86T

L86T L86T

686T 686T

766T 766T S66T S66T 966T 966T L66T L66T

93

L6 L6 ( (

V—() V—() G6 G6

YMd

OW OW 1

esnoyZutysem

€6 €6

T6 T6 g0TAg g0TAg

es1eyostg

77 77

2e0TAd 2e0TAd

SISO) SISO)

wNTuPInN wNTuPInN

OMS OMS

e8e10I1S e8e10I1S

68 68

aodTIg aodTIg

S180) S180) -8°T4a -8°T4a

3sT

ZOTT ZOTT

di di T T

ZOZT ZOZT

uUNTUReIN uUNTUReIN 9888109S 9888109S

-—

408 408

Ms Ms £8 £8

ATquessy

4. 4.

¥ ¥

UVaA UVaA

408 408

4 4

7x08 7x08

YOZT YOZT

$8 $8

+ + * *

teg

+ AIT[TQeaTjorag €8 €8

T8 T8

“*T'¢ 6 6

eanBTy

6L 6L

ry ry

LL LL p p

OOT

SéT SéT

OST OST

SLT SLT

002 002 O22 O22

(¢_OT X) SieTTOG

94

16 16

UI} UI} Q) Q)

oa oa

J} J}

Q/UMA Q/UMA

() ()

$3800 $3800

‘) ‘)

S6 S6

0 0

WAWVSTY WAWVSTY

s]so9 s]so9

NMS NMS

, ,

\—O—? \—O—?

ZOZ ZOZ

$380) $380)

£6 £6

untTuein untTuein

() ()

| |

T T

[TeAseuey [TeAseuey

408 408

ams ams

A A

a988102S a988102S

16 16

. .

0 0

eBreyosTq eBreyosTq

() ()

() ()

O09 O09

Y%O8 Y%O8

$380) $380)

68 68

() ()

Oy Oy

pt pt

AsT AsT

$2800 $2800 283e8102S 283e8102S

QO

— —

aSPe) aSPe)

ATqmessy ATqmessy

Lg Lg OMS OMS

9 9

“ “ V V

YVaA

oseg oseg

¥Y0OZT ¥Y0OZT

s3sop s3sop

Z08 Z08

A A

Or Or

v v

cg cg

tog tog

Y Y

wnyTuein wnyTuein

AAT[TTqQeaTjoAg AAT[TTqQeaTjoAg

C7 C7

Oat Oat

€8 €8

. .

OS OS

ZOZT ZOZT

A A

ALLE ALLE

18 18

y y

oo oo

°7°S °7°S

o.-0--O-# o.-0--O-#

vsan3BqTy vsan3BqTy

6 6 Or Or

v v

“ “

TS¥ TS¥ [°° [°°

J J

CC CC hcg hcg

*o/

oy oy

\ \

Tete Tete

Oe Oe 0° 0° (¢_OT X) SaeTTOG 95

procedure for sparse matrix inversion. The VARIFORM module prepares a model for solution, solves the model, and prints the answers from the solution. The VARIFORM Module can be instructed to minimize or maximize the objective function, thus yielding a user determined optimization.

Additional features of the MPS III system are described in the liter- ature.26

Initial trial executions are attempted to determine which of the two solution techniques are to be used. The Out-of-Kilter algorithm offers a reduction in the data handling but proved less computationally efficient. An average execution of the Out-of~Kilter code yields optimal results after 43 minutes of CPU time. The MPS III system has the disadvantage of much data handling but a typical execution time averages only 30 seconds. Thus, the withdrawal problem is solved using the MPS III system.

The procedure for obtaining solutions for the spent-fuel-withdrawal problem involves two basic computations. The first is the analysis of the base case data as established in Chapter 4. This involves the calculation of the cost coefficients as given partially in Tables 5.1-

5.4 from the data generating code. Each of the primary cost components, uranium costs, separative work costs, and storage costs, are utilized at their projected values.|

The second phase of the computation involves testing the sensi- tivity on the first discharge's profitability are shown in Figures 5.1 and 5.2 for the Westinghouse and General Electric systems. Note that uranium prices and storage costs prove to be the most sensitive para- 96

meters that determine the profitability of the spent-fuel with time for

this study. When storage costs increase at a rate greater than that

for the value of uranium and plutonium in an assembly, a loss in value

occurs with time. This is particularly true for 120% storage cost and

80% uranium cost projections. When the value of the uranium and

plutonium in the assembly increases at a rate that far exceeds the rate

of increase of the storage costs, a noticeable increase in profit-

ability per assembly over time is noted. This is the case for 120% of

the uranium price, and for 80% of the storage cost projections. Little

effect on the profitability profile is noted for variations in the

price of separative work.

The final step in the analysis of the model is to determine the

effect of prohibiting plutonium recycle so that only uranium recycle

occurs. Depicted in Figures 5.3 and 5.4 are the Westinghouse PWR and

GE BWR profitability profiles for the first discharge under the con- dition of no plutonium market. As can be seen, from the profiles, a notable decrease in the profitability versus time occurs for all cases

except 120% of uranium price and 80% of storage costs. This is attributed to the fact that without plutonium recycle, the value of the

spent-fuel is minimized to a point that the addition of holding costs each year exceeds the rate at which the uranium in the spent-fuel

increases in value. A very slight increase in value with time is noted for the 120% uranium price and 80% storage costs profiles. How- ever, once again, as time in storage increases, the value begins to decrease and a measureable loss is incurred.

97 UMd UMd () aw L6

- -—+_¥ ase)

SSR ISsnoySutTjsem ISsnoySutTjsem S SS oseg SISO) eoTag S6 Y S3S09) fo ZOZT AMS BA wntuesin SA

a8e10I3S fenTeA fenTeA £6 +$—+ — \ YOZT Sp

708g wNTUoINTg wNTUoINTg 16 O + + , Sp = ¢ Yn + 6

Ss oN oN 68 = 4+ O

SS e8zeyostg e8zeyostg + CO) S}]SOD 9oTAg L8 pas ¢ ) 4+ Y—9 UVHA - SISO) 98PI0IS

wntuesn 3s{T 3s{T Q 4

. .

NMS - - .) Sg 4 SSS

OQ ATquaessy ATquaessy YZOZI 408 %08 4 () [> €g V

HOY Jeg Jeg Q)

Q AVITIQeaATjoIg AVITIQeaATjoIg ooo TS + + 2 ¢ 4 _O-—© 6L

ath ‘*E*¢ ‘*E*¢ oP yor — TOT, T09 T TOE [ 1°

oe aan3Tyq aan3Tyq

, Log O~- 0 0 0Z * ~ o. 7 : wy

98 Q/AMA Q/AMA

IFARDETY IFARDETY

aoTig aoTig S}soj S}soj

sooTid

Tetsuey Tetsuey

wnzuezN wnzuezN a8e101S a8e101S

AMS foenyTeA foenyTeA

ZOZT

YOZT YOZT Z08 Z08

/ untuoqnytg untuoqnytg /

CO on on

- - aBaeyostq aBaeyostq

9-9-0

ast ast

- -

sooTaig sooTaig

— —

Se0TIg Se0TIg

S380 S380 ATquessy ATquessy

€8 €8 t t

00000

wntuein wntuein

28P109S 28P109S

NMS NMS

1 1

tog tog

ZO8 ZO8

—— ——

T8 T8

AIT[TTqeatsorg AIT[TTqeatsorg

Y%OZT Y%OZT

Z08 Z08 -+— -+—

|

6Z 6Z

+ +

T T ‘*H'sS ‘*H'sS

Fog

T T

-¢ -¢ T T

pst pst

OT- OT-

0 0

G- G- aan8tTy aan8tTy (¢_OT x) saeT Tod 99

Results of the several situations examined are discussed in the next chapter. In particular, the analysis of the results are indicated by the reprocessing scenarios established in Chapter 4. 6. RESULTS

A. Optimistic Reprocessing Scenario

The optimistic reprocessing scenario assumes the re-initiation of

reprocessing in mid-1979. For this assumption, the spent-fuel-withdrawal

model as developed in Section 3-D, is optimized using the MPS-III module.

The analyses performed are primarily for two distinct cases. The first

situation examined assumes the recycle of both plutonium and uranium

and associated markets for each. . Results for this case are examined

first on the basis of the projected optimistic reprocessing demand

capability for each reactor system. Then the demands established are

varied by +15% and +30% for purposes of testing solution sensitivity

to these changes. The projected optimistic demand discussed in Section

4-B is referred to as the base demand case, while the sensitivity

‘increases reflect their changes appropriately.

As discussed in Chapter 5, each of the principal cost elements of

the measure of profitability of the spent-fuel assembly are varied by

+ 204 to determine the sensitivity of the solution to variations in

these parameters. Results from each of these variations except for a

120% increase in the uranium price indicate that the Last-In-First—Out

(LIFO) policy is an optimal selection rule. This is shown in Figure

6.1. However, when the price of uranium increases from its base by

+20%, a modified LIFO policy is determined as the optimal selection

rule. This is depicted in Figure 6.2. In general, the results for the

optimistic scenario considering both plutonium and uranium recycle

100 101

GHOUVHOSIC Sal TENassv

Tand INdadS dO WaaWN UMd

esnoysutisamM

vo mo

79

79 79

49 79

29 r

99

79

99

"9

or)

"9 79

"9

|

€S7} €S7}

are "9

[oT

79 {179

8;

CS CS

|16|

S]sop

18S 18S

is

{

AOA

94

ofAeUadS

rer

Z

e8ei0ig

S6|46|

Fee tL tL

99K

(6

KAA

GaGNVNAd

}O08 }O08

ere

|9T

BuTssevoiday

€6|

ZO7-

|

bk

YL

48

79

02

76]

ele

88 88

79

[eT zr

SAITENASSV

“NMS

A

T6 | |

BT 76/68 76/68

MIT)

G [Z

06/68

ZOZ- GNVWGHd

bk

~

ITASTwTAdOQ

79

8T |Z

¢

)) | |

|

‘UNTUeIn 18} 18}

79

[eT 4

Tanda

88 40

FY $9 $9

{T "9

£8) UVaA

Le

CAAA

(A

lo

INddS

ZEA

[6S

eseg

98}

CT

ZOT-

ZCcEeeewaa

OFT

ALA

S|

JO

‘$

|

97194

97

A

*e3eI102S

eTNY

78)

WAdWNN

|

CAA

AAT

EAL

AAA HWZeCceeEesaazs

AA

AT

AA

€8|

LIE

97

AA

A

uoTRIOeTeS

Cees

tT

6S

ZB

CA

Tt

ZOT+

OY

oF

ovr

TR

tk

18}

OA

KK

HA

A

cf]

KI

AO

SAMS

Paa

OL

A

OF

IE

Tewr;zdo

Fe

070

64)

IE

Sd

LAYS

1

Z%O7+

LT

8Z

El

|

LTEY|

ai

‘esea

it

“ir

“T°9

9

€6

I6

06

68

gs|

98] L8

€8 "|

$8 8

T8

08

64

9l

LL

ean3sTy

,

E

3

y

&

6 E 102

CaDSUVHOSIG SAI TENASSV

Tanda INddS 40 WaaWiin UMd

vo

esnoysutjseM 79 9 79 2 79 ” "9 79 3 79 99 99 79 79 "9 79 "9 79 79 |} fT

€S717S 9 cT {19 ev #179 479 8;

[es |L6| Par

18S ssh 94 |

fotTzeusosg

c 99/EL ot rr Kk S6\476| eres

|? GaONVWAC | |

AA O88} "9 9T1OZ] €6|

BuTsssv0idey

re 78188 9 76|

© AO

Le

9S0Q SHITENASSVY TEA LT L£ L£ TA lL | |

[7 + 26/68 9 IT G ctl 06/68

wNTUeAN

AK QNVWaAd QNVWaAd 9 gT |Z |Z

otTasturzdg IL |

|T8 <. 4 79 Li FIT Be | Tala

| HO HO

707+

EK S916S RAPE T

28)/98| YVaA

£CE6cessaeas 7 INadS CTA ZL

osegq

A 97 97 Sei dO

197197 op AAA A 78)

‘feTny WadWn KY

AES EECcewaws ZA AA ZECeea ASAE Zo.10,44 94 €8| SY |

TT KK

uotjoeTes 6S; 6S zB

OITA ON OTK S7 cp TS) A Nn

197 G TZ AS O8 UL

KLE

Tewupiadg |O [ 62/82] x Se

10 | DP

ETT] LZ

‘*7°9 9 cb 96 c6 16 06 68 eB] B] es} 78 ZB T8 08 6L 8 LZ 9 1

aANBTy

ee - 2 8 Q ™ 103 indicate that the "freshest" discharged fuel should be used first in meeting reprocessing demand. This LIFO policy prevails also for variations in demand by +15% and +30%. The results in Figures 6.1 and

6.2 are for the Westinghouse PWR, which is representative of the PWR systems. An examination of the GE BWR/6 system also yields the LIFO selection rule. Individual results for the cases examined are included in Appendix A.

To interpret these figures, and those that will appear in the remainder of this chapter and Appendix A, a note of explanation is appropriate. Associated with the rows of the table are the supply of fuel assemblies. The left end of the table lists the year of discharge and right side lists the associated number of assemblies discharged

(supply). Listed at the top of the table is the year of demand and at the bottom of the table, the associated number of assemblies demanded.

Also included in the column section is a column denoted as T.: The term

Ig denotes the slack inventory or the number of spent~fuel assemblies residing in inventory at the end of the horizon. Optimal decisions are given in the rectangular box enclosed in double lines for emphasis.

For example, from Figure 6.1, a partial interpretation is that of the 64 assemblies discharged in 1978, 21 assemblies are used in meeting demand in 1980, with the remaining 43 assemblies left in the storage pool at the end of the horizon. Similar analyses can be performed for each discharge period in the figure.

Upon analysis of the different cases in the absence of a plutonium market, non-unique or non-distinctive policies are found. This can be seen in Figures 6.3 and 6.4. Figure 6.3 is the base case analysis for 104

GaDUVHOSIC Sal TEWNaSsv TaNd INAdS dO WaEWN

WMd

v9 v9

mht mht

woo woo 7 7 79 79

79 79

"9 "9

79 79 79 79

9 9

” ” y y 79 79

"9 "9 79 79

79 79 79 79

esnoyZurjsey 979 979

€Sz €Sz te te

Il Il |[79 |[79

1179 1179

8; 8;

| |

¢y ¢y Pr Pr

zs zs

(SP (SP |46| |46|

jes jes

eS eS

PrP PrP

94 94 | |

foTieueos

Pee Pee

99]€Z 99]€Z

Z Z

S6|76| S6|76| | |

1% 1%

6 6

AAA AAA | |

CaqNVWAG

08) 08)

MPI MPI

[9T [9T

A A €6| €6|

Bupsssvoridey

78 78

19k 19k

(Oc (Oc 76) 76)

$}so9 | |

SAITENASSVY

gsi gsi

TI] TI]

T T

[er [er

Ta Ta 1 1

oseg

76/68 76/68

8c 8c

06/68] 06/68] i i

QNVAad

jes jes |9E |9E

oTystutjzdo

eBOe eBOe | |

79 79

on~TeA

T8/S9] T8/S9]

LT LT

(47 (47 88 88

Tanda

dO

cy cy

8T 8T

28/98] 28/98] ¢ ¢

UVaA | |

wNTUOINTY,

INHdS

ot ot

ALA ALA

6S] 6S]

ce ce 6T| 6T| 8T 8T

eseg

(LAE (LAE

CTT CTT

THETA THETA

ZLALA ZLALA

9%]/9% 9%]/9%

A A

Lz Lz

6L 6L S8| S8|

dO

Meeceweaa2s Meeceweaa2s

AAA AAA QV QV

{ 78/8] 78/8]

a—Tny

WaaWNN

ON

[oy [oy

GEesesawaw GEesesawaw

ALA ALA 94 94

A A IAI IAI

uoTtIoeTVeS

CT CT

TéS|S¥ TéS|S¥

6sf 6sf

A A

EEE EEE

EE EE

ze] ze] Nn Nn

oO oO

SY SY

A A

A A

T8| T8|

OK OK 4 4

AN AN

AA AA A A

[oz [oz

G G

we we

LIE LIE

A A

i i

EELS] EELS]

OF OF Te Te

a) a)

A A ~ ~

Tewmpfjadgo

[0 [0

62) 62)

[7 [7

J J

| |

| | Le Le

ILA ILA

LL] LL]

[0 [0 [0 [0

82) 82)

TY TY LY LY

LZ LZ

‘°¢E°g9

9 9

86 86 6 6

%6 %6

T6 T6

68 68

88] 88]

£8 £8

€8 €8

CB CB "| "|

8 8

T8 T8

os os

6L 6L

QL QL

LL LL 9 9 | |

xaANsTY

& &

yy yy & &

E E 6 6 105

GaDUVHOSIC SAI TENASSV

Tanda INAdS dO WadWnn UMd UMd

et

VFsnoyZuTjysemM VFsnoyZuTjysemM

y9

yo

79 no

79 19

79 79

99

79 %9 79

49 29

79 79

79

79 79

79

||

||

fo I I

et

|

esz

Sy

€¥

479

49

|

cS cS

i@sP

(£6|

Cab

8S 8S

es { {

94 | |

ere

Por oTAeualsS oTAeualsS

ers 99 99

nese

z

eb

S6|/%6|

}E2 }E2

mE

|6 | |

CaCNVWAC

|

O81 O81

19K 4s0) 4s0)

91{oz{

€6| BuTssad0aday BuTssad0aday

hd)

ETE

weawa-2

BEE

76)

ee

81

4 wnTueIn wnTueIn

ls

9

ZI

SdITENaSSV

88]

]

ZT

Ta

76/68

|eziye 79

06/68]

|||

EAD ONVWHd

be

79

T

ZO7T+ ZO7T+ oTAsTuTAdO oTAsTuTAdO

T8159 |

iT

rp

19

dT

Be

Tand

4

MA. SONTeA SONTeA dO

ZEeeeestaaa

PO

ZA

By

LT

28/98] UVaA

J

i

16S

LNadS

QA

|9T

t

61 S eseg eseg

| UNTUOCTINTY UNTUOCTINTY

|

A

ATLEAST]

97/9”

94

AA

Sei

dO

{§ {§

94

AAA

vB/Es|

Le

| aTNy aTNy

WadWnNn

y

CN

ee

“A

ZL

OT

7)

OHBS

KK

DPI

ON ON

aa

ee

Ut uoTIDeTeS uoTIDeTeS

aT

A

OA

6S[

A

ot

OF

A

ze]

KEN

|S7

oof

OH

T8|

OA

A

ILE

KB AS

Oe

AA

4

|

9z]

4

S 7h

A

OT

OF

nA.

4 De

SL

1) Tewrjadg Tewrjadg

0}

62/82]

LO

|

LO

O

ET

JO

ZZ ‘*yH*°g ‘*yH*°g

9

8

€6

76

76

06

68

es]

98] L8

€8

78 c3

T8

08

Bl 6Z

LL

9Z| VsaANBTY VsaANBTY

S

8

& wy

E

Q 106 the cost parameters, and Figure 6.4 depicts the solution for 120% of the uranium prices for the Westinghouse PWR. As can be interpreted from the figures, some of the "freshest" spent-fuel is utilized in meeting demand, but the quantity from a specific discharge period i in meeting demand in period n varies. This proved to be typical of the situations examined in the absence of a plutonium market and for +15% and +30% increases in the demand rates. Further specific results are listed in Appendix A.

‘As can be observed from the analyses of the situations examined, the specific results are that the Last-In-First-Out policy is the optimal choice for selecting spent-fuel from on-site storage when Pu and U recycle occurs. However, no unique or discernable policy exists for the situation in which no plutonium recycle occurs.

B. Realistic Reprocessing Scenario

The Realistic reprocessing scenario discussed in Section 4-B assumes the start-up of reprocessing in 1981. The sequence of the addition of reprocessing capacity over time is the same for the Realistic

Scenario as for the Optimistic Scenario. The only difference is the start-up date.

As discussed in the preceeding section, two basic situations are analyzed. The first involves the profitability of spent-fuel with established plutonium and uranium recycle, and the second situation involves only U recycle. Once again for purposes of sensitivity analyses, the Realistic demand rates are varied by +15% and +30%. Also 107

for each execution, the principal value components that determine the profitability of spent-fuel (U prices, SWU costs, and storage costs), are varied from the base measure by +202.

Results from these analyses once again indicate that in the absence of Pu recycle, no definative policy is observable. This is depicted in Figures 6.5 and 6.6 for the Westinghouse PWR. Results are for base costs and 120% uranium price, respectively. Similar results of non- unique or non-distinguishable policies are evident where demand is increased by +15% and +30% over the base, and when examined under the different cost component variations of +202.

When Pu and U recycle occurs and a market exists for each, the

Last-In-First-Out (LIFO) selection rule is dominant. Some modifications are noted as is the case once again with an increase of +204 in the projected uranium prices. Representative results for the Realistic

Scenario indicating a LIFO policy are given in Figures 6.7 and 6.8.

These figures represent the Westinghouse PWR system at all cost vari-~ ations except 120% U prices, and for 120% uranium prices, respectively.

The remainder of the results obtained for all cases examined under the Realistic Scenario are given in Appendix A.

C. Pessimistic Reprocessing Scenario

The Pessimistic reprocessing scenario defined in Section 4-B assumes the availability of reprocessing in 1983. As established with the Realistic scenario, the addition of reprocessing capacity over time is the same for the Pessimistic scenarioas for the Optimistic scenario, 108

GADUVHOSIC SAITENASSV

Tanda INdadS dO UaaWiIN UMd UMd

esnousutTyzsomM esnousutTyzsomM

79

79

"9

"9

"9 79

"9 "9

79

99 79

"9 79

"9 79

"9

79 "9

79

79

79

|

=

||

|| ||

4]

|)

i

6

EVS1ZS

(et %9

[9

O€

[PEE

Sz

179 Ivy

79 79

79

79

Sy

es

|16|

Pe

|8S

sp

AOA

94

| SoTieuecsg

99}

49

T

T

S6|

ee

EL

"9

16

el

76]

|

AO

GACNVWAG

|

08]

mr

911

tk]

£6) Burssss0riday

eel

bl

vBl6Z

84

9€

26|

1) $}s05) $}s05)

79 Ke

[ST

SHITHNASSV

I

|

TG

[7

|

OL

Z}LS

9S

€T

£

06) aseg aseg ONVWAd

[ds

OH

68| OTAST[eBeYy

|

By - 6

B¥|9E|vE

OF

THNA aNnTeA

88

7) dO

_

[STE

Tz

28/98) UVaA

iA

INAdS

AA

AAS

|v7€ UNTUOINT, aseg

|

|

A

A.A

7

VEl6E|TE

4

7€

SB]

40

EEE

AN

A

saTNyY

6eL

LAE

78}

WAGON

Zee AA

AA

te

A

LL ON

OD

EB]

|

wuotjIeTes

AS

PK

AY

TT

eT

Oz]O

A

[a7

A

a

OCP

78

Bawa

K A

TF)

A

A

Or

4

18}

|

ry

Oe

AK

O}O

i

i

OL

A

L

OF

rb

Le

a

Tewtadg

De

64)

|

Le

|

Le

KS

7

jo

82}

|O

‘*¢*gQ

LZ

9

Sb

€6 76

26

té}

06

88] 68

98] 28}

$8

€8 v8]

z8

T8

08

eZ 6Z

iL|

eaNnsBTy-

4

iS

&

a

5

6 109

CaSUVHOSIC Sal TaNassv Tanda INGdS dO WaAaWAN

UMd

[

esnoysZutisemM vo "9 "9 79 aio 79 79 79 79 79) 79 79 79} ool 79 woes 79 79 79 |] [| |

€7S 8; O€ CE Sz + 79 79 49 |

1S |16| TEP

Beer 18S 94

foT~rzeussg

99 TP ¢ S6|76| rrr

eZ "9b

s}soj 16 16

| GHGNVAAC GHGNVAAC

+ os|78 PI: 9T/ZE €6| re

BuTsssdo0aday

wntTueig

“lip 76| A

l6z SAITENASSVY SAITENASSVY Z9} KI TA |

re pz

~oz+ 79 T 2 Z

06/68 QNVNAG QNVNAG

izs {ZS

oO;ASTTeey

fenTeA | |

svloe 87ST Pa

Be ‘THNd ‘THNd

LO dO dO

| AALTKIELE

28i9e| UVaA

wnTuoj{ntTg 7

lve INAdS INAdS YL PASE ib

eseg | Lo

ECcewewawa4 vefec a "MLA

ssl dO dO

6

‘fapTny AAAI

veles| WHaWNON WHaWNON

ON

ee tts AAPL On TE Bees yy BLEPEAS

uotjoeTes

rm rm Tozlo << ON A LT A ze ap oi ET Te} A AK

flo A 7 Oe SH A EEE I O8 Pra

[Tewr3dg

aw [7 7 [0 a 6Zi

lo lo eZ}

Ae [oO LZ

‘*9°g 6 €6 6 Te 06 68 98 L8 cs| Z8 78| T8 gli 6L iL 9

oAN3Ty

wa 4 y ee § 2 & 110

CaDUVHOSIQG SAL'TENASSV Tanda INAdS dO Yamin

YMd

19

"9 ef 79

29 "9

"9 "9

79

"9

e

"9 79 79

79 79

79

"9 "9

79

esnoyButTjsem

|

|

||

|

||

{|

{I

€vs}zs

[et 499

OF

Se 46

7Y

79

79

79

79

79

Sy

Ca

les

$3809

|16|

ies

AAA

94

|

a3e101S

foTzeuess

99

MT

ee

S6\4%6|

AXA

|

lez

mre

rare

6};

| GHONVAAG

79

og]

~OZ-

OT

9

I

€6

BurTssadoaday

78

Hes

[oz

26|

KL

|

‘OMS

HX

loz

SHITENASSV

1

etl

z

TG

|

rl

#Z[zs

ZOZ-

€ mE

4

06/68|

1”

2

GNVWaAd

le

ea

{Ls

KK

oTAsT[eay

‘wNTueIn

Be

87h

Tahd

8B

dO

1

Joe

96

28)

UVaA

|

LNadS

lve

A

ve

98|

Zo7-

osegqg

|

ve[ee

AAA

ve

SB]

40

‘eder03g

LAA

6€

AAA

8}E8)

faTny

WadWN

[Te

Ae

eALSA ECceceawe

7

PA

Ceea

a

Pt

UA

wuotzoeTeS

Fozto

0Z

A

A

ees

ZB

Z%O7+

NY

CK

OAK

Sawa

A

18)

HK: AK,

KKK

A

AK

MT

‘NMS

TOTO

A

A

OF

KS

i)

A

Ye

Tewutjadg

62/82} LT ZOT+

7

LO

fo

FA

SZ

‘eSPE

[0

LZ

‘*/°9

9

6 76

6

16

06

68

es}

98] 8]

Se

€8 8)

T8

08

64

Ql

im

9

aaNn3Ty

|

5 <4

8

»

E

3 lil

GaADUVHOSIG SAITERASSV

TaNd INddS dO UaaWiiNn UMd UMd

Lv9

"9

v9_[Loe

9

m9 9

79 99 79

99 7

79

79

79 9

"9 79

99

ao

79 9 esnoyBuTAssM esnoyBuTAssM

|

|

||

||

I

€7S|zs

a

|[6

Ice

Sz

7

79

79

79

8;

Pr

(ee

(46)

|gs

8s

94

| {§ {§

Co

Pr

ree ofAeuads ofAeuads

99]ez

Te

S6|%6|

|

#9

TT

CaCNVWAC

|

|

er

os]

nr

Ol

9

eK

€6| BuTssao.oiday BuTssao.oiday

ve

AA

[02

|

76)

a

[z

|

A

lez

m9

eT

SAITANASSY

TA

|

bo

vz]

9h

Lids

le sop sop

06/68

2

GNVWad

4

zs

ETT

|

rl

oTAsT[eoy oTAsT[eoy wnzueIn wnzueIn

fou

|

evloe|ve

89

Tad

88)

dO

ELLE

PL

28/98]

YVaA

INddS

2

CT ZO7+ ZO7+

7

| sseg sseg

|

7

ADEE

FAS

velec]te

WAAC

SB]

40

oe ‘{ ‘{

elt

AA

78]

LL

WadWnN atny atny

ON

Lo

AAAS

Te

EB]

|

oz

Sa

ON

AP uotzoaeTeSs uotzoaeTeSs

et

A

AX

AMA

Of a A

Ze]

Tt

SLCSE

er

OT

Jo

Te]

EI

A

KK

ON

MX

o Jo fo

ee

77

TL

1

I

KK, A

OF

Le

XxX

ew

Oe

_ TewrqdQ TewrqdQ

64/82

td

I

3

o fo fo

LY

|

ZL *9°9g *9°9g

9

6 $8

76

T6 z6

o6|

88] 68

98| cB)

cel

yal ce

z8

ote

ae

61

GL

9 iL xaNnsTy xaNnsTy

oy

Ss

8

&

:

8

© 112 with the only difference being the actual start-up dates. As discussed in Section A, two basic situations are analyzed. The first involves the profitability of spent~fuel with plutonium and uranium recycle, and the second situation involves only uranium recycle. Again, for purposes of sensitivity analyses, the Pessimistic demand rates are varied by +15% and +30%. Also for each execution, the principal value components that determine the profitability of spent-fuel (U prices, SWU costs, and storage costs), are varied from the base values by +20%.

Results from the analyses conducted once again indicate that in the. absence of Pu-recycle, no unique policy is observable. This is depicted in Figures 6.9 and 6.10 for the Westinghouse PWR. Results are for base costs and 120% uranium prices, respectively. Similar results of non-uniqueness are evident when demand increases by +15% and +302 over the base demand, and when examined under the different cost component variations of +202.

When Pu and U recycle occurs and a market exists for each, the

Last-In-First-Out selection rule is again optimal. The only modifi- cations noted are that when demand is increased by 30%, a modified LIFO selection rule is observed when uranium prices are increased by 20% and when separative work prices are decreased by 20%. These representative results for the Pessimistic Scenario are given in Figures 6.11-6.13.

The individualized results for the other systems examined are given in

Appendix A. 113

CaDSAVHOSIG SAI TENASSV

Tanda INddS dO YAWN WMd

Get

esnoysutisem

|

sto>r 99 79 79 x, 79 79 79 79 79 "9 ue %9 ote 79 79 79 | | || || |] |} }) Wet

ELL

ce 9€ II 4t TY B 79 79 79 #79 8; |

CS} lesp |16| 8S] HOeeCesaaZ ‘Sopzeuscss a 94 +

99, rf c rrr S6|46| er pr ELI nor 6 +r

GAQNVWAG 72 79 8 Burssao.0idey €6| 1} | |

Seas LO|TS Tivo Se 76] $480) li

ri L L

SAITANASSVY ar tt TG Lo | | |)

ovseq vei wr) 06/68) A

GNVWad

opAsTMypSsseg TE TE 7

‘Santea |8z 82

Tahd 88 |

dO ZEeeeeesaawa- ttt i ZZ; lt 248) | Sua

dvds

T7

INddS ALAA. unpuoj{Nntgd Oe 98| sseq

re jez | Ez SB} |

dO

CeCoewewaa ETIO AM ‘So eT 78)

WadWnN

f AT ON AA ZL Tny AN €8) aA

Ce JO LL voTJoeTeS MN CSesewa-a aK Ze} NT | Nt

~ 0 AK OA tet 18} LL A

NY) Ue |O <4] Baa O8 eee Le AO

O TewT3dQ 2 62/82} J Ll Ke |{O |{O a a al

{0 LZ ‘69

96 96 $6 £6 76 c6 16 06 68 gs) L8 8] "| €8 18 6L Sl Ze of |

SANBTA -< 5 & 6 ) 114

CaDUVHOSIG SAI TINASSV WMd WMd by § 3 a ~ a 4

A SesnoyZutjAsem SesnoyZutjAsem

|

79479 99 79 79 "9 79 79 bets 79 79 79 bo 79 79 79 79 49 79 "9 79 IT | |} || || I || |I |} || fees

9) Iz

T €€ HT? ae 79 Ts #79 79 8, 49 49 79 79 7

zsies| icf |46| Por

spo fofazaeusos fofazaeusos oe 94

Fe Pe 99} PTA Pere

$6|¥6| $4so9 $4so9

€<1zZ vor [6

GAQNVWAC

BuLsssvvo0idey BuLsssvvo0idey MEET [8 +

£6) WNTUeIQ WNTUeIQ | bP

ee Lol CC [Sve z6| 1)

TSlyy CV 6

SHITANASSVY Ta | lL | fp"

¥0Z+ ¥0Z+ mre) 06/68| A844 |

QNVWad OTASTWISseg OTASTWISseg

7 Te|ez

te ‘SenTeA ‘SenTeA

s s

Tad Se | 40

czjoclez “ 28/98] -

UVaAA wnyzuoAnTg wnyzuoAnTg

DATA

INdadS et AAA OK

O€ aseg aseg

€Z LAT Sel

dO

ET

Ar ‘satny ‘satny Te v8lEs|

WaaWNN on on

PP Zt AT o Jo |o 2441 AA KA

wa

s uorqIeTeS uorqIeTeS A TT tO LEELA LE, ELE Ze NA

PAZ CAS wees |o A TILE T8| 2) Pk KI ss ri a Ay

IEE o o lo |o jo Oe OT O8 nt

EI Teutadg Teutadg ~ i 62) | Is AZ |

ra | — le 82) LY LAY

jo jo

ZZ ‘“OT’9 ‘“OT’9 96 €6 76 2 T6 06 68 88] €8 = 78 Z8 T8 08 eZ 62 LL 9 |

2aNsTY 2aNsTY | , s é a 115

GaDSUVHOSIC SAI TENASSV UMd UMd

S}S0)

md md

5 5

w w

° °

: : B B

EB EB

Vsnoysutysem Vsnoysutysem 179 179

ro ro

"9 "9 os os

= =

79 79

99 99 79 79

ade102g

pot pot

79 79 "9 "9

[%9o [%9o

"9 "9 79 79

"9 "9 ”9 ”9

"9 "9

"9 "9

79 79

79 79

79 79

5 5

i i

|| ||

|| ||

| |

|| ||

|| ||

HT HT

|] |]

|| || Hl Hl

ELL} ELL}

zr zr

9 9

8; 8;

€f €f

11 11

9€ 9€

TY TY

[ts [ts

ve ve

ee ee

79 79 v9 v9

49 49

79 79

49 49 79 79

79 79 | |

ZO7-

ZS ZS

|esP |esP

|46| |46|

Per Per |e |e

ss ss

‘fotreusds ‘fotreusds

A A eee eee

“AMS

94 94 | |

"9 "9

99/ 99/

¢ ¢

i i

Per Per

S6|%6| S6|%6| Tia Tia

ZOZ-

Ez Ez

BE BE

7 7

[é [é

ds ds

|zZ |zZ

CHONVWHC CHONVWHC

ButTssedoiday ButTssedoiday

[ele [ele 9 9

“uNTUeIn

A A

€6| €6| | |

eh eh

es es

29] 29]

mb mb

76] 76] A A

TS TS

(ep (ep

SAI'TEWASSVY SAI'TEWASSVY Td Td

Le Le

ZOT-

volte volte

wuesSeBaA wuesSeBaA 06/68| 06/68|

QNVWad OTAstwEsseg OTAstwEsseg

te te

‘eBez01S ez ez

Be Be

(A (A

THNA THNA 88 88

dO

4zjoe 4zjoe

Zé Zé 48/98| 48/98|

Uvaa

(ALAA (ALAA

INZAS INZAS Fare Fare

Z%OZT+

Of Of

ALA ALA

AAA AAA

eseg eseg | |

FREESE FREESE

eztetlo eztetlo

€2 €2 SB SB

“NMS 40 40

ET ET

LAA LAA

‘atTny ‘atTny

AL AL

78) 78) WAGWON WAGWON

eeea eeea LL LL

ZOT+

FFL FFL

AY AY

E8| E8|

AAAI AAAI

A A

A A

fo fo TS TS

uoTj.eTes uoTj.eTes

PAA PAA

LA LA

A A

OF OF

AAA AAA

a a

LAA LAA ze] ze]

“WNTURIQ fo fo

ON ON

A) A)

a a

A A

Te] Te]

A A

tk tk

fo fo AN AN

7 7

EET EET

eT eT

OF OF

[o [o

08 08

A A

FS FS

dk dk Tewradg Tewradg

aa aa

xX). xX).

LE LE =e =e

7ZO7T+

62/82 62/82

LZ LZ

Jo Jo | |

ea ea

lL lL

ZL ZL

I I LY LY

‘ese

| |

[o [o

| |

L L

I I

‘{[{T°g9 ‘{[{T°g9

| | | |

16 16

9 9 6] 6]

86 86

kK: kK:

28 28

06 06

gs| gs|

68 68

98] 98] L8 L8

: :

28 28

T8 T8

8 8

08 08

6L 6L

RZ RZ

9 9 LL LL

ean3Ty ean3Ty

|

: :

& &

E E

5 5 oO oO 116

GaDUVHOSIG Sal IENASSV

rd rd

vag vag

UMd UMd

wn wn

B B

- -

s s

a a esnoysurTqysam esnoysurTqysam

ob

eT eT

2 2 2 2 " "

99 99

79 79

79 79

79 79

79 79

eee eee 79 79

979 979

79 79

79 79

ee ee 79 79

79 79

79 79

| |

| |

|} |}

|| || || ||

€8¢ €8¢

SEY SEY

92 92

79 79 79 79

99 99 79 79

8; 8;

79 79 | |

89/c2]98 89/c2]98

PA PA |16| |16|

yh yh

sotzeusds sotzeusds 94 94

7 7

y y

Ky Ky

$6761 $6761

ri ri | |

c6lv6| c6lv6|

[09 [09

A A Get Get

CaQNVWAd

BuTssodoiday BuTssodoiday

nr nr

9c 9c 9 9

AK AK

Pir Pir

TL TL

€6| €6| | |

Zel Zel

ST ST Sl¢ Sl¢

i i

Z6| Z6| tl) tl)

3509 3509

99|2¢ 99|2¢ 9 9

SAITANASSY

l= l=

A A

Ta Ta Fa Fa

[4s [4s

wntruein wntruein

06/68 06/68

2 2 | |

QNVAAG OTASTMUTSSeg OTASTMUTSSeg

ong ong

Ov Ov

Mi} Mi}

Aa Aa | |

9€ 9€ pa pa

TaNd

Be Be

Ice Ice ZOc+ ZOc+

dO

A A

CGCeECceeeeaa CGCeECceeeeaa AALA AALA

Weare Weare

28/98 28/98 [6c [6c

UVaA ra ra

INddS

ra ra

OT OT

62 62

~OE+ ~OE+ foe foe

A A

[OE [OE Ss Ss

JO

ZT ZT

AAA AAA

LL LL

v8l/es| v8l/es|

TMY TMY [Oo [Oo

WaEWNN

ZL ZL

ZEesesawaaA ZEesesawaaA

AA AA

PEE PEE fo fo

ON ON

CA CA

ea ea

uoT_o.eTes uoT_o.eTes

SBaara SBaara

A A

TT TT

ZZ) ZZ)

4) 4)

zB zB fo fo

OY OY

Pr Pr

fo fo

Ts; Ts;

OA OA

A A

Oe Oe

AK AK

4 4

MN MN

KX KX nA nA

I I

a4 a4

A A

KL KL

A A

Oe Oe

fo fo

OS OS

ITI ITI

OF OF

rey rey eee eee

Tewt3adQ Tewt3adQ

Kk, Kk,

JO JO

62) 62)

| |

4 4

3 3

LO LO LO LO

as as

82| 82|

LY LY

fo fo 2 2

I I

LZ LZ ‘“7ZT°9 ‘“7ZT°9

06 06

86 86

$6 $6

€6 €6 76 76

26 26

68 68

88 88

<8 <8

78| 78| c8 c8

z8 z8

Te Te

64 64

SZ SZ

9Z| 9Z| il il | |

eaNnsTy eaNnsTy

: :

3 3

& & u u

E E 3 3 117

CaDUVHOSIG Sal TEWASsSV Ps Ps

UMd

Oo Oo

Phy Phy

ny ny

ri ri - - VBsnoysut

— —

yoy yoy

73 73

"9 "9 "9 "9

29 29 79 79

79 79 99 99

79 79

79 79

“9 “9

79 79

rs rs

79 79 79 79

79 79

|| || || || || ||

€86189 €86189

9 9

8, 8,

»z7\7 »z7\7

lL lL ||_¥9 ||_¥9

sem

79 79

49 49 49 49 bor bor

v9 v9 |26| |26|

. | |

ee ee

|cz |cz 9 9

fotzeusessg

9 9

€ €

94 94

| | | |

PA PA

98156 98156

yt yt

cc cc S6|76| S6|76|

CEI CEI

9 9

y y

ra ra AE. AE.

CaQNVWaAd | |

BurTsseosoiadey

lv6 lv6

9 9 42 42

€6l €6l

| | 4A 4A

28199 28199

aeeee aeeee

|8T |8T

GC GC

z6| z6|

A A Tl) Tl)

TE TE

9 9 i i

SAITENaSSVY

Ta Ta | |

ZS ZS

LS LS

06/68| 06/68| QNVWad QNVWad ITAsTMTsseg

a a Pe Pe

838090

of of Pa Pa

9b 9b

A A Be Be

Tila rl rl

NMS dO dO

pL pL

selee selee

c8l98| c8l98| UdVdA

Te Te

PAA PAA

ALATA ALATA LL LL 407+

INdadS

ZA ZA 6€ 6€

YOg+

| | [LT [LT

AAA AAA

oe}ztjo oe}ztjo

O€ O€ Sel Sel

40

“| “|

feTNyY

“ “

AAS AAS vslcs| vslcs|

WadWNn

TA TA

-T -T

jefe jefe

PEK PEK TA TA uoT}OeTeS

el el

SEPA SEPA

Lett Lett

Py) Py)

fo lo lo fo

OW OW

ze ze KT KT

1 1

Sawa. Sawa.

A A

tel tel

AK AK

Ke Ke 7 7

NY NY

lo Jo Jo lo

A A

od od

IP IP aot aot

TeuTjadgQ La La

LLL LLL

7 7

6z[ 6z[

IE IE

LC LC

Z Z

LO LO

La La Ke Ke

fo Jo Jo fo

ez] ez] TY TY

22 22 ‘“ET°9

$8 $8

76 76 €6 €6

o6/ o6/

G G

68 68

es] es]

8} 8}

G8 G8

ce] ce]

78 78

T8 T8

tS tS

61 61 el el

il il 9Z| 9Z| vsaNnBTy

5 5

8 8

oy oy

3 3 & & 7. CONCLUSIONS

It is concluded that the inventory of spent-fuel at on-site

storage pools can be modeled both by dynamic programming and linear

programming. The formulation of the spent-fuel-inventory-withdrawal model specifically lead to solution-yielding optimal quantities of spent-

fuel from a specific discharge to meet reprocessing demand when avail-

able. The dynamic formulation proves to be computationally intractable but the linear models are readily solved.

From the analyses performed, the conclusion reached by this study

is that a Last-In-First-Out policy is the optimal selection rule for ordering the withdrawal of spent-fuel from on-site storage. This policy prevails with the existence of plutonium and uranium recycle.

However, current issues, including the use of plutonium and the environmental controversy over nuclear power, have resulted in the cessation of the reprocessing activity. Thus, there has been no closure of the nuclear fuel cycle and there is going to be a continuous backlog of spent-fuel. The policy determined will help reactor operators specify a selection rule to withdraw spent-fuel from the on- site storage pools upon the re-initiation of reprocessing.

It is determined in this study that the earliest (optimistic) date for the re-initiation of reprocessing is 1979. Unfortunately, under the current administration policy, even this date appears unlikely.

Without a market for plutonium (i.e. no recycle), the question as to the economic disposition of spent-fuel appears even more difficult to answer in an appropriate manner. Without Pu recycle, the remaining

118 119

value in the spent-fuel is'at a minimum if only U recycle occurs. This

study concludes that in the absence of a Pu recycle, the economic dispo-

ition of spent-fuel is in even greater jeopardy, as no definitive or general policy is established.

An important trend to be noted is that if the negative costs associated with determining a net economic gain from spent-fuel (i.e. storage costs, reprocessing costs, and the fabrication penalties) continue to increase at a rate faster than inflation and/or an asso- ciated increase in the recoverable value for uranium and plutonium, the net value of a spent-fuel assembly decreases with time. This results in an increase in the power costs from nuclear power as long as the questions with regard to the disposition of spent~fuel remains unanswered.

To be concluded from this study is that uranium prices and storage costs are the parameters to which the model and thus the system are most sensitive. Fluctations in the cost of separative work has little influence on the optimal policies. 8. SUMMARY AND RECOMMENDATIONS

The models developed consititute a worthwhile tool for evaluating spent-fuel management stategies. In light of the present controversy over spent nuclear fuel reprocessing, the models developed should be employed to analyze the importance of contemplated policy changes upon the nuclear industry. Numerous plausible reference cases should be identified and analyzed to measure the impact on the industry of policy changes.

It is worth noting that reprocessing of both plutonium and uranium appears to offer significant benefits to the nuclear industry in the form of economic gain, and to the public in the form of resource conservation with a greater availablity of energy. As a consequence of this study, it is recommended that the present and anticipated govern- ment policy on spent nuclear fuel reprocessing be re-examined relative to the results of this analysis.

There are several areas of future study which are of interest for extending this analysis of the spent-fuel-inventory-withdrawal problem.

The first of these areas is to determine the full range of the useful- ness of the models developed. In the analysis presented, three models have been developed ignoring the constraint of pool capacity. It should be noted that an extension of these nodels would be to constrain the storage pool capacity as to the number of assemblies that can be held in storage, and analyze the effect of this constraint on the optimal policy. A second area of interest would be to incorporate probability into the model. This would involve establishing an additional con-

120 421

straint that would reflect the probability of assembly failure which could possibly influence the optimal policy. The study involving this probability is beyond the scope of this thesis and has not been examined.

It is appropriate to note however that present fuel cladding designs and fuel burnup rates are not oriented toward extended storage. Asa result of these physical constraints, severe cost penalties, not represented in this model may develop. For example, the cost penalty associated with a cladding failure may force a strict First-In-First-

Out (FIFO) policy as opposed to the optimal LIFO policy.

Specifically as a result of this study, it is recommended that a

Last-In-First—Out policy be adopted for managing the inventory of spent-fuel in on-site storage. This policy would take effect upon the resumption of the reprocessing activity and the establishment of | plutonium and uranium recycle. 9. BIBLIOGRAPHY

"Alternatives for Managing Wastes From Reactors and Post~Fission Operations in the LWR Cycle," ERDA 76-43, May 1976.

Anderson, Earl V., "Nuclear Energy: A Key Role Despite Problems," Chemical and Engineering News, March 7, 1977.

Bebbington, William P., 'The Reprocessing of Nuclear Fuels," Scientific American, December 1976.

Benedict, Manson, and Thomas H. Pigford, Nuclear Chemical Engi- neering, McGraw-Hill Co., Inc., Toronto, 1957.

"Benefit Analysis of Reprocessing and Recycling Light Water ‘Reactor Fuel,'' ERDA 76-121, December 1976.

Bowman, Edward H., "Production Scheduling by the Transportation Method of Linear Programming," Operations Research, Volume 4, Number 1, February 1956, pp. 100-103.

Buffa, Elwood S., and William H. Taubert, Production-Inventory Systems Planning and Control, Richard D. Irwin, Inc., Homewood, Iil., 1972.

Carolina Power and Light Company, Raliegh, N. C., personal commu- nication ~- Mr. Bill Stocks, March 24, 1977.

“Carter Vs. Plutonium: The Battle is Joined," Nuclear News, Volume 20, Number 7, May 1977.

10. Deonigi, D. E., "The Value of Pu Recycle in Thermal Reactors," , Volume 18, Number 80, May 1973.

11. Draper, E. Linn, and M. John Voltin, Jr., "Sensitivity of Total Fuel Cycle Costs to Variations in Enrichment Tails Assay Stategies,' t Transactions of the American Nuclear Society, Volume 22, November 1975.

12. Duderstadt, James J., and Louis J. Hamilton, Nuclear Reactor Analysis, John Wiley and Sons, Inc., New York, 1976.

13. "Environmental Impact of Electrical Power Generation: Nuclear and Fossil," Pennsylvania Department of Education, ERDA-69, 1975.

14. "Environmental Survey of the Nuclear Fuel Cycle," WASH-1250, 1974.

15. "Environmental Survey of the Reprocessing and Waste Management Portions of the LWR Fuel Cycle," NUREG-0116, 1976.

122 123

16.. Eschbach, E. A., "Plutonium Value Analysis," Proceedings of the Third International Conferences on the Peaceful Uses of Atomic Energy, Geneva, 1964, Volume 11, pp. 47-55, United Nations, New York, N. Y., 1965.

17. "Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors,” NUREG-0002, August 1976.

18. Ford, L. R., and D. R. Fulkerson, Flows in Networks, Princeton University Press, New Jersey 1962.

19. Fulkerson, D. R., "An Out-Of-Kilter Method for Minimal-Cost Flow Problems," Journal of the Society for Industrial and Applied Mathematics, Volume 9, Number 1, 1961.

20. ‘Gaussens, J., and H. Paillot, Study of the Long Term Values and Pricesof Plutonium, CEA-12-2795, 1964.

21. "GESMO Hearing Begins,'’ Nuclear News, Volume 20, Number 1, January 1977.

22. Leskovjan, Larry L., David J. Rose, and Patrick W. Walsh, "Nuclear Power -~- Compared to What?,'' American Scientist, Volume 64, May- June 1976.

23. Lieberman, M. A., "United States Uranium Resources -- An Analysis of Historical Data," Science, Volume 192, April 30, 1976, pp. 431- 436.

24. "LWR Spent Fuel Disposition Capabilities 1976-1985," ERDA-25, May 1976.

25. Macek, Victor, Optimization of Time and Location Dependent Spent Nuclear Fuel Storage Capacity, Unpublished Ph.D.-Dissertation, Virginia Polytechnic Institute and State University, March 1977.

26. Mathematical Programming System -- Extended MPSX, and Generalized Upper Bounding (GUB), Management Science Systems, Inc., Rockville, Md., 1974.

27. Modern Energy Technology, Research and Education Association, New

York, Volume 1, 1975.

28. Nachlas, Joel A., Harold A. Kurstedt, Jr., David W. Swindle, Jr., and K. 0. Korez, "Modeling the Optimal Management of Spent Nuclear Fuel," Eighth Annual Pittsburgh Conference on Modeling and Simu- ‘lation, Pittsburgh, April 1977.

29. Nemhauser, George L., Introduction to Dynamic Programming, John- Wiley and Sons, Inc., 1966. 124

30. "Nuclear Fuel Cycle," ERDA-33, March 1975.

31. "Nuclear Fuels Policy, Report of the Atlantic Council's Nuclear Fuel Policy Working," The Atlantic Council of the United States, 1976.

32. Nuclear News, Volume 19, Number 1, January 1976.

33. Nuclear News, Volume 19, Number 11, September 1976.

34. Nuclear News, Volume 19, Number 15, December 1976.

35. Nuclear News, Volume 20, Number 3, Mid-February 1977.

36. "Reprocessing: How Necessary Is It For The Near Term?," Science, . Volume 196, April 1, 1977.

37. "Reprocessing Linked With World Accords," Nuclear Industry, Volume 23, Number 11, November 1976.

38. Roberts, Richland W., "Technical Reports on the Nuclear Fuel Cycle,’ ' Transactions of: the American Nuclear Society, Volume 24, Number 1, November 1976.

39. Taha, Hamdy A., Operations Research An Introduction, Macmillan Publishing Co., Inc., New York, 1971.

40. Tennessee Valley Authority, Knoxville, Tenn., personal communi- cation -- Mr. Bob Mullens, November 1976.

41. Vanstrum, P. R., and Wm. J. Wilcox, Jr., "Alternative Technologies for Meeting Uranium Enrichment Demands," Paper presented at American Institute of Chemical Engineers' 69th Annual Meeting, December 1-2, 1976. 10. APPENDIX

125 126

Appendix A

This section contains the results of implementing the spent fuel

withdrawal model on the IBM-370 computer system, These tabulated

results reflect the optimal selection rules as established for each of

the reprocessing scenarios examined. The title accompanying each

figure indicates:

1. Specific reprocessing scenario, i.e. Optimistic, Realistic, or

Pessimistic as established in Chapter 4, Section B,

2. the specific reprocessing scenario case examined, i.e. Base

Optimistic reprocessing, +15% Optimistic reprocessing, or

+30% Optimistic reprocessing as established in Chapter 4,

Section B for purposes of sensitivity analyses,

3. the reactor from which the spent assemblies originated, i.e.

Westinghouse PWR, Babcock and Wilcox PWR, Combustion Engineering

PWR, or General Electric BWR/6 as discussed in Chapter 4,

Section A, and

4. the status of the economic parameters that establish a measure

of effectiveness, i.e. Base Costs (all costs at values estab-

lished in Chapter 4, Section C), +20% SWU Costs, +20% Uranium

Prices, and +20% Storage Costs from the base costs established

in Chapter 4, Section C.

Following this page is a listing of all figures in AppendixA indicating

the results for the Optimistic Reprocessing Scenario, the Realistic

Reprocessing Scenario and the Pessimistic Reprocessing Scenario. This 127 section includes listings for each of the four NSSS examined. An explanation of interpreting the figures is given in Chapter 6, Section

A. 128

LIST OF FIGURES -- APPENDIX A

Figure Title

Optimal Selection Rule; Base Optimistic Reprocessing Scenario, Westinghouse PWR Base, +20% SWU, -20% Swu, -20% Uranium, +20% Storage, -~20% Storage Costs* * * * * * © * # «© » 137

Optimal Selection Rule; Base Optimistic Reprocessing Scenario; Westinghouse PWR +20% Uranium Cost * * * © * © * © © « « 138

Optimal Selection Rule; Base Optimistic Reporcessing Scenario; Westinghouse PWR No Plutonium Value; Base Costs* * « «= « 139

Optimal Selction Rule; Base Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium Cost ° e 140

Optimal Selection Rule; Base Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Uranium Cost °> 141

A-6 Optimal Selection Rule; Base Optimistic Scenario; Westinghouse PWR No Plutonium Value; +20% Storage Cost « 142

Optimal Selection Rule; Base Optimistic Scenario; Westinghouse PWR No Plutonium Value; -20% Storage Cost °* 143

Optimal Selection Rule; Base Optimistic Scenario; Babcock and Wilcox PWR Base Costs* * * * © © © © 8 8 ¢ © « « » 144

Optimal Selection Rule; Base Optimistic Scenario; Combustion Engineering PWR Base Costs o © e e ee «© #© © © e© © #@ @ @ 145

A-10 Optimal Selection Rule; Base Optimistic Scenario; General Electric BWR/6 Base, +204 Uranium Costs* * * * * * « » 146

A-11 Optimal Selection Rule; Base Optimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; Base Costs* * * « ° 147 129

Figure Title

A-12 Optimal Selection Rule; Base Optimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +20% Uranium Cost * « 148

A-13 Optimal Selection Rule; +15% Optimistic Reprocessing Scenario; Westinghouse PWR Base, +20% SWU, -20Z SWU, +20% Uraniun, -20% Uranium, +20% Storage, -20% Storage Costs* * * ° ° 149

A-14 Optimal Selection Rule; +15% Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; Base Costs* * « * » « 150

A-15 Optimal Selection Rule; +15% Optimistic Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium Cost - © 151

A-16 Optimal Selection Rule; +15% Optimistic Scenario; Westinghouse PWR No Plutonium Value; -20% Uranium Cost °* © 152

A-17 Optimal Selection Rule; +15% Optimistic Scenario;. Westinghouse PWR No Plutonium Value; +204 Storage Cost °* ¢ 153

A-18 Optimal Selection Rule; +15% Optimistic Scenario; Westinghouse PWR No Plutonium Value; -20Z% Storage Cost ° © 154

A-19 Optimal Selection Rule; +15% Optimistic Scenario; General Electric BWR/6 Base, +204 Uranium Costs* * * * * ss * ¢ 155

A-20 Optimal Selection Rule; +15% Optimistic Scenario; General Electric BWR/6 No Piutonium Value; Base Costs* * * ¢ » » 156

A-21 Optimal Selection Rule; +15% Optimistic Scenario; General Electric: BWR/6 No Plutonium Value; +20% Uranium Cost °¢ » 157

A-22 Optimal Selection Rule; +30% Optimistic Reprocessing Scenario; Westinghouse PWR Base, +20% SWU, -20% SWU, +20Z% Uraniun, ~-20% Uranium, +20% Storage, -20% Storage Costs* + * * * 158 130

Figure Title Page

A-23 Optimal Selection Rule; +30% Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value, Base Costs* * * * * * © © * © © © * * 159

A-24 Optimal Selection Rule; +30% Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium, -20% Uranium Costs* + * 160

A-25 Optimal Selection Rule; +304 Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Storage Cost * * * * * * * + © © 161

A-26 Optimal Selection Rule; +30% Optimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Storage Cost * * * * * * © © * © 462

A-27 Optimal Selection Rule; +30% Optimistic Reprocessing Scenario; General Electric BWR/6 Base, +20% Uranium Costs* * * * * * © © © © #© © *© *© e ¢ © 163

A-28 Optimal Selection Rule; +30% Optimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; Base Costs* * * * © © © #© © © © © «© © 164

A~29 Optimal Selection Rule; +30% Optimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +20% Uranium Cost * + * * © * © © + « 165

A-30 Optimal Selection Rule, Base Realistic Reprocessing Scenario; Westinghouse PWR Base, +204 SWU, -~20% SWU, -—20% Uranium, +20% Storage, -20% Storage Costs* * * * © © # © # e e © s © © 8 #® #® # » 166

A-31 Optimal Selection Rule, Base Realistic Reprocessing Scenario; Westinghouse PWR +207 Uranium Cost > © e@ © © © © © # © © © © © © © # #© & #8 167

A~32 Optimal Selection Rule; Base Realistic Reprocessing Scenario; Westinghouse PWR. No Plutonium Value; Base Costs* * * * * * * © s © © # © «© 168

A-33 Optimal Selection Rule; Base Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +204 Uranium Cost * * * © © © «© © © «© 169 131

Figure Title

A-34 Optimal Selection Rule; Base Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Uranium Cost * * * * * « » 170

A-35 Optimal Selection Rule; Base Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Storage Cost * * * * * * 171

— A-36 Optimal Selection Rule; Base Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Storage Cost * + * * * « » 172

A-37 Optimal Selection Rule; Base Realistic Reprocessing Scenario; Babcock and Wilcox PWR Base Case * © © © © © © © @© © © © © © © © © © &© 8 @ 173

A-38 Optimal Selection Rule; Base Realistic Reprocessing | Scenario; Combustion Engineering PWR

Base Case e e e ° e ° ° e ° s e ° ° ° e e e e e e ® -174

A-39 Optimal Selection Rule; Base Realistic Reprocessing Scenario; General Electric BWR/6 Base, +20% Uranium Costs* * * * © © * * © *« « «© # « 175

A-40 Optimal Selection Rule; Base Realistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; Base Costs* * * * * * * *© «© « » 176

A-41 Optimal Selection Rule; Base Realistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +20% Uranium Cost * * * * * « « 177

A-42 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; Westinghouse PWR Base, +20% SWU, -20% SWU, -20% Uranium, -20% Storage, —-204% Storage Costse* * «© © © © © © © © e © # © # « e 178

A~-43 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; Westinghouse PWR: +20% Uranium Cost * «© © © © © © © 8» © © © © 8 8» @© @ 179

A-44 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; Westinghouse PWR . No Plutonium Value; Base Costs* * * * * * * © * « « 180 132

Figure Title

A-45 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium Cost * * * * * « » 181

A-46 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20%Z Uranium Cost * * * * * « » 182

A-47 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Storage Cost * * * * * @ » 183

A-48 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Storage Cost * * * * * « =» 184

A-49 Optimal Selection Rule; +15% Realistic Reprocessing — Scenario; General Electric BWR/6 Base, +20% Uranium Costs* * * * * * © * © © * * # » 185

A-50 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; Base Costs* * * * * * * * © « » 186

A-51 Optimal Selection Rule; +15% Realistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +202 Uranium Cost * * * * * « « 187

A~-52 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; Westinghouse PWR Base, +20% SWU, -20Z SWU, -20% Uranium, +20% Storage, -~2?07% Storage Cost * * «© © # #© 2 e e eo © © ee © @ @« 8 188

A-53 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; Westinghouse PWR +207 Uranium Cost ee e@ «© © © e#© ®@® e@# # @# © 8© 8 09 @© © @ 189

A-54 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; Westinghouse PWR’ No Plutonium Value; Base Costs* * * * * * * « * # » 190

A-55 Optimal Selection Rule; +304 Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium Cost ° cs et es 191 133

Figure Title

A-56 Optimal Selection Rule; +304 Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Uranium Cost + **** * + * 192

A-57 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Storage Cost * * * * * © «= *¢ 193

A-58 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Storage Cost * * * * * * 2 s 194

A-59 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; General Electric BWR/6 Base, +20% Uranium Costs* * * * * * © © © * ¢ «© «© « 195

A-60 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; Base Costs* * * * * * * © © © « » 196

A-61 Optimal Selection Rule; +30% Realistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +20% Uranium Cost * * * * *© © « » 197

A~62 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR Base, +20% SWU, -20% SWU, +20% Uranium, ~20% Uranium, +20% Storage, ~20%Z Storage Costs» * * + * * «© © « « « 198

A~63 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; Base Costs* * * * © * © © © *© © » 199

A-64 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium Cost * * * * * * « 200

A-65 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR’ No Plutonium Value; -20% Uranium Cost * * * * * * = 201

A-66 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +204 Storage Cost * * * * * * ¢ » 202

A-67 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Storage Cost * * * * * * « « 203 134

Figure Title

A-68 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Babcock and Wilcox PWR Base Costs» eo © © «© «© © © © © © @© © © © © © © © © #© «€ @ 204

A-69 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; Combustion Engineering PWR

Base Costs? . ° e ° e oe ® e © e e e e ° ® e e * e s e e 205

A-70 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; General Electric BWR/6 Base, +20% Uranium Costs, No Plutonium Value Base Costs 206

A-71 Optimal Selection Rule; Base Pessimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +20% Uranium Costs* * * * * © * « » 207

A-72 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario: Westinghouse PWR Base, +20% SWU, -20% SWU, +20% Uranium, -20% Uraniun, +20% Storage, -20% Storage Costs»: * * * * * * © *« # « « ¢ 208

A-73 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; Base Costs* * * * * * *« © ¢ « ¢ « e * 209

A-74 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario;, Westinghouse PWR No Plutonium Value; +20% Uranium Cost * * * * * © © © » 210

A-75 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Uranium Cost * *+ * * * * + « 211

A-76_ Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Storage Cost * * * * * © * * » 212

A-77 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario; Westinghouse PWR. No Plutonium Value; -20% Storage Cost * * * * * * * © » 213

A-78 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario; General Electric BWR/6 Base, +204 Uranium Costs* * ** * * * * * * * * © ¢ # 8 214 135

Figure Title

A-79 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; Base Costs* * * * * * © * * *« * « 215

A-80 Optimal Selection Rule; +15% Pessimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +20% Uranium Cost * * * * * * + » 216

A-81 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR Base, +20% SWU, -20% Uranium, +20% Storage, -20% Storage Costs e e ° e e e e e e e ° o e eo . ° e e ° e » e e e 217

A-82 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR -207 SWU Cost eo «© © © © # e@© © # © © #8 @© © #© © # #© @ @ ° 218 |

A-83 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR +2027 Uranium Cost « ° ee © © © © © ee fe ee ee lt 219

A-84 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; Base Costs* * * * * * © * *« © « » 220

A-85 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Uranium Cost * * * * * © © « 221

A-86 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; -20% Uranium Cost * * * * * © « « 222

A-87 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR No Plutonium Value; +20% Storage Cost * * * * * © © « 223

A-88 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; Westinghouse PWR- No Plutonium Value; ~20%Z Storage Cost * * * * * © « « 224

A-89 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; General Electric BWR/6 Base, +20% Uranium Costs* * * * * * ss ee fe et es 225 136

Figure Title Page

A-90 Optimal Selection Rule; +304 Pessimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; Base Costs* * * * * © © * © * # * « » 226

A-91 Optimal Selection Rule; +30% Pessimistic Reprocessing Scenario; General Electric BWR/6 No Plutonium Value; +20% Uranium Cost * * * * * *© © © © « 227 137

CaDUVHOSIG Sal TEWNyssv Tanda LINXdS dO WadWNn UMd )

esnoysZut3zsemM 79 "Wa "9 "9 79 "9 49 79 "9 "9 "9 99 99 "9 "9 "9 79 "9 7 "9 79 79 "9

esz

|I9 Izt

WIE? |ly9 8:

Hing) S1s0) S1s0) Lor

|zs|8s |7sP_ |16|

a8ei0ig a8ei0ig st fotzeusess 94

trelr) [99 9 z $6146] |

ry €z{o8 yl (6 (6

LAA ZO7~- ZO7~- CHONVWAG

9 |9T BuTssedoaday A €6] |

‘e8ez03g ‘e8ez03g Pz v8} "9K 76| + rr ) A

ee 9K [zt ZT SALT@NASSY OF Ih Ta L | |)

OOD |z6 "9 9t ¢ Id Id

06/68] y%OZ+ y%OZ+ | QNVWad

otT3stut3zdo 68|ts 79 g1 s |Z |Z Trt

‘wNTUeIN ‘wNTUeIN 49 let THNA 8

dO i AAA

69 v9 T 28/98] Uo | et

dvaA

Cees ao INAS 65 [6S eseg

| YOZ- YOZ-

|9” 9 AAA Se MA 40 fartny ALE

|9¥\94 ‘NMS ‘NMS ZEeCeaa24 LT veles] AK WAGWNN “A LL LL LUT meee

wotj.eTss %OZ- %OZ- SY

At Ccesewaa PA [6s CA CK r 6s OP setsaaas A zB |

1) [ EN AK tT)

Syjoz ‘AMS ‘AMS ON Ba spt TS] AK KY rr A KH TZ G OT A a Ok

OF ZOT+ ZOT+ Tewtidg | Le

0 62/82] wa2 po Le

ra

|o ‘aseg ‘aseg A LI

Jo “[-y LZ |

9 G6 6 76 2 T6 06 es| 68 28] 98] ce} ce} "8; G8 z8 Te 08 64 BL iL 9 exanBtTy

5 & & oy E 3 = 138

GaDaUVHOSIC SAIIENASSV

Tand LNAdS dO WasWNN UMd esnoySutTzsemM esnoySutTzsemM

Ls Ls

"9 "9

79 79

"9 "9

= = 29 29

z z

"9 "9

79 79 79 79

79 79 "9 "9

s s

79 79

"9 "9 79 79

79 79

79} 79}

79 79

| |

|| ||

|} |} | |

Ii Ii

€S7I7S €S7I7S

Sy Sy

ZT} ZT} WEP WEP

9 9

£7 £7

79 79 79 79

7Ssr 7Ssr

|16| |16| | |

fofaeueos fofaeueos

HESS HESS

BS] BS]

94 94 Fe Fe

"9 "9

Yb Yb

9DIEL 9DIEL

PPT PPT

S6/46| S6/46| c| c|

Dewees Dewees

7 7 | |

CaQNVWAC { {

BurTsseooidsey BurTsseooidsey

79 79

O8| O8|

AOA AOA

9t(0¢ 9t(0¢

od od €6| €6|

sasaaAAaeecececesesesaa sasaaAAaeecececesesesaa

78} 78}

PF PF

76| 76|

op op Xx Xx

PP PP {Zt {Zt

SAITIGNASSV

BB BB

3 3

£ £

Ted Ted A A

8 8

3500 3500

76168 76168

tT] tT]

1ér 1ér S S

06/68| 06/68|

Ae Ae x x

QNVWad oTAstwrTj3do oTAstwrTj3do

ST ST

CAIDAS: CAIDAS:

"9h "9h

wnfueay wnfueay At At

ITS ITS

HAS HAS

79 79

LT] LT]

OF OF 88 88

TaOd | | dO

Pett Pett

"| "|

S916S S916S

79 79

28/98] 28/98]

T T A A Vas

ZOc+ ZOc+ eseg eseg

|| ||

7 7 INddS

AON AON

6S 6S | |

ea ea

weeeeeaeaaa weeeeeaeaaa

971 971

9” 9”

ssi ssi fatny fatny

dO

AAT AAT

97197) 97197)

9% 9% 78lE8| 78lE8|

WaeWON HN HN

AA AA

At At

ZL ZL

41 41

AAA AAA

AA AA

de de

AA AA

uot}oeTes uot}oeTes

94 94 HK HK

6S1S7 6S1S7

esp esp

KK KK 78 78

OT OT

C C

TS] TS]

ease ease

S77 S77

A A

Oy Oy NA NA

AO AO

DE DE

1 1 nN nN

KK KK

A A

TewTadg TewTadg

9Z|} 9Z|}

TZ TZ C C

ee ee

A A

08 08

Le Le

ML ML

AAS. AAS. I I

4 4 tT tT

7 7

_ _

62/82 62/82

Of} OF} OF} Of}

LL LL

| | SL SL

ape ape { {

‘*7-V ‘*7-V

O O

LZ LZ YT YT

eansTy eansTy

5 5

6 6

ee ee

%6 %6

26 26

T6 T6

06 06

68 68

88 88

98 98 28 28

€8 €8 or) or) $8 $8

z8 z8

08 08

gl gl él él

9 9 Ld Ld

| | | |

ADUVHOSIG dO UvaA 139

CaSUVHOSICG SAI TENASSV

Tand LINAdS dO WadWin

YUMd YUMd | |

}79 }79

esnoySZuTj4sey esnoySZuTj4sey

“9 “9 aA aA

"9 "9

"9 "9

79 79 99 99

79 79

79 79 79 79

79 79

"9 "9

"9 "9

79 79

"9 "9 "9 "9

79 79

v9 v9 9 9

99 99 79 79 fT fT

ESz|ZS ESz|ZS

9 9 7 7

8; 8;

79 79 79 79 ey ey bre bre

[esp [esp |L6| |L6|

[8S [8S

8S 8S

fofaeusssg fofaeusssg

94 94

| | pe pe

fp fp

9 9

99] 99]

et et

$6/%76| $6/%76| Z Z

E2108 E2108

Ba Ba

rb rb

|6 |6 PAA PAA

CAGNVWAG

mI mI

BuTsseooadey BuTsseooadey

|9T |9T

pA pA

€6| €6|

tb tb

| | | |

LT LT

78] 78]

9 9

76] 76]

S3SO09 S3SO09

OZ) OZ)

LY LY

88} 88}

mE mE TT TT

SHIIGNASSV

zt zt

T T Ta Ta

1 1 P7 P7

8z 8z

oseg oseg

Zé] Zé]

06/68 06/68

g g | |

(NVWad SY SY

oTasturTjzdg oTasturTjzdg

68] T8| T8| 68]

CS CS

9€ 9€

fonTeA fonTeA | |

pel pel

79 79

LT LT

88 88 a a

TANA

40

Sol Sol

CW CW

8T 8T

S S

48/98] 48/98]

uNTUOINT, uNTUOINT, x. x.

UVAA lL lL

CAA CAA TA TA

INAdS

CECE CECE

65/97 65/97

tC tC

61T 61T

8 8 eseg eseg

{22 {22

61 61 Se] Se]

40 fer[ny fer[ny

CA CA

ov ov

ET ET

AAA AAA

DE DE

velCs| velCs|

| | ON ON

WAGWAN

nN nN

Feed Feed

Fes Fes

A A

9¥[ 9¥[

94 94

uotjoeTes uotjoeTes

PO PO

PA PA

A A

6S|s¥ 6S|s¥

6s[ 6s[ yHEeEeest=aA yHEeEeest=aA

—paa-a —paa-a

Ze Ze

De De YF YF

or) or)

Oh Oh

C7 C7

A A

TS] TS]

A A

Oe Oe

A A

OA OA

A A

2 2 | |

FA FA

awa- awa-

4 4

9z7| 9z7|

tcp" tcp"

G G

A A

Temtjdg Temtjdg

A A

OF OF

1 1

KS KS

NL NL Le Le

LY LY

ee ee

7 7

O| O|

62/82] 62/82]

[7 [7

[7 [7 | |

7 7

O O

| | Le Le

‘“¢E-V ‘“¢E-V

O O

LZ LZ

| |

96 96

C6 C6

€6 €6 "6 "6

Z6 Z6

06 06 16 16

89 89

98] 98] LB} LB}

cs) cs) 8 8

28 28

98 98

xan3Ty xan3Ty

08 08 T8 T8

62 62

gL gL

5 5 LL\ LL\

S S fas fas

S S

& &

& &

a a | | 140

GaSaVHOSIG SAL TENASsSV

Taha INHdS dO WadWiin YUMd

| |

|” |”

| |

Pa

| |

ie ie

esnoysutqsey

OTS OTS

79 79

09 09 79 79

99 99 79 79

79 79 79 79

79 79 79 79

79 79 79 79 "9 "9 79 79

9 9

79 79

| |

|| ||

f f Il Il

cL} cL} ES ES

8; 8;

Cy Cy

79 79 ¥9 ¥9

7s 7s 2S} 2S}

|16| |16| PP PP

8S} 8S}

fotzeusecsg

eb eb 94 94

99 99

mT mT

S616! S616!

¢ ¢ | |

rr rr

EZ} EZ}

a a 16 16

GaQNVNAd

| |

raters) raters) 08 08

Buytsssvoidey ysop

9 9

9t}oz] 9t}oz]

€6| €6| dp dp

rr rr

79 79

78 78

76] 76] Xe Xe

uNTurIQ DP DP

88126 88126

mE mE Z118z Z118z

SHI

zr zr Ta Ta

dO dO 9 9

TENASSVY

06/68} 06/68}

gs gs | |

ONVWAd | |

¥OZ+

ofastuytjdo

68] 68]

CAA CAA

eer eer

T T 79 79

T8199 T8199

LT LT

79 79

4 4 88 88

Ta0d SONTeA

dO

87 87

- -

28} 28} | |

UVAA | |

Lo Lo

INdadS

QA QA

Ao Ao

AA AA 6S] 6S]

eseg

T T 9T 9T

6T 6T S S 98| 98| wWNFUOANTY,

ra ra

FSFE FSFE

9% 9%

[97 [97 SS] SS]

dO fatny

ANH ANH

97 97

97 97

LAA LAA

78) 78) | |

WaaWON

4) 4)

ALA ALA

9”[ 9”[ E8| E8| uotTAdeTes ON

7 7

OST OST

AA AA

6S/S7 6S/S7

AA AA

OH OH

A A

Ze Ze

nA nA

MN MN Yt Yt

Saws Saws

Kh) Kh)

A A

esa esa

Oe Oe

OH OH

A A

oT oT

T8| T8|

A A

A A

ZK ZK | |

EEL EEL

TZ TZ

97] 97]

¢ ¢ OK OK

Tempt3dQo

KL KL Sd) Sd)

A A

OF OF

eK eK

Oe Oe

wl wl

Fe Fe Ne Ne

LL LL

O| O|

62/82) 62/82)

LO LO p77 p77

O O

a a

| | lo lo

‘y-Vy

7 7

O O

LZ LZ

9 9

76 76

26 26

16 16

06 06

68 68

381 381

98) 98) 78 78

€8 €8 $8 $8

san3tTy

08 08 T8 T8

8 8 64 64

9 9 LL| LL| | |

| |

o o

2 2

5 5

a a Ss Ss 141

CHSUVHOSIC SAI TENASSV

Tana INddS dO aan WMd

|

|

BsnoysutT

479

79

79 99

79

79 79

79

79 79 99

79

73

"9 79

79

"9 "9

99 9

79 79

I

||

|

A

[|

ESZ

79

Het}

9

8;

€?

79 79

sem

S 8S] ZS]

¢sp

|16|

Qa

HOeCestsa-2

fotzeusss

94

ae

bd

99

S6\46|

ST

716

|

earaes

PIT

EZ]

GaQNVWAG

79

BuTsseooidey 3809

08}

[OT]

€6|

PAIL

78

"9K

1

26|

O¢|

wNTuUeIQ

sd

\88

EY

CT

SHITENASSV

et

KK

Te

1

|

Zé}

9K

gz{sz

06)

QNVWad

oOTAsTuT3dO YOZ-

9K

68] 68|

|

T8159

Ti

lA

9

8B

OY

THNd

fenTeA

4

dO

ea

WeCeeeaesaaa2

8T

LHL

L8/98|

TIAL

|

|

UVaA

EZEeeeeseaeaa

7

INadS

sseg

6S]

8T

61 ¢

wNTUuO

Eeewst=a

CAAA

99

97]97

Se

dO

Satny

KELL

INT,

WEeeCewsewaz

78leB]

|

WAgWNN

AA

AT Eee

OT

9H]

9%

AAI

A

uofTIOeTeSg

ON

6S}

A

ON

Ze

nt

rararard

Sy

A

ON

A

Ts]

sawaa

A

sop

OK

A

Yr

KA

IY

I9z

A

oA

T@

KK.

Tewrjadg

A

1

Oe

OF

Oe

EK

<

|

Ft

O|

62/82)

Te

LE

pL

O|

a

A

°¢-y

O

LZ

96

$6

6 6

T6 4

06

68

88]

8]

48)

ean3Ty

¢s; 78} $8

28

T8

08

SL 64

9

iL

|

|

S

y

F

™ 8 142

CHSUVHOSIC SAI TIMNASSV

TaNd IN2dS dO WadWiin WMd

esnoySutjsem 9 oO 79 "9 19 9 99 79 79 9 "9 79 79 #9 79 "9 79 79 79 79 79 |] |i b

Ilee fet Aree 8; Hs 49 79

z6|8s lp |246|

TS

foTaeuaos 94

eye eye 199 rm Rr eer saaaaas S6|%76| z | |

q €Z{08 el 79

CHQNVWAC 6/91

79

Butsseosoridey 3809 €6| | |

aa 78) PEA Oc|er 76| el

e8e102S

88] "9 Zt|

SHITENASSVY gi Ta

FA 26] On| cS 06/68) FU

QNVWAd

YOZ+

oTastmp 68 72 79 T w=

ITS 79 [ZT

88 Tahd FA

SenTeA |

dO

Lal i)

ado $9} OX. "9 T 28) CA

UVaA

INAdS AAA 6S AAA 6S

aeseg 98|

wnNTUuOCINT_d

La j9y ZALES {¢ gT 61 9 IAP tanned Ss

dO

faTny

[94] 9% v8\Es|

WaaWnn

ZAA A ADKELPIL LO BeeswawaraA AP Oy] meee K

uotRoeTeS

ON

> i PON — ES|cy 6S AAG ALA A AK AIA EEE PPP ZB

CA OK cop Ase AO TS) A |

aA oz] 9¢ Ke aa

Tewt3dQ OF a KA SW

A 1 ol 62/82 IE LO

Lo ITe EL [7 a a O| O| PI PTs |

*gQ-V O LZ |]

8 6 €6 Z6 68 88} 8 98]

8) eaANsTy €8 78 $8 28 T8 08 64 QL LL 9L| |

E; as = & » og e 8 | | 143

CHOUVHOSIC Sal TEnaSssv

TaNd INHdS dO WadWNN UMd UMd

esnoysuTjsem esnoysuTjsem

ESC17S ESC17S

9 9

él él

"9 "9

|¢s |¢s

{8S {8S

foTreuacs foTreuacs

| |

9I}EL 9I}EL

GHQNVNAC GHQNVNAC

[08 [08

sutssasvoidey sutssasvoidey

3809 3809

| |

78188 78188

a8e101g a8e101g

SHI SHI

| |

TENASSVY TENASSVY

26168 26168

QNVWAd QNVWAd

¥OZ- ¥OZ-

stastwutydo stastwutydo

|T8 |T8

TaNd TaNd

fenTeA fenTeA

dO dO | |

S9 S9

£8} £8}

UVaA

INAdS INAdS

16S 16S

98| 98|

aseg aseg

wNTUOANTY wNTUOANTY

| |

97194 97194

S8| S8|

JO JO

fa[ny fa[ny

781€8| 781€8|

WaGWNN WaGWNN

lov lov

uotzoeTes uotzoeTes

ON ON

| |

6S1 6S1

ze ze

cy cy

T8 T8

1 1

9z] 9z]

[TewFidg [TewFidg

6L) 6L)

O| O| O| O|

82 82

‘*/-Vy ‘*/-Vy

O O ean3tTy ean3tTy

ADUVHOSIC dO UVaA 144

UMd Ca5SNVHOSIG SAI TENASSV Tanda INGdS dO WaaWNn

XOOTTM

89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89

9

pue OLE OLE OT 89

GT

89 Te 89 89 89 89 r

yoooqeg

| | €S/8S €S/8S |46| 94

foTazeuscg 199 199

S6|%6|

| |

7Z| 7Z|

CHQNVWAC CHQNVWAC T8 T8 €6|

ButTssodo0adsy |S8 |S8

76

| |

68] 68]

SHITENASSV SHITENASSV

T@ T@

€6] €6]

06] 06]

GNVWad GNVWad

06/TS 06/TS 68 68

$}S0)

oTAstTmTqdO

TaNd TaNd dO dO

oseg

199 199

£8) £8)

UVaA UVaA

| |

INAdS INAdS

091947 091947 98] 98]

sg faTny eseg

S8! S8!

| |

dO dO

97) 97)

781€8| 781€8|

WHaWNN WHaWNN

ZY ZY 16S 16S

uortqoeTes

78! 78!

| |

97197 97197

TS TS | |

Teurado O O 64/8 0 0

"g-V

eansTa

ADUVHOSIG dO UVAA 145

UMd

Be Be Bg Bg . .

a a

Ba Ba

5% 5%

5 5

a a

RA RA

QO QO * *

BuyAsesuT3uyq

osf osf

08 08 O8}] O8}] os os

08 08 08 08

08 08 08 08

08 08 08 08

08 08 08 08

og] og] 08 08

08 08 08 08

Oe Oe

0g 0g

og og 08 08

08 08 os os

]| ]|

|| ||

|| ||

|| || || ||

|| || || ||

864] 864]

os os

8 8

cz cz

ZT ZT

¢ ¢

O€ O€

6z 6z

08 08 08

zs zs

08 08 ®y ®y

uotysnquoy Par Par

[4SP [4SP

£5|€9}zZ £5|€9}zZ |L6| |L6|

cor cor

ar ar

964 964 ar ar

cee cee

Ob Ob

S6| S6| | |

fotaeusssg

rrr) rrr)

ab) ab)

of of

08] 08]

476! 476! er er

GHaNVWAC

oe oe

28 28

a a

L L

€6| €6|

| | ld ld

os os

26] 26]

[zt] [zt]

Z6| Z6| Pell Pell

Butssssvo0iday

96 96 08 08

SAITANASSV

8} 8}

8 8 Ta Ta

|TOT| |TOT|

08 08

kK kK

12] 12]

06/68/ 06/68/ (NvWad (NvWad

08 08

26] 26] GT GT

$180)

T T T] T] 4o4e 4o4e

88 88

08 08

8] 8]

88 88 ACA ACA

THOd

ofastwr4zdg dO dO

LAAT LAAT [tz [tz WEeeeeeeseasaaa WEeeeeeeseasaaa

oseg

TZ TZ

28/98| 28/98|

| |

Vas L- L-

INAdS

s9}os s9}os

G9 G9 AA AA

ZEeAeeesea2424k: ZEeAeeesea2424k:

ZAM ZAM

0S 0S

ALAA ALAA

Sel Sel | |

oseg

dO

AT AT

os} os}

ose ose

AMAA AMAA veles| veles|

WAEWNN

LAL LAL

A A

AeA! AeA! AALA AALA

Zhe Zhe

A) A)

Ts/¥79 Ts/¥79

is| is| aL aL

foTny

f f

1 1

Tr Tr

Ae. Ae.

A A

Tt Tt

AK AK

ze ze

| | fT fT

Cow Cow

uotj.eTas

os}sz] os}sz]

osf osf

fOr fOr

Ee Ee

Ts! Ts!

Tf Tf

AS AS

Vs Vs XK XK

8z 8z

KIEL KIEL

KO KO

og og

4 4

A A

AL AL

LL LL

AK AK

1K 1K 4} 4}

o o

Ez[ Ez[

| |

| |

7 7 | |

TT TT

~Tewr3dQ

Ld Ld

eZ] eZ]

of] of] | |

o o ZZ ZZ

96 96

$6 $6

£6 £6 76 76

06 06 Te] Te]

es| es| 6a] 6a]

98 98 L8 L8

€8 €8

"| "| Ss Ss

z8 z8

T8 T8

08 08

gL gL 61 61

of) of) iL iL

°*6-V

5 5

* * v v

E E sean3sty

3 3 un un 146

g/UMG

bd

Fg

a3 oe

B ee

4

Ba e ae

Pd

2

WA}9aeTY

|

esthestt

caT|foe estos

EST

Let ea

[a e8T

est est

Est

eer EST

Esl €8T

CSTHOTL ESTIL9 ESTHIT EsT

egtiest C8Thest os

ZVOUCE

ST

87

Ter9ueH

Ke

|L6|

+

bo

ULV

meBSAsSsaAaAeeeCeeesesesa

A

TS9T 94

fofaeuscsg

sot

S6}¥76|

BST

eet

¢

QHQNVWAG

|

A

907

ep

OT

€6|

FO

LZ

BuTssevoiday

AA

STZSzZ6ETITETIETCOITESTIOTULZTEzTsyT/9TT

ISe ee

76]

rr

tt

s3so9

9€

SHITENASSV

16

T4

esi

[0z 9€

06/68]

| QNVWad QNVWad

unturig

il

estp

TE LTIET

otastutado

+

€8

LT

8B

THOA

1

aes 40 40

ALAND

4

oot

707+

28]

| UVdA

|

Lo

INAdS

EST

98]

eseg

‘eseg

ALLA

ZA

St

Cceeceasaaas

Ss]

dO

Vell “LT

AA

A

vs]Es|

fetny

WAGWAN

ECty

AIEEE

A

tO

A

CAAA

Cessa2

Lye

(A

cv

uotzoeTes

A

Or

A

ze

IEE

NY

OY

OY

oTIY

Ts]

Tee

AK

AA

NH

OB

29{

19

OT

Oe

OF

p44

IEE

De

Tewr3dQ

as

Of

62/82]

|

[7

LE

Lo

oO

TY

|

O

ZZ

‘OT-V

$6

E6

%6

Te]

e381 6]

98]

78

es, 781 C8

Z8

Tt?

08

64

BZ

9Z} lL

eansty

gs

*

0

E &

™ 147

9/AMP

ra ra

BE BE

Bg Bg

BO BO

Q Q

Sa Sa

ra ra

5 5

By By

n n

A A a a

i i

i i |

WFAOaTY feet feet

EBT EBT €8t €8t

€8T €8T CST CST

€8T €8T

eet eet

at at

est est

€8T €8T

€8T €8T

€8T €8T est est

Est Est est est

€8T €8T

€8t €8t

€8t €8t

€8T €8T €8T €8T

feet feet ZVOTEETIZVTIS9TIBSTIO0Z ZVOTEETIZVTIS9TIBSTIO0Z

jos jos

|e St St

[oz [oz

[29 [29

lest lest HOTT HOTT

WEST WEST

Heel Heel Sy Sy

Tezsuey FP FP

ketIr ketIr

|26| |26| | |

mesCeestes mesCeestes 94 94

rierrl rierrl

foTazeuacs

89K 89K S6/%76| S6/%76|

ret ret

Clee Clee ee ee QHQNVAAC

arr arr

a a €6| €6| BuTsseooiday

Fb Fb

|8TZ|SZZ6E7 |8TZ|SZZ6E7

[ssi [ssi

t9 t9 26| 26| $}Sso09

Lb Lb

est est = =

SAITENASSVY

| |

Te Te

LO LO be be

oN oN

oseg

06 06

62 62

06/68| 06/68| Ee, Ee,

GNVNad J J

TEZIE TEZIE

|£6 |£6 LHS LHS oT|ystwijadg

fan[eA

LCOTIESTISEIKCTIEZTTISVLI9TIZ9 LCOTIESTISEIKCTIEZTTISVLI9TIZ9

EST EST

O€ O€ BB BB

THNa a a dO

CS CS

AA AA ZCCeeseeaaeaa-a ZCCeeseeaaeaa-a

T T

86 86

49} 49} 48] 48]

unTuoj{ntg a a Vas

LL LL

LINdadS

ut ut

(est (est

98/ 98/

AA AA

| | L— L— eseg

Pt Pt

AA AA

ssi ssi OA OA 40

BLT BLT

A A vslEs| vslEs|

fatny Ay Ay ON WHaWnN

Cosa Cosa

(A (A

mMeewswa.s mMeewswa.s

ct ct

ty ty

OH OH

KK) KK)

Pa Pa LH LH

APTLY APTLY

CAA. CAA.

Lt Lt

A A “| “|

uotTzoOeTes

|sytp |sytp

OL OL

ESB ESB

FT FT

77 77 Ze Ze

9T 9T

4 4

BS BS

ee ee

4° 4°

T8| T8|

OA OA

YE YE A A

ra ra

19 19

| |

i i

AS AS

OF OF

a a

ll ll | |

Ll) Ll) i i

Teut3dQ

7 7

0 0

62/82] 62/82]

J J

| |

| |

pea pea

| | ra ra

wa wa

al al

O| O| a4 a4

7 7

O O ZZ ZZ

‘“TT-V | |

5 5

G6 G6

€6 €6 76 76

Te] Te]

06 06

68 68

88 88

98] 98]

£8 £8

£8 £8

C8 C8

Z8 Z8

"8| "8|

T8 T8 Og Og

SL SL 62 62

9 9 Le Le

xansTy

ox ox

ted ted

F F

w w

o o

. .

e e & &

148 Q9/AMZ Q9/AMZ QH5aYVHOSIG SAL TENASSV

Tanda LNAdS 10 YHeWiIN PLA}ZOSOTY PLA}ZOSOTY

est est est est est est 9¢ 9¢

£9 £9 [esl9ueyH [esl9ueyH

r T T |46|

96 fofaeueds fofaeueds

S6/76/|

CHQNVWHO CHQNVWHO 3809 3809 BL ¢

€6]

suTssaoorday suTssaoorday STICISTC| STICISTC|

(SGT €9 €9

76]

UNTuUeAIQ UNTuUeAIQ

S7 S7 SATTGNASSV SATTGNASSV

T&

| |

GEC GEC GZ GZ

06)

QNVWAC QNVWAC YOZ+ YOZ+

68

TECIETZISITIESTIOTIIZZIETTISHTI9TT/ TECIETZISITIESTIOTIIZZIETTISHTI9TT/

oTastutiadg oTastutiadg

feNTeA feNTeA

Tana Tana dO dO

£8)

UVHA UVHA INddS INddS

98)

wWNTUOC wWNTUOC aseg aseg

S8)

dO dO

ANT, ANT, fatny fatny

78/€8)]

UWHaWnNn UWHaWnNn

ON ON uotjoeTes uotjoeTes cs

T8|] 249 249

Of

| | Teutado Teutado

62) 0 0

8 Io Io 0 Ll

“ZI-V

ean3sTy

AHDUVHOSIG dO YVAA 149

CaSaUVHOSIC SAI TENASSV

Tanda INdadS dO WaeWiNn UMd

$380) ) )

easnoyZuTisem “9 49 "9 9 "9 79 49 "9 "9 79 79 49 "9 "9 "3 79 79 79 "9 "9 79 -

ese107s

8Z 7 OT Sy Pa

|09|29 {09 |L6|

ZOZ- 79

foTzaeusss eee € 96 | |

Baas "9 92] zt[oz S6|

‘asei0js Ff

78 2 va 76]

Ga0NVWAC

C4 |z6 9 [ez

BuTssadoaday €6) | keh | Fr

Pp)

ZO7T+ T L6|TOW9OT|ZoT "9 ce I 76) An he |

79

SAITENASSVY 2 ctl TG

“uNTuern |

i) a rt zv{ 06/68|

(NVWad

Lp

7 oTastTuTAdO "79 TEE Z |

| 79

ZOZ- €6| L|¥ 8 TT 8h

Taha

dO

eA a AAA Sz 79 L 28/98]

uVvaA 2

“wnfFuern {|

Zo

LINadS {89 AA) Ae a

YCoT+ 4} | La 2 AULT Estes es S8

dO

faeTny

ALT AM Zz es|

A ZozZ+ 78/

WaaWNN PAA

CAA les ANAT AA At cs es} A

uotzoeTes SL |

‘nMS

LA r TT 79 89) OT OP rrr] CA ATT EE 7 A 78 Tr MK

ZS OP {ZS KH rb

ZOT- T8; OK | HA NY

ei] OE] O¢ A Sl

Tewmpadg 08 KI) S74 a

“NMS

- Oe — i 62) O| Ia Lo

ILE Ors

ZOZ+ 82 O| |

‘“ET-V O LZ |

“eseg 5 $ £6 76 T6 26 06 88 81 99 £8 Ee y3| z8 es] Ts 08 gl 6L LL 9

eansTy |

& a o & ™ 150

CHOUVHOSIG Sal TEhASsv TaNd INddS dO WagWnn

UMd

esnoysutisay

7

OT

82109 I I

|

09 |46| |46| |

% £9}

foyzeuscs 96 96

t

cl

92} S6/176| S6/176|

| 78

02 | CHCNVWAC

BC

ButTssasdoidey

26] €6| €6|

26 76} 76}

$3S09 92 |TOTIFOTIZoT

SHITENASSVY T& T&

aeseg

06/68 06/68 GNVNAd GNVNAd

ITFasTwMTAdO

tan[TeA £6]

TaNd fO fO

cz £8/98| £8/98|

WNTuCINT_d UVvaA 189 INAdS

YCT+ |

ES]ES S8 S8 40

fatTny 78/€8| 78/€8|

ON WHidWNN JES

woTIoeTeS |

8917S

78 78 TS TS | OF]

TempzidQ 0} O JO

“HT-V

eaAn3TY

AOUVHOSIG dO UVaA 151

CHDUVHOSICG SalTENASsvV

Tand INddS dO WaaWNNn WMd

|

esnoysutysey LILI "9 79 mi 79 79 79 "9 2 49 "3 "3 79 79 79 79 19 79 79 79 279

|

8ZL OT 87

| 109/29 (opr eCesaaawaa 46;

#9 foTzieussg 94

J9Z TAK cL S6 |

rere ON 781/26 nA (aqNVWad

GT

qs09 BuTssaedoridey A 79 €T) €6| |

L6{TOROOT] mtr 6¢ 76} 7} 7}

umTueIN he

SHITANASSVY LeaBaas LE we) T&

79 c7|

06/68} GNVWad GNVWad

¥O0zZ+ oTastwmTadg ZONES TE ” _ 2 |

09| €€ AG 88 TaNd

fenTeA |

| dO dO

AAA SZ| wo 4 TT 28

2 uvar uvar 4

[AAA ECccestsaaa LNadS ZA 89 AA xYoT+

uUMTuOINTY,

AL JES a s8 dO faTny

[ESTES AAA WadWnNn FEeestaw rey AA KK wotyzoseTes MA

ON |

LA CA Sessa 89} tr Vf 7 a ILL A A 7g |

ZS10E |8T v€ A ACA ON A T8} aA EAE

AA lO€ Tewtadg ns O8 A Se | i — i 1 i O 62 LO |

cA 01] LY

0 :C{[-V 86 C6 76 £6 26 06 T6 68 a8] 98 18 €8 a c8 T8 08 Sl 64 il 9 eAansty

re . v 152

GaSuUVHOSIG SAL TENASSV

Tand INddS dO WadWIN UMd

esnoyZurysomM 8L

%

OT OT 87 87 9 {09

109 |L6| |L6| 79 {29

foTzeusss 96 96 | 9L}

"9

cL cL S6| S6| 78

79

O¢ O¢ 46) 46) CHQ0NVWAC |26 79

3809

ButTssadoraday

ET] ET]

cT cT €6) €6) | £6

99

62 62 % % 26|] 26|]

unTueIn |TON9IOT

79 ILE ILE

SAITENaASSV TG TG

"9

cv| cv| 06/68 06/68 CNVWad

otastutqdo vOoZ7- O E6 ZO

79 2 2 Tad

fenT[eA dO

ISZ £8} £8} | UVvVaA INAdS

B9}ES 98| 98| YGT+

WNTFuoRINT, S8| S8| |

fSatny 40

ES} 78/8) 78/8) WadWON ES]}89

uotqAoeTes

ON cE cE |

cS; TS TS OE

Tewr3do |

O 62) 62)

| 82 82 O

:9T-V 0

eansT

ADUVHOSIG dO avaAs 4 153

CaSaVHOSIG SAI TEINASSV Tanda INAdS dO WadWiiN

UMd

—-

esnoyZutjsem "9 49 "9 "9 "9 79 "9 "9 49 79 79 79 99 79 79 2 = 79 979 ||}

7 84 9 8; UL PPI

j09 |09 |46|

jL9 99

fotzeuacsg € 94 |

Baaa 94 yet [zt| Pe S6/4%6|

|¥8 19 att ON Oz!

GaQNVWaAd | FA

BuTssedoidey 3809 26} 8c €6 Tr

L6 19 ez OL z6|

a3€103S |

|LOT/9OTIZOTIE6 4

SHITENASSV 79 Zt! T4 Or 1

9 9¢ 06|/68/ A ed 9 9 |) QNvWad

oTastwp3do ¥O07+ 09 Te TT L |

7 fe es|tt L TA 88

TaNd

SenTeA | dO

NOT

SZ} "9 28/98] UVaA

Pt £eecesta

LNAdS oa 89

yoT+ 4 179

wNTUOINTY, |

LTA ESlESIES TT a Sei

40

fetny

A ALES €S ZECeeaa-A vsles|

WHaWNN PA

ZCHeceas ZL AL A AA A es]

uotqoetes

ON |

——_ Pr LT UA 89} 49 y 4 Ot HEP ze | Tt

tk ZS] |IstTr |IstTr 7€ Ts] LAC OY OK A [275 eae) AK A |

Of] O€

Tewt3dg A DT OF Gara OL b

LL 62182] 0] LAL

LO 7 [7 0}

‘/[-y 0 LZ

96 C6 6 76 26 te] 06 68 88] 98] CB} 78 es} $8 T8 08 6L Sl iL 8 9

ean3Ty

iS C, C, & oy - z * 154

CaSaVHOSICG SAL TENASSV TaNd INddS dO WagWiin

UMd

esnoyZutjsem 8L 49 4

OT

I I |46| |46| j09 | £9} €

fotzeusos 94 94 92

cl

$6) $6) 76| 76| 78 0c

| CaQNVWAd CaQNVWAd 26}26

380)

Butsssvoadey

GC €6) €6)

j9Z 26; 26;

e3e109S

[LOT]

SAITENASSV SAITENASSV TG TG

9ONZOT!

06/68 06/68 QNvWad QNvWad

oTastTutadg 4OZ-

€6/S2 Tanda Tanda

fen

dO dO £8} £8}

TeA UvaA

89

INddS INddS 98) 98)

YoT+

wNTUOCINTY, |

ESTES

S8 S8 dO dO

feTny 78/€8| 78/€8|

| WadWnN WadWnN ES]

uotjzoeTes

ON

8917S

78 78 TS TS | OF]

Temradg O| O JO

‘gT-V

ean3Ty

ADUVAOSIC dO uvas

155 Q/AMA Q/AMA CaDuVHOSIG SAI TENASSV

Tanda INddS dO WaaWNn WZFAROSeTY WZFAROSeTY

[Teseuey [Teseuey

€S €S

foTaeuacsg foTaeuacsg

C6TYITICLE C6TYITICLE

OT OT

| |

€€| €€|

GaGNVWAC GaGNVWAC

79 79

sutsssd.oadey sutsssd.oadey

189 189

797|SL7}992 797|SL7}992

s3sop s3sop

BT BT 9 9

SHI SHI

T@ T@

|c6 |c6

TEWASSV TEWASSV

06) 06)

(NVWad (NVWad

untueig untueig

68 68

LT LT

9 9 ¢ ¢

oTastuTjdgQ oTastuTjdgQ

£8 £8

|tt |tt 6% 6%

TaNd TaNd

|T |T

dO dO

T6TI9LT T6TI9LT

Z Z

8T 8T

£8/98| £8/98|

707+ 707+

UVaA

INAdS INAdS

{92 {92

x¥c{T+ x¥c{T+

‘eseg ‘eseg

eT eT

S8| S8|

JO JO

78)€8| 78)€8|

PUT PUT

SaTny SaTny

WaaWnN WaaWnN

uotAoeyTes uotAoeyTes

TLOT TLOT

78 78

T8| T8|

OF OF

Tewtjadg Tewtjadg

62/8 62/8

“6 “6

[-V [-V ean8Ty ean8Ty

AOUVHOSIG dO Vas 156

9/AMA TADUVHOSIG SAL'TENASSV TaNd INddS dO WadWnn

VFAWOSTY

C6S C6S

EST ¢

€8T €8T I I

Terzsuay

IE€STI69TICG IE€STI69TICG

|46| |46| 94 94

‘foTizeuacs

OT S6| S6|

€€

76 76 QHQNVWAC QHQNVWAC

|

| | LEZ LEZ

oS €6) €6)

Butssesooiday

89 26; 26;

s1Ss0)

|

Z9 99 99 Z9 SdITENaSSV SdITENaSSV

621 T& T&

oseg

92

LT

06) 06)

QNVAad QNVAad 68 68

ofastuTjdg

tan[eA,

Tanda Tanda

CIT6TIOZTICE CIT6TIOZTICE

dO dO £8/98| £8/98|

unNTuojntd

UvVaA UvVaA INddS INddS

xYoT+

S8) S8)

dO dO

HOYT HOYT 78/€8)| 78/€8)|

feTny

ON

WaaWnNn WaaWnNn LVIoticetzz LVIoticetzz

uot cB cB

zoeTes TS TS

Teut

10 10

62) 62)

| |

82 82 0 0

ido

"OZ-V

eansTy

ADUVHOSIG dO UvaA

157 O/AMA O/AMA GHOUVHOSIG SAI'TENASSV

Tanda INAdS dO WadWNNn WFAWDETY WFAWDETY

€8T €8T S6S S6S

T

[eieuey [eieuey

|EST/69TN |EST/69TN

fotieuesg fotieuesg

C6 C6

1/9TZ 1/9TZ

CHGNVWAG CHGNVWAG

4so9 4so9

surssasoiday surssasoiday

TS¢} TS¢}

wuntueIg wuntueIg

294 294

SHITENASSVY SHITENASSVY

S27 S27

(NVWaAd (NVWaAd

~OZ+ ~OZ+

9940S 9940S

otastwTadg otastwTadg

497i 497i

Taha Taha

fenT[eA fenT[eA

dO dO

T6197 T6197

UVaA UVaA

INAdS INAdS

wNTUO wNTUO

x~¢oT[+ x~¢oT[+

Tee Tee

Hoy Hoy

40 40

INT, INT,

78; 78;

fe[ny fe[ny

Tite Tite

WAGWNNN WAGWNNN

€8| €8|

ON ON

129 129

uotqo.eTesg uotqo.eTesg

78) 78)

CET] CET]

18} 18}

ZL} ZL}

OF OF

0 0

[Tewrjdo [Tewrjdo

62) 62) 8 8 0 0

“T¢@-V

eansta ADUNVHOSICG dO Vas 158

CHSUVHOSIG SAI TENASSV TaNd INddS AO WaaWNN

UMd

S}S0)

esnoysut3sam

a8e103$ 79 179 79

YO7- 179 "9

fotrazeusss |

79179 S6| S6|

‘ese101S 76 76

(HGNVWAC

| | |

Burssevoidey

79) €6) €6)

YO7T+

79 26) 26) ILOTIOZTIOTTISOT

SAT T6 T6

SuMTUeIN

TENaASSVY

06) 06) QNVWad QNVWad

orastwutado

€c €c

68 68

c c | |

ZOZ- Tv Tv

Tala dO dO

S8

Te| Te|

£8) £8) UvaaA

‘MNTUeIN |ZZ

INddS 98) 98)

yog+ 7 7 |

09109 S8| S8|

dO

feTny

ZOT+ 78)/€8| 78)/€8| |

WHanNN O09}

uotzoeTes

“MMS

ZZ\6S

78 78 TS TS

ZOZ- | 7E}

~ewrjadg

‘NMS 62/8 62/8 O|

ZOT+ O

“*zz-V

‘OSeE

eansTy

ADUVHOSIC dO UVaA 159

GHSUVHOSIC SAI TENASSV

Tanda INddS dO WadWiNn UMd

esnoyZuTjsem 79 79

99 99

8y 8y | |

Pa Pa

foTzeuacs TAA TAA

79 79

79 79 a a

76 76

Att Att wf) wf)

QHQNVAAC

ButTssovoidey

KK KK tL tL

79

19h 19h

z6| z6| $380)

Pa Pa

Saas Saas 2 2

LOT LOT

29 29 a a

SAITENASSVY

OTOCTIOTTISOT] OTOCTIOTTISOT]

O02} O02}

€¢ €¢

1 1

Td Td a a

oseg oseg

met met

77 77 (AAS (AAS

06|68| 06|68|

bo bo (NVWad (NVWad

kl kl

OTAsTuTAdQ

Kr) Kr)

ee ee

San[eA San[eA Lo Lo

79 79

TY TY se se

TaNd dO dO

SB SB

Zt Zt

9 9

28] 28]

4 4

uNTUCINTY, uNTUCINTY,

dvds dvds

| | LE LE

ro ro

LINdAdS

jZZ jZZ AAnnnaeeaa-#s AAnnnaeeaa-#s

vOE+

a a 98] 98]

LY LY 4 4 9c] 9c] | |

Ae Ae

LLAMA LLAMA

0909 0909

BELT BELT

Ke Ke

Z| Z| ss| ss|

dO foTNyY

eT eT

OL OL

A A

4) 4)

vefee| vefee|

ON ON | |

WHdWnN

CcEesaa2s CcEesaa2s

A A

OT OT

09 09

BEeCeseawas BEeCeseawas

TO TO

AY AY

09) 09)

1 1 a)” a)” uoTIDeTes

T_T T_T

a a

LT LT

ZZ|6S ZZ|6S

ze ze

€eTj6e €eTj6e

ESsa ESsa

ON ON a a

MD MD Att Att

AL AL

OO OO

CA CA

o€ o€

YE YE

Tsl Tsl

AK. AK.

TT TT

| |

Ye Ye

| |

HF HF F F

a. a.

VE] VE]

ve ve

I I J J

Teutadg

og og

4 4

I I La La

aA aA

O| O|

62/eZ[ 62/eZ[

| |

|“ |“

Lo Lo

Zo Zo

2 2 SP SP

La La

O O

| | |-7] |-7]

LET LET

"€Z-V

O O ZZ ZZ

€6 €6 S6 S6

76 76

26 26

T6 T6

06 06

88 88 68

98 98

£8 £8

ce ce €8 €8 78 78 78 78

08 08

62 62 82 82

Ld Ld 9 9

ean3TA

ADUVHOSIG dO UvaA 160

GHSUVHOSIG SAL TANASSV

Tanda INGdS dO YaaWNN UMd

eSnoyBuT

79

79 79 Sy Sy

sem 179 179

79

|£6| |£6| 179 179

99 fotTzeuscssg

964 964 | |

S}so)

79)179 79)179

S6| S6|

76] 76]

GHQNVWAC GHQNVWAC | |

unyueIg

ButTsssoo0adey

79) 79)

€6) €6)

79 79

26} 26} |ZOTIOZTISTTISOT| |ZOTIOZTISTTISOT|

~oz-

SATIGNASSV SATIGNASSV

€7 €7

TG TG

| |

TZ TZ

SE SE

06/68 06/68 QNvVWad QNvVWad

‘uNnTueIQ | |

oTastTupjadg

Ec Ec 62

TY TY

‘TaNd ‘TaNd

dO dO S8}ZzZ S8}ZzZ

¥OZ7+

L8| L8|

UvaA UvaA INddS INddS

~oE+

98 98 | |

feNTeA 09}09] 09}09]

faTny

dO dO

78}€8) 78}€8) WHaWAN WHaWAN

WNTUOINT_, OF OF

uoTtqAVeTes

ZZ] ZZ]

28] 28]

6S 6S

T8; T8; | |

ON vE] vE]

Teuptado

O O O| O|

£18 O O

‘h7Z-V

einsty

ADUVHOSIG dO UVaA 161

CaSUVHOSIQ SAI TERASsv

TaNd INAdS dO WadWn UMd

VBsnoyZurqsaem

"9

"9 29

79 "9

79

79 79 79

49 n

79 79

E

79 49 79

49 79

"9 "9

||

|

79

79

8;

179

mesa

|L6|

Io

MOM

mr

foftazeusecssg

96

149

70

S6|46/

ee

I79

9

AA

|

KAA

Ga0NVWAC

PP

BuTsssoo0aday

3809)

79/79

mr

KK

€6)

A

aaaZ

mrt

76|

KK)

988102S

lb

IZOT|OZTI9TIKOT|

re

Kr)

|

SdHI'TGWNaSSV

79

Oz

Ez

| T6&

NL

|

cL

74

06/68|

mp

A QNVWad QNVWad

|

1

¥O7+

oTastwtadg

99

2S

rT

Le

LL.

79k

TY

88

‘Taha

SaNTeA

a dO dO

$8

79

1?

28/98) uvaA

|

LAA PA

|

INAdS

{Zz

yog+

€e

v€|

wNTUO{NTY,

|

Va

BZececeseeeses

09/09

OF

y %

Zz

Ah

S8

fatny

dO

AA

ss

|e

{09

AAA

78;

UaaWNN

Pop

Joo

AAA

At

A

ECesawes

AT

AZ

AAS

e€8|

Ef

09

uorqoetTes

ON

|

PA

zzZ|6S

V9F

eT AA

OA

tT Er

OP

KK

78

KKK)

O€

l6éc

T8|

tA

Oe

TL

AK

AK)

|

|

NK

P

aa

KS

ve]

ve

OK

Tewr3dQ

Oe O8

XK

KE

KS

O| 64/82)

4

Se K

[7

ra

O

|

LL

*“C¢7Z-VW

O

LZ

|

9

S6

£6 76

T6

26

06

68

ge]

98

£8)

es} 781

z8 8

T8

08

64

BZ

9 iL

eaNnsTy

S

i

x

F

3

™ 162

CaSaVHOSIC SAL TENASsV Tad INAdS dO WaaWN UMd

esnoysutysem 9079 79 79 "9 ” "9 "9 79 79 v9 79 29 79 79 79 79 99 49 79 79

79 8S;

|79 9 |26| Parekh) |

79 79) foTaeusess 94 Paar 79 S6|76|

PA 179 nA PEI GaaNVNAd |

79179 9 AK BuTssesdoaday 380) ae) €6|

19 76] A 93e103S

LOTOZTISTTCOT] OK SAITENASSV Cv TG 444

SE, 9 99/8

06168) QNVWEC QNVWEC

TE » oTastutado yozZ—- IZ ec KAN)

09 [TP 88 THOA PPT

SenNTeA dO dO

$8 79 LT £8198)

9 UVaA pA |

LNAdS {ZZ ZA AAAAAL ZL AA LY 7 9 Zz yoe+ wWNTU0INT_ |

|] AA, 09)09 109 AA SB dO fSetnmy AA 09 78;es| WHEWNN

109 AALS zy Aes 09 O A uotAoeTes | ON

AA PAA A AA ZZ|6S LEAS 19 eT BOasBars Ze AOA

Kk ane) CAA Of joc A T8; AAS, AOA 7 | | kL P VE} VE 4 4 AO O08 Teuwtadg EE A O}] 62) tet | SLE Lo

SO Ke i O 82] LT | |]

0 ‘*97Z-V LZ 9 S6 6 Pe To) 28 68 88] 8] L8 78 €8} c8 z8 T8 08 62 SZ il 74 eANSTYy

y E @ 163

Q9/UMZ GHDUVHOSIG Sd TENASsV TaNd INddS dO WaaWiin

STAIeTY

Sy

Tezoeuaey |£6| 96

foTiaeuess $6}

76! ZB9C ZB9C QHONVWAC €6)

BSutssevoidey 76]

sjsoj SAITENASSVY

TG T T

06/68 QNVWad QNVWad

unztueagq

oTastutTjdo ) )

Tanda JO JO

£8| 707+ UvaA UvaA INddS 98;

yOE+

‘Seseg TST TST S8) dO 78)€8|

feTNY WadWNN

cL T T

uoTIoeTes cl 78 78 96 T8

TeumFadg

"/2-V

aan3tg

aDUVHOSIC dO UVAA 164

Q/UMA

> > Br Br

& &

fs fs

3 3

ae ae O O E E

* *

: : = =

Of

| | feet feet

[est [est

4}0eT_

cet cet

€8T €8T est est

Est Est est est

EST EST €8T €8T €sT €sT

E8T E8T €8T €8T

EST EST C81 C81 €8T €8T €8T €8T €8T €8t €8t

C6T C6T

for for fest fest Sy Sy [ereueg

[EZ [EZ

KOPP KOPP

PP PP |46| |46|

TeST[ES TeST[ES 94 94

foTieussg

$6) $6) TL TL

PP PP

Cees Cees

QC QC

yce9c yce9c 46} 46}

(HQONVNAG

eStr eStr

OL OL

ST ST £6) £6)

Butssavoradey |e |e

|OOT |OOT

Bcpoz|LltOOL|ZLo Bcpoz|LltOOL|ZLo 76] 76]

Ss}s09 aaa aaa

LoL LoL

SAITENASSV

TT TT

|" |" TE TE

- -

oseg

8cl 8cl

8 8

06/68} 06/68} ONVWAd ONVWAd

tA tA

BT BT

oS? oS?

89 89 67/77 67/77 oTastutjadg fenTeA

e8th e8th

SIA SIA 88 88

‘THNd

A A dO dO

TS TS

~~ ~~

ce ce

LcpoollLSI LcpoollLSI

28/98) 28/98)

LAA LAA UVaA

WnTuocINtTg | |

LAA LAA

LNadS

EST EST 9T 9T ~oOE+

CAAA CAAA

cL cL

AA AA SB SB

dO

RSID. RSID.

e e 78; 78; fetny ON

WadWNn

AEA AEA

OT OT

AMA AMA

AA AA

St St E8] E8]

ZZ ZZ

TOT. TOT.

KK KK

4 4

BSlhct|/alololo BSlhct|/alololo QT QT

uoTJoeTes

A A

Aas Aas

78} 78}

MN MN RITE RITE

cow cow

Pees Pees

KL KL

Cow Cow

TSTY TSTY

T8} T8}

A A

7 7

A A

hE hE IE IE

ZE ZE CC CC

A A

OF OF

A A

was was + +

Tewradg

| |

62/82) 62/82)

| |

J J sg sg

LZ LZ ‘°g7-V

9 9

s6 s6

26 26

06 06

68 68

88] 88]

£8 £8

S8 S8 ¥Q ¥Q €8 €8

c8 c8

T8 T8 08 08

SZ SZ 6L 6L

LL LL 9 9

| |

ean3stTy

E E

2 2

3 3 & &

E E 6 6

165 Q/AMA Q/AMA GADUVHOSIG SAL TENESsV

Taha INddS dO WadWiin DEAWOSTY DEAWOSTY

€8T est €8 est CSTR

€8T €8T est €8t €8T est €8T esl

EST EST

Tessuey Tessuey

TELTESTleet TELTESTleet

foTzeuass foTzeuass

GaQNVWAd GaQNVWAd

89Z|E87/967 89Z|E87/967

3809 3809

Butssosvoradey Butssosvoradey

wnTueIQ wnTueIQ

SHITHNASSV SHITHNASSV

0 0

(NVWad (NVWad

YOZ+ YOZ+

ofastwuptado ofastwuptado

Tanda Tanda

SenTeA SenTeA

dO dO

£8|98)| £8|98)|

UVaA

INddS INddS

wNTUOINTY wNTUOINTY

yog+ yog+

S8| S8|

JO JO

781es| 781es|

faetTny faetTny

WAdNNN WAdNNN

ON ON

uotjoetTes uotjoetTes

ze ze

T8 T8

Teufzadg Teufzadg

*G6z7-VW *G6z7-VW eaN3Tyg eaN3Tyg aDUVAOSIG dO avaa 166

CHSUVHOSIC SAI TUKASSV

TaNd INGdS dO WaaWNN UMd UMd

esnoysutjsaemM esnoysutjsaemM

EvVS1TS cL 79

9 6 ce G¢ O€ 99 vA 99 79

"9 SJSsop SJSsop

9 r r

42S

|46| |46| a8e107Ig a8e107Ig

[8S

8S

foTieuess foTieuess 9@ 9@

|

OIF

79 S6|%6| S6|%6|

EL

79

Z%OZ- ‘aser103ISg ‘aser103ISg Z%OZ- GHQNVNAC GHQNVNAC

OB Butsssooidsey Butsssooidsey

99 €6| €6|

|

vVBl6Z

99 26] 26]

79

SAITENASSV SAITENASSV T& T&

|

Z|

79

06) 06)

ZozT+ ZozT+

QNVNAd QNVNAd DTAsTTeey DTAsTTeey

ZS

LS 68 68

| ‘umFueIN ‘umFueIN

87]

‘Tad ‘Tad 40 40

SE;

£8) £8)

YVaA

eseg eseg INadS INadS

VE

98 98 x~OZ- x~OZ-

|

VEL

faTny faTny 40 40

EEITE ‘NMS ‘NMS

78)/€8| 78)/€8|

WAdWNN WAdWNN

uotTjoeTes uotTjoeTes ZOZ- ZOZ-

Oe 78 78

|O ‘NMS ‘NMS T8 T8

| Temradg Temradg

O

ZOT+ ZOT+

6L 6L

‘aseg ‘aseg

‘oOE-Vy ‘oOE-Vy ean3tTy ean3tTy

ASUVAOSIG dO UvaAs 167

CHSUVHOSIG SdITENASsV

Tanda LNAdS dO WadWnn YMd

esnoysutjsem esnoysutjsem €7S17G €7S17G 9 et 79 Sy Of ee Y G2 6 79 49 79 49 79 |2eS

|£6| 18S 18S

8S foyAzaeusss foyAzaeusss

96 99 99 99

S6|76| |€2}08 |€2}08

GaQNVWAC BuTssavo0ridey BuTssavo0ridey

€6|

| | 78162 78162 26! SHITEWASSVY

TG

| |

480) 480) VLILS VLILS

06168

QNVWWad QNVWWad

OfFAsTTeoy OfFAsTTeoy

wNTUeIN wNTUeIN |8v |8v

TaNd

| |

dO dO OE] OE]

28/98;

YVaA

osseg osseg ZO~+ ZO~+

INAdS

vE vE

| | VE; VE;

S8) fatny fatny

40 eE|TE eE|TE 78; WiGWNN

€8|

uotqAoeTes uotqAoeTes

| | oz] oz] ze

TS

O| O|

Tewradg Tewradg

O| O|

Oo] Oo]

o o

‘*TE-y ‘*TE-y eanstTy eanstTy

ADUVHOSIG dO UvaA 168

CaSUVHOSIC SAI TaWNaSsv Tana INadS dO WadWNNn WMd

esnoy3utTjsemM

9

"9 29 "9

79

"9 "9

79

79 79

"9 79 nm

79 79

"9 79

79 "9

79

79

79

fa

|

||

Ii ||

|i

{I

{I

[I

f

evs

9

6

fr

0€

[sz

Hy [lee

yg 79

49 49

49

Sy

jp

Err)

zs

|16|

jes

8S fotzeuacs

94

|

99|e€z

wee

t{é

T

S6|%6|

ery

Baas

Hea

G4HQNVWAC

log ButTssoooidey

oT]

€6]

Ly

|

Tr

ye

89

9€1

ea

4

z6| $350)

aA

|

lez

wa

SHITENASSVY

STL

|

Ta

I

|

A oseg

vZ/

SEE

ET

L

A

06/68]

| (NVWad (NVWad

oTAST[eey

{LS

zs

A

| fenTeA

sy

vy

88

Tanda dO dO

FESPPEEE

EE

[oe

Iz|_

[STE~,7

28/98]

CAAA

L

wnpUucIN{Tg YVvaA YVvaA

|

eseg

INadS

lve

+

[

LAAN

ZEeeea-a

veloc]

7€

ssi SeTny

JO

OK

TIA

6€

ve/Es] oN

WadWN

PAY

LAT

AA

t’elLaatrtrel AAA

LZ uot

tefoz]

KK

TAA

LA

p7

AANA zoeTes

Zeal

Ne

HW

At

AK

TS] A A

Tr OT

of

A

KR

EK

KE

Teutiado

oT

OF

A

oan

Fe

I

EEL

LL

a

GZ]

07

LO

ZT

O]7

"TE-V

Z 0

|

ee

9

$6

£6

96

T6 Z6

06

[oe

88

18

€8

78 $8

T8 PaNnsT 08

ey 6L

9 LL

a ADSUVAODSIG dO UvaA 169

GHSaUVHOSIC SAI TENASSV Tand LNAdS dO WaaWN YUMd

esnoy8utjsemM

€EVCICS

79

9 ZL

¢ £6

18S

8S foTAeuecs

|

99JEZL G6|76|

|

CHQNVWAC

08) BuTssao.0iday 3809 €6|

78 26] wNTuUeIQ

[62

SHITENASSVY TG

|

VZILS 06) GNVWaAd oTASTTeey ~OZ+ 68

BY

Tad fenTeA dO

JIE 28/98} YVaA eseg

IVE LINadS

| wNTuUo

VETOE S8) faTny

dO INT, 78)

WaaWnn

ITE €8 uotTjOeTeS ON

| |

OZ} 78 T8

O|

O TeurTIdQ

|

O}

O ‘“EE-VW eANnBTy

ADUVHOSIC dO UvaAAs 170

CADSUVHOSIC SAI TENASSV

Tand INGdS dO YasWNN WMd

{79 {79

Vsnoysutjzsem

oEob>r oEob>r

"9 "9

79 79

79 79 "9 "9 79 79

79 79

29 29 3 3

: :

"3 "3

roto roto

79 79

v9 v9 79 79

79 79

79 79

79 79 79 79

| |

| |

|| ||

|| ||

|| ||

|| ||

|| ||

|| || 1 1

ES ES

ct ct

9 9

8 8

se se & &

4% 4%

#79 #79 79 79

99 99

79 79

49 49 | |

25/85] 25/85] |16| |16|

8S 8S

fotTieusos

ree ree 94 94

c c

9 9

99] 99]

AO AO $6146] $6146]

OK OK

[or [or

e208 e208

Tres Tres

TOP TOP MOM MOM

CHGNVWAC

iw iw

Burssa.o0iadey 3s09

KK KK

Oe Oe

€6| €6|

| | iy iy

tt tt

8/62 8/62

pir pir

76] 76] ee ee

WNTURPIQ Ae Ae

P| P|

iit iit

tte tte T T

SHITENASSVY

Ta Ta

ede ede | |

hK hK

vz] vz]

EEA EEA

L L

06/68] 06/68]

| | QNVWad QNVWad

OTAsTTesy YOZ-

i i

LS LS

{Ls {Ls ee ee

[gy [gy

gp gp 88 88

Tia

fenTeA

Fa Fa

| | 40 40

Tot Tot

9€] 9€]

[sTk [sTk

28} 28}

I I UVaA

CAA CAA ssegq

INGdS

AOA AOA

ve ve

IO IO 98| 98|

WNTu0OINTg,

| | att att

| |

ON ON

vel vel

tt tt ep ep

faTny Se] Se]

40

OH OH

ACA ACA

pA pA

ete ete

CON CON sles] sles]

WHOWNIN

ress ress

A A

OP OP

tL tL

A A Ef Ef

uoTADVeTes ke ke oN

Oe Oe

foc foc

EET EET

LA, LA,

AEE AEE

OO OO

OY OY

OK OK

OCP OCP

ze} ze}

HW HW EE EE

eat) eat)

rr rr

[0 [0

ON ON

OF OF

a a

EOas EOas

T8] T8] Oe Oe

OT OT

[TewmtqjdQ

ToT0 ToT0

oe oe

Ot Ot

KS. KS. OF OF

s s

| |

62/82] 62/82]

Lr Lr | |

a a

0] 0]

1 1 LT LT ‘*HE-V

0 0

LZ LZ T T

96 96

C6 C6

76 76 €6 €6

Té Té

Z6 Z6

06) 06)

Te Te

98] 98] C8 C8

2ANBTy

=| =| Z8 Z8

T8 T8

08 08

6L 6L

QL QL

iL iL 9 9 | |

F F

8 8

w w y y 8 8 171

CHSUVHOSIC SAI TENXSSV

Tad INddS dO WasWNNn UMd UMd

esnoyZuTysem esnoyZuTysem

€7S|

79

9 cl

7S)

jes £6}

8S

8S foTzeuscss foTzeuscss 94

|99

79 S6/76|

|

E2108

79

6

GaQNVAAd

79

{9T

3809 3809 ButTssaooidey ButTssaooidey €6)

|

78}

26) 98e109S 98e109S

62

SAITENASSVY T&

I7L 06/68 ONVWHC

|

YOZ+ YOZ+ OTASTTeey OTASTTeey

LS

187

Tanda | fenTeA 40

DE £8/98) UVaA

INAdS eseg eseg

VE WNTUOANT, WNTUOANT,

[VE

S8) fatTny fatTny

|

40

GE; 781€8)|

WaeWNN

TE

uotqoeTas uotqoeTas ON ON

|

Oc] zs

O TS

| TewrzdQ TewrzdQ

O

‘*cE-y ‘*cE-y ean3Ty ean3Ty

ADUVHOSIG dO avaAs 172

GaSUVHOSIC Sal TaWaSsV TaNd INddS dO WaeWN UMd

{79

esnoy3utysemM

miso

99 79 "9

"9 9

79 "9

79 99

79

"9

79 “9

79

79 v9

"9 79

79

79

=

=|]

|

|

{I

|}

E7S1ZS

Hel

|?

Of [16

ee [Sz

79 77

79 [79 79

79

Sy

|[cSPF

|46|

PPrPre

18S

foTzeuscos

SPA

oP

94

|

99IEL

rT

¢

S6\76|

BEET

6

A

Py

CaQNVWaAC

|

ptleiarre

79

BuEssao.0adey 3509

08)

AA

£6

P

7B

coe

26|

a8P109S

l6Z

z9

SAITANASSV

Ta

|

A

Sas

PL]

EEE

6

06/68{

QNVAAG

{ss

4OZ-

atTAst[eey

ZS

¢

|

Bx)

84|

Tr)

Be

Tifa

SenTeA

dO

AVAL

Py]

9E|vE

Te ST

28/98]

dvdr

|

aeseg

LINAdS

Da

AA

9

uMTUuO

|

ett

TTT

ALLA

vEleE

weeceeweawaz

Ssl

fetTny

40

NT,

6

Kh

AMY

78/E€s|

WHeWNNn

|TE

ECcesesawaw Dn

WEeeseewsawaz

TE

Bewwsa

uofqoeTes

esa-a

A

ON

1)

LT

[Oz]

OP

TP

ON

02

ee

ze

Seaoww

YT)

TR)

Ts;

Of

Oe

EET

Oe

TewT3idg

O

ALE

OF

|

Aa

I

O]

64/82]

|

La

waa

O

TY

LET

‘*g9¢-V

JO

LdT

9

88

6

76

76

T6

06

68

es]

B)

7 $8

eansTy

Z8 78)

O08 T8

61

yi

9 il

|

:

a F & 173

CHSUVHOSIG SAI TENASSV UMd Tand IN2dS dO WaaWiin

XOOTIM

Trees

39

89 89 a9

89

89

89

89 89

89

89 89

89 g9

89 89

89 go

89 89

89_

jj

|

| |

1

||

||

L

fst

pue

ot

Hz

ec et {4

82

89 84

89 89 89

89

81

|

yoooqeg

€S/8¢

[esf

|£6|

ss

96

|

Pere

el)

99]

990

fotaeuaess

S6\%6|

72

89

9

saaaas

CACNVWAC

|

YY

|T8

wp

€T}9

€6|

|

BSutssav0idey

S8log

89

TT[

26|

EL

Pll

Py]

SH1'1GNASSV

8

8 719

TE

| KK

LL

wZ18¢

Tessa

06/68}

A QNVWad

[es

s}so)

e

OTAST[esy

jer

vb

Be

Tind

4

| dO

SL.

eseg

9€/ce

9)

28/98|

Aeeeceewas uVvaA

[7

LA

eer PAA

INadS

4),

Se

|

eseg

AAA

seforloe

SEL

SB

aA JO

KK

OT KY

Zhe

AK on_

vel€e|

foTny

WaaWNN

COSCO

LE

A114}

OC

ZL

A

AT

IIE

f

tT

bz

AAA

fT

uotzIeTes

ZAKS

ON Oo7f

OE

Ze

YX

Tt

TF

i

fo

OA Yt)

Ur

T8|

OT

a

7

AKA

O

OT

To

A

YL

OF

XY)

pb

AAaE:

|

~

]o

TewradQ

IEE

64/82}

LT

J

|

Lo

le

|)

o7fo

LZ

YT

‘“/E-V

8

96

8

£6

76

06 16]

68

ss]

98]

2 es}

z8 78|

08 T8

SL 6L

9] LL

|

ean3sTy

og

S

8

&

Ss

2 174

UMd GaSUVHOSIG SAI TENaSsV TaNd INddS dO WagWiNn BSuTivseuT3uq

|

o8 O8 08

og

08 08 08 08

08 08

08 os 08 08

08 08

08 08

08

|

||

fez 08 ET8ILS

{8

at

8T

108 947 cv [ler

08 6S ze

08 08

Sy

uotysnqmoy)

}LS

|16|

AK

[€9

94

|

i

ZZ}

age

S6|76|

eb)

fotzeusos

A

08

O8

QACNVAAC

Fr

128

ert)

L

€6|

NA

J

|

2628

oT] El)

|e

76]

A

eoawa-

BuTssadoidey

SAITENASSVY

OP

Z

Té&

|

|

OB}

06/68|

QNvWad

)

ET

EO

cor s]s0) s]s0)

|

ES|GEISE

esr

oFAsTTesy

88

[7

TdOd

O UVvaaA dO

oseg oseg

28/98]

|

INAdS

AL

BE

AA

A

|

ZLAA

ALT

SELEVIVE

BE

oseg

Ss]

NH

dO

LL

eyL

tt

y8sles|

WadWNN

PA

Saetny

ve

x

A

|

tT

POA

>

a

ra

AMAA

TZ}0

A

A

BEsaws

T?é

EI

A

A

Ze

ES)

MAK

uoTIDeTes

rT

Pro

se

T8}

AT

I

A

YL

AK

|

A

Fr

|

0

A>

A

08

LL

ON]

ys

AO

a

DE

4

J]

Le

0

62/82)

TewtqadgQ

Pd

Lo

lL

La

4

0

{10

LZ

||

‘*gE-V

9

8

£6 76

76

0 16

g8|

8]

es} 78

c8 c8

T8

08

el

9 Ld

eaNnsTy

§

8

5 S

a

<4 175 Q9/AMG CaASUVHOSIG SAL TENASSV TaNd INAdS dO WagWn WARDeTY

9€ O8ZIEE O8ZIEE

GT GT

€8t €8t

OS

£8 £8

1 1 96 96 6 6

est est €8T €8T C81 C81

Stl Stl e8t e8t

TOT TOT I I

Tereuey | |

|€€

46; 46; V+ V+

v1 96 96

foTieuscsg

89 89

89 89

S6/%6| S6/%6|

€8 €8

GHQNVWAG GHQNVWAG

90 90 €6| €6|

Burssaooidey

76) 76) SHITENASSVY SHITENASSVY

s}sop

T6 T6

T T 06) 06) QNVWad

unqtuein

68 68 USCTI6 USCTI6

ofistTTeey Tad Tad

dO £8} 98) 98) £8} %Oz7+

UVvaaA

| |

INAdS INAdS 68] 68] eseg

‘aseg

£8 £8

S8 S8

JO JO l6é0uze l6é0uze

fetny

78)/€8) 78)/€8)

WagWON WagWON | |

uoTIoeTeg

gvio gvio

78 78

T8; T8; O08 O08

Tewr3dQ 62/8 62/8 ‘6E-V eansTy

ADUVHOSIG dO UVaAA 176

GASUVHOSIG SAI TERXSSV 9/AMA Tand LNadS dO WaaWNN

WfA}DeTY

os

9f est O8LTIEE O8LTIEE

T

[erauey

{te £6|

LY 94

foTrzeusog 89ST 89ST S6| 76)

QHQNVAA

| | 904 904 €6|

BuTssadoiday 814 814 76;

6380) 904 904

SHITENASSV

T6 161] 161]

aseg

06)

QNVWad QNVWad 6718716 6718716 68

OTAsT[eey

fen[eA

TaiNd dO dO

£8}

UVaA UVaA \68 \68

wnNTUOINTg

INAdS 98]

sseg

| | 28 28 S8|

dO [601178 [601178

fatny 78/€8|

WHaWn

oN By |o |o By

uoToeTag 78

T8

| |

0 0 lo lo

Tewrado 62|8

“O¥-V

ean3aTy

ADSUVHOSICG dO UVaAs 177

9/AMG

gg gg a5 a5

Fo Fo rs rs

aS aS

33 33 Be Be

By By Ba Ba

WF1}0eT_

[est [est

est est €8Il €8Il este este

est est

C8T C8T ts ts

«eel «eel

3 3 LEH LEH

ES ES

«Lee «Lee

Est Est

EST EST EST EST EST EST

EST EST EST EST

Est Est EST EST

| | ff ff

fos fos

{ST {ST IBLTIEE IBLTIEE

1196 1196

7d 7d

|Esl |Esl

ESET ESET Est Est WEST WEST

LOT LOT EST EST jest jest

eet eet

Sy Sy | |

Teavsusey

Par Par

ject ject

|16| |16| IZ IZ

det det

.

41] 41]

ee ee 94 94

wi wi

foTrzeuacg

89 89

891881 891881

er er S6|%6| S6|%6|

t8t t8t

Spr Spr bb bb

GACNVWNAG

ees ees

90q 90q ripe ripe

4s0)

A A

ast ast

€6] €6] pa pa

BuTssedoiday

BIZ] BIZ]

tile tile

est est

26] 26]

A A Ll Ll

unqueaig

| |

904 904 eet eet

SHITENASSVY

Td Td lL lL

Léll6yI8z1 Léll6yI8z1

tet tet

SS} SS}

06/68] 06/68]

EET EET (NVWAd (NVWAd

a a

YO7+ [for [for

OTAsT[eay

[8c [8c 8B 8B

Tana

fENTeA dO dO

16 16

WwCeeseaaa WwCeeseaaa

ee ee

28/98] 28/98] UVaA

LAA LAA [68 [68

INAdS

Mae2eeeeaa-2A Mae2eeeeaa-2A

AAA AAA 2 2

WNTUOINTY

aseg | |

Zea Zea

28}60lzes 28}60lzes

£8 £8 SB] SB]

dO

ELE ELE oon oon

faetny 78/E8| 78/E8|

WHGHAN

(AXA (AXA

pe pe

AA AA

TEEPE TEEPE

ZA ZA

ae ae

AA AA

pele pele | |

oN oh oh

uot

By By

TT TT

84#f[ 84#f[

ET ET

Ze Ze

EEL EEL 1 1

oeTes

|o |o

TS] TS]

AA AA

Er Er

KT KT

4 4

tT tT

OUT OUT Kk Kk

lo lo

OU OU

OF OF Ae Ae

TeuTadg

tb tb

as as

OL OL

— —

[o Jo [o [o Jo [o

64) 64)

AD AD | |

8Z| 8Z|

4 4 EL EL

Ld Ld

“Ty-VW

96 96

s6 s6

76 76

£6 £6

86 86

oe oe

ee] ee]

era era

eg} eg} 98 98

zB zB

T8 T8 08 08

64 64 el el

ii ii 9 9 | |

eansTy

| |

: :

8 8

v v & &

5 5

q q ™ ™ 178

GaSuVHOSIC SAI TENASSV Tand INGdS dO WaAaWNN

YUMd

esnoysuTjsom

79 79 79 79

99 99

79 79

79 79 79 79

99 99 79 79 79 79

79 79 79 79 9 79 79 79 79 "79 99 79

9

9

CL? CL?

AY AY HYD HYD

8380)

| | 09) 09)

£6|

ede103s 29492 29492

foTieusss

96

$6)

| | 78176 78176

96)

ZOZ- CHCNVWAC

BuTssevorday

€6 | |

‘Se8e10IS £6} £6}

26) T6|S8 T6|S8 SHITEWASSY

TG

06)

YOT+

| | QNVWAd QNVWAd

ITISTTeSY 99/SS 99/SS

68

‘uNTUeAN

‘Tand

| |

dO dO T#] T#]

£8} UVaA

YCOT+

INddS 6E 6E

98)

YOZT- 16€ 16€

$8)

fetTny | | 40

‘NMS SVIDE SVIDE

78)€8| WHOWON

uot

ZOZT- JET JET

78

oeTes | |

“NMS O O

T8 10 10

Temtadg

ZOT+

| | 0 0

‘eseg 10 10

‘°Zy-V

eansTy

ADUVHOSIG dO avas 179

GaSaVHOSIG SAL TENASSV

TaNd INAdS 40 WadWiN UMd

"9 79 79 49 79 "9 79 79 79

79 79 PnoysuzAsom 79 99 "9 79 79 49 99 99 79 9 9 cL? |

09} L6| L6|

L9I9Z

foTazeusos foTazeusos

96 96 S6|76/| S6|76/| 78 QHQNVWAC |

26}

BuTssoooiday BuTssoooiday €6) €6)

26; 76) 76) T6}S8

SHITENASSV

T& T&

4809 4809

06| 06| QNVWad QNVWad

| OFASTT OFASTT

991SS

68 68 unTuery unTuery

TaiDd

dO dO Vay Vay

ITY £8) 98] 98] £8)

|

UVaA

YCT+ YCT+ ZOT+ ZOT+ INddS GE

/6E

S8 S8 Satny Satny | dO

SH) 78/€8| 78/€8| WadWAN

9ETET]

worqoeTes worqoeTes 78 78

O TS TS

JO Teur3ydg Teur3ydg | O

10

“°Ey-V “°Ey-V 2ANnsTY 2ANnsTY

ADUVHOSIC dO UvaA 180

GHSUVHOSIC SAL TENASSV Tand INddS dO UaeWiN

Wid

VsnoyZuyzjsey

79 79 cL? cL? 9 9 Sy

79 99 7¢

79 79

79 | |

|

09) 09) 09 09

6 Z9OI9ZL Z9OI9ZL

”9

fotzeussg

"9 G6} 76 (aGNVAAC

| 26 26

Butsssooidey

€6| 26 26 76)

S]S0)

| | T6|S8 T6|S8 SZITENASSV T&

eseg 06) (NVAad

OTASTTeey 9 9 68

fon~TeA SS SS THA

dO ITY ITY

£8} | | UVaA

unptuo INAdS

¥¢T+ GEl6E GEl6E 98]

Nt S8

fetTny

dO [Sy [Sy 78)

WAGWON | |

ON 9EJEZT} 9EJEZT} £8)

uotjoeTes

78 O O

T8 }O }O

Tewpzadg

| | O O

‘Hy-VW

aaNn3Ta

ADSUVHOSIG dO UvAs 181

GaSUuVHOSIG SAI TENASSV

Taha INAdS dO WaaWNN Wd

esnoyBuzysem

79 v9

2

79 49 73

2 "9

: 79 79 79 79 73 99

79

79 79

9

9

||

ZI¥

979 We

Wve [49 79

{179 79

8;

|

{09

|L6|

0

|

OAK

£9192

29

€ fotzaeusos

94

OA

99F

ZT

A

S6|%6|

i

178

T9 ez]

ates

KIA

4040

GaGNVRAG

|

WY

PF

|

BuTsssoordey 3809)

76|

MEA eelet

WN

€6)

4A

26

Oz 79

76|

UD 4

UMTUPIN

|

|

h

SAITENASSVY

16]

6s| ze I

TG

Iu

S8

S uta

06) (NVWad

7

4YOZ+

OTASTTeOY

199

Z

9

68/|

|

AAT

SS|

T 9

TaXd

nS 88

FENTeA

til dO

TY?

192 LT

28/98)

§=a4 YvaA

LAA

a

YGT+

j6€

INAdS

AA

AAAI

a

LT

MNTV0ORINTY

e144 |

i

CEeceewesaaass eae

6EISY

6€

SB

SeTny

dO

GH

AA

78/E8|

WHaWN

[9€ APPLET

TA

AN

9 AL

AA

uoTioeTes

ZL

A

ON

PALA

“4

A

Jee]

ctf

zB

nt

1

OX

TTT).

Ae

OF

aoe TS)

KK

+ OW

Para

2

Ah

TT

PLT

O Teup3do

A

OF

ote 1 |

KS.

OF

62)

a

Le

2

7

a

O

82|

|}

"Cy-V

O

Z

S$

96

€6

76 86 T6

06

es} 68

etal cel 78 $8 oan3sty z8

T8

£48

62 L

LL

9

|

E

&

o

& it é

© 182

GaSUVHOSIC Sal TANASSV

Tad INddS dO WadWnNn YMd YMd

BFsnoysutjasam BFsnoysutjasam

99 CL?

9 | |

09 O9;| L6 L6

79 LOLOL fofreusss fofreusss

9

S6| S6|

| |

78) 78) 76 76

CHQNVWAG

| |

76 76

ButTssaed.ordsy ButTssaed.ordsy

3809 3809

€6| €6|

| |

26) 26)

76} 76}

unzTueIg unzTueIg T6}S8 T6}S8

SHITENASSVY

TG TG

06| 06|

| |

(NVWAC (NVWAC

ITASTTeSY ITASTTeSY

%Oz- %Oz-

99} 99}

68 68 SS SS

Tid

fenTeA fenTeA

40 40

ITY ITY

£8} £8}

| |

UVaA YCT+ YCT+

INdadS

GEJ6E GEJ6E

98} 98}

UNTUOINTY, UNTUOINTY,

S8i S8i

fetTnyY fetTnyY | |

40

S¥) S¥) 78)/€8)| 78)/€8)|

UxEWON

9ETEZ 9ETEZ

wot wot

ON ON

zoepTes zoepTes

7g 7g

| |

O O

TS TS

| |

Teupadg Teupadg

O O

‘*gH-V ‘*gH-V aaNnsTy aaNnsTy

ADUVAOSIC dO UVAA 183

CaSaVHOSIC SAI TENASSV

Tand INGdS dO WadWn UMd UMd

esnoysuT esnoysuT

cLlY cLlY

sem sem

L6 L6

L9 L9

fopTAeusss fopTAeusss | 9L/178 9L/178 |

"9 S6| S6|

T9

€¢c

76 76

QHQNVWAC QHQNVWAC | |

16T 79

BZuysssoorday BZuysssoorday 3809 3809

{26 {26 €6| €6|

| {26 {26

22

cs

76; 76;

a8e109S a8e109S |T6 |T6

79

SHITENASSVY SHITENASSVY

TG TG

| |

S8I99 S8I99

06) 06)

QNVAaC QNVAaC

OTASTTeSy OTASTTeSy YOZ+ YOZ+

68 68

| |

SSI SSI

Tad Tad

SanTeA SanTeA

40 40

TY TY

48/98 48/98

UVAA

YOT+ YOT+

I6E I6E

INaAdS INaAdS

wNTUOCINT, wNTUOCINT,

| |

| |

GES GES

S8/ S8/

fatTny fatTny

40 40

78) 78)

UHaWNN UHaWNN

IDE IDE

€8] €8]

uoyzIoeTas uoyzIoeTas

on on

| |

ET] ET]

7s 7s

TS TS

O| O|

G G

Teuradg Teuradg

| |

0; 0;

O O

‘*/y-y ‘*/y-y eansTy eansTy

ADUVHOSIC 40 Uvads 184

CHSUVHOSIC SaITaRaASsSv TaN4d INHdS dO UAEWNN

WMd

esnoyZutzseM

CL7} CL7}

¥ ¥ 99 99 "9 79 92 99. 99 79

8;

|

|

109 109 09129 09129

16 79 79

foTzeuecs

| | 9L| 9L| 99

$6|%6| 7816 7816

T9 €¢ €¢ CHQNVAAC 79

Butssad.o0idey

3809 T T

€6

| | 246) 246)

26| |S? |S?

398e103S

T6 T6

TY TY 0 0 SHITENASSV

Td

| | S81 S81

06) GNVAAC

OTASTTeey

7OZ- 99 99

68

| | SS} SS} ‘THQ

fanTeA

dO T7I6€ T7I6€

z9|98| Uvas

¥CoT+ LINadS

uUNTUuOINT_ | |

Sel GE|S7I/9E GE|S7I/9E

feTNyY 40

veles| WadWnnN

vot

ON | |

zoeTes EZ; EZ;

ze

8 OF OF

Temtadg

OF OF

O O

| | OF OF

‘*gy-V O O

eansTy

ADUVHOSIG 40 UvaAs 185

CaSUVHOSIC SAL IENASSV Q/IMA Tand LNAdS dO YagWNN

WTaAqVVaTy_

Of Of est est

ISVTES ISVTES vT vT

7 8cl 8S est est eet est €sT Sy

8

[ezsuey

|L6| TEI TEI 94

fofAzeusds C6U9TS C6U9TS S6|%6|

GaQNVWAC LEA LEA €6|

BurTsseooidey TSeLEc TSeLEc 26)

SAITHNASSV

S3s09

TG OCA OCA 06;

(NVWad IL IL

wnTuerg 68

OTIST[BSY TLy TLy

Tad

O UVvaAs dO £8/98|

~O7+

INAdS ZOTIOOTIcz ZOTIOOTIcz

YCOT+

‘eseg S8

dO

feTNyY tT] tT] 781€8|

WaeWNN v6iss v6iss

uot 78

oeTes lo |o |o lo

TS jo jo

Tewradg

‘6y-y

eAN3Ty

ASUVHOSIG dO UvaA 186

9/YMA

>z >z

Bg Bg

Fo Fo Be Be

Bs Bs

Ea Ea Q Q 34 34

ae ae

gE gE

[ee [ee = =

WTAWOSTY

He He

|

corpo corpo

Ee Ee

EST EST €8T €8T Es Es eet eet

Lest Lest bee bee eetfesip eetfesip

[eet] [eet] E81 E81 €8T €8T

EBT EBT EST EST EST EST

EST EST EST EST E8T.|] E8T.|] est est

EST EST

|| ||

|| ||

|| ||

|| || |] |] |] |] || ||

‘USvhesT ‘USvhesT

rt rt

ss ss

Est Est €8T €8T 8zT 8zT 68 68 ve ve

€8T €8T €8T €8T

est est Sr Sr

Ter9ueyH

| | RSP RSP

|£6| |£6| + +

(ou (ou

69 69

I I

94 94 it it

oT oT

fotaeuscs

esty esty

e6T e6T

S6|76| S6|76| i i

te te est est 9Tq 9Tq

CHONVWAC

eet eet | |

4 4

ez ez

7Sj96 7Sj96

tb] tb]

€6| €6| i i

ZuTssesooraday

tozzeq tozzeq

sot sot 76] 76]

$3s09) | |

TA] TA]

tetra tetra ys ys

SHITENASSY

FI FI

T4 T4

| | et et

fezt] fezt] OCA OCA

eseg

eT eT

9£ 9£

GZ GZ

06/68| 06/68|

| |

QNVWad QNVWad TT TT

TLIZY TLIZY

Hid Hid + +

OFISTT

fan

L4T L4T

Fat] Fat] 8H 8H Tanda

[eA

dO dO SON SON

9¢ 9¢

64 64

Ces Ces 28/98] 28/98]

Boy YVaA

wnNTuo_ANT,

CAAA CAAA zoq zoq

INddS

|ZOT |ZOT FFF FFF

¥oT+

Cees Cees

ooze] ooze]

oo oo

a a ssl ssl 40

cclL-f_ cclL-f_

fSeTMy

AA AA

va va 78} 78} WadWnN

ON

(AAAI (AAAI

AALHIE AALHIE

7615S 7615S

A A

6) 6)

An An

Es] Es] TT TT

uoTIoeTeS

Sewewa Sewewa

TA TA

GS GS

AAA AAA

AAT AAT

TOT TOT OT OT

LILES LILES

Ze Ze

Tt Tt fT fT

HK HK

ON ON

Ub Ub

|0 |0

T8| T8|

AILEY AILEY

Or Or

eK eK xX) xX)

aars aars

lb) lb)

oe oe

10 10

7 7

Oe Oe

OK OK

OK OK

OM OM

a a

2 2 | |

TeWTIdQ

b b

62) 62)

a a

LE LE T7 T7

7 7

[0 [0

82] 82] LT LT

p p LZ LZ

*OC-V

S S

£6 £6 76 76

86 86

oe oe 16 16

|e |e

8] 8]

| | 98} 98}

c8 c8 es} es} 78, 78, $8 $8

T8 T8

08 08

6L 6L

SZ SZ

9 9 im im

saNnsTy

2 2

iS iS

3 3

5 5

38 38

™ ™ ! ! 187

9/UMA GaSUVHOSIC SAL TERASSV Tanda INAdS dO WaegWnn

OTAQOeT_

€8T est est est est est est €8T est €8T €sT eet €8T €8T €8T €8T €8T est €8T

e8T est

est TS? TS?

Of €8T val

est 8cT 8S Sy Sy €8t 68 7E

est est €8T €8T

Terzeuay

|L6| |L6| S

69 69 94 94

foTieuscs

€ $6} 76) 76) $6}

OTA

CaQNVNAC

Lee

3809 3809 €6| €6|

BuTssaj0iday

TS7zezjOc7

76| 76| UNpUeIQ UNpUeIQ

SHI Ta Ta

TAWASSV

06) 06)

(NVWad (NVWad

YOT+ YOT+ 68 68

IZ

OTFISTTeoy

Tey

Tafa

feNTeA feNTeA dO dO

£8/98/| YvVaA YvVaA

INAdS

cCOTOOTKEZT| UNPFUOCINT_ UNPFUOCINT_

YCOT+ S8

dO

foeTny 78;

WadWON

76

€8! oN oN

uofjoetes

156 78 78

|

0 TS

10

Tewp3do 0 0

‘I¢-V

aansta

ADUVAOSIC dO AvaAA 188

CHOUVHOSIG Sal IENHssv TaNd INddS dO WaadWnn

WMd

esnoyZurjsemM

99 99 782) 782) 8Z "9 79 "9

$380)

I

89|S2 89|S2 79 79 |46|

e8e103§ 79 79

foFreusss

96

198 198 79 79

6 76) S6)

| |

S6|POTEOTICOT96 S6|POTEOTICOT96 99 99

~OZT-

QHONVAAC 979 979

BuTssoooaday €6)

‘eBe103g

99 26|

79

SHITENASSVY Tq

02 99 6 06/68

ZO7+

| | QNVWad QNVWad

BFASTTeoY L179 L179

|8 c 79

“MNTUeIN

|c9

Ta0d

| |

dO dO Lely Lely

£8} YVaA

INAdS

YOE+ 98

YOZ- lye lye

feTNY | |

dO

‘NMS TSloy TSloy 978)

UHEWON €8|

woTzoeTes

ZOZ- faz faz

78 | |

‘NMS oO oO

T8 | |

Tewsadg O O

ZO7T+

“esta

“°z¢-V

eanstTy

ADUVAOSIG dO UVaA 189

GASUVHOSIC SAI TEnaSsv Tand INGdS dO UaaWNN UMd

Ssnoysuy3semM 782 79 189

99 L6 L6 | SZ| foTreusess

98 S6| S6|

1S6 76 76

QHCNVAAG | |

BuTssadoadsy €6) €6)

POTI60TIcoT) 26| 26|

SHI'TENASSY TG TG 96

3509

06/ 06/ (NWWad (NWWad Ivz

OFISTTeey 68 68 munFuern | Z9)L7

TiNa

dO dO

£8} £8} dvdr lbh ZOc+ YOE+

INadS 98 98 | vy fe ITS dO

Tny 78/€8| 78/€8| WHaWNN OF uot }97}

IoVeTesg 78 78

O10 T8 T8 Tempjdg | O10 *Ec-y ean3Ty

ADSUVAOSIG dO avaAd 190

CHSUVHOSIC SAITENESSV Tanda INAdS dO UaEWiN

UMd

VPsnoyZutysam

98C 98C

79 79

|89 |89 79 79

L6

JSZ JSZ T T

foyTzeussg

| |

| |

98 98 22 22

S6|

|S6 |S6 122 122 76 CHQNVANAG

| fPOT|GOTEOT] fPOT|GOTEOT]

Bursssvoidsey €6) 26;

S3s09 SAITENASSVY

TE 96 96

osegq

06/68

| | QNVNAd QNVNAd

oFASsTTeseYy 74)79 74)79

fonTeA

Tanda

IZ¥ IZ¥ dO dO

£8)

UVaA | vy| vy| |

amypUoINtg INAdS

YOE+

98} oy oy S8| S8|

feTMY

dO ITS ITS 78)€8} WadWON

ON |ovj9oz |ovj9oz

uoTIoeTes

78 10} 10} TS

Tewradg O O

‘“yC-y

eansTy

ADUVHOSIG dO uvas 191

CHOUVHOSIC SAI TENXSSV Tad INZdS dO WaaWNNn YUMd

esnoy3utTysem

979 979 782 782

8c 79 79 79

87

| |

89 89 79 79

|16|

[SL [SL 79 79 fotTzeuessg

96

| | 98/S6 98/S6

79

S6/%6|

79

QHQNVWAC

79 3809 BuTsseooiday

€6| |VOT/60TIEOT] |VOT/60TIEOT]

76| uNTuRIQ

SHITENASSY

TE 96 96

06/68

ONVAAd ONVAAd |7Z |7Z YOZ+

OTASTTeey

| | 29/27] 29/27]

THOA

fenTeA 40 40

£8; UVdA

INAdS voE+

98 vY}) vY})

wNTUOINTY vYITS vYITS feTNyY

dO

78)

WHaWNN

€8) [OF [OF uot

ON 197} 197} oeTes

7g 0} 0}

TS 0 0

Tewfzadg

| |

O| O| O O *cc-y eansTy

ADUVHOSIC dO Uvas 192

CaSUVHOSIC SAI TENHSSV Tand INZdS dO WaaWNN

WMd

ssnoyZupyysem 8c 8c

79 8¢ 79 79

I

| | 89)S2 89)S2 79 |46| 79

foTzeuscss

96 | |

79 T 98] 98]

S6/ S6/7OT60Ti S6/7OT60Ti 4€9 76

GHCNVAAC |

BursseoorAdey 3809 €6) 26|

umntuRIQ COT COT

SHITGNASSVY Ta

96] 96]

06/68 QNVWad QNVWad

OTASTTeoy YOZ-

72 72 1z79 1z79

THOA | |

fenTeA

dO dO Lvl Lvl

£8/98| YVar

INHdS

YoC+ y y

UNTu0 lye lye S8|

feTMY | |

40 TS|O¥ TS|O¥ 78/€8|

NT,

WHaWNN

uot

ON Joz Joz

oeTeS

ze |O |O

TS | |

Tewrjadg

0} 0} O O

‘gc-V

aan3Ty

ADMVHOSICG dO UvaAs 193

CaDUVHOSIG Sal TdWassv TaNd INHdS dO WadWN

UMd

asnoy8upisesm

9

99 79

"9 49

49

"9 7

"79

79

99 VAS) 09

79 79 "9

79 99

79 79 79

[|

|

19 78¢}89

ez 79

79 179

8:

mE

[7

|16|

Dyes)

{SZ

[TT

~9C foTzeusss

94

tet

|

|[

98]

yop

T

Tz

eA

$6|%6|

S6

TE 9

1

QaQNVAAC

|70T

9

|€€

Z

Butssevoidey 3809)

KK)

C6

an

UE

gt

LL 76]

Pr) >)

ro 9382039S

COT]

99

SHITANASSVY

7

TE

LL.

96172

Z9|Z

LT

06)

he,

IL GNVNad

ct

oFastTTeey YOZ+

02

02

68]

ess

|]

|29

KS

—<]

S

Tand

SB

SenTeA

| dO

WECeEeseaaawaA

Zyl

L

28]

ya UvaaA

cess

ZEeecesteaeaa-2

22ne

INAdS

BaCcseCceCceeawaeA

yoc+

77

"Y

98]

umMTuo{Nt_

|

ZEeeeeaa4

vyITS

yy

SB

feTny

dO

COL

6T

ysles|

WadWNN

LA

lor

AN

[Ov

AA

A

At

AT

uofjoetTes

Ae

ON

ray

eee

[9zlo

Z

ON sawas

NK

97f

Ze

A

At.

18) HA

OS

OK

OW

AX.

KK

|

Tf

4

0 Teuyadg

As

KS

OF

a

s

};0

64/82]

|

OD

Lo

7

wa

oO]

‘“/c-Vy

0

LZ

9

s6

£6 96

76

Te]

76

6s]

88

“8

9]

oe 48 c8

z8

08 T8

6l

eanstTy

81

9 LL

aj

& 9

é 194

GHOUVHOSIC SAL'IsKASSV

TaN4 INadS dO WadWNNn UMd VesnoysuytjsemM

79 SZ

Sy 99 99 99 79 8d

79 {89

|46|

79 SZ foTreuess

94

|

98|S6

79

S6/%76|

79

GHCNVWAC 380) BuTssad.oraday

79

€6|

|VOT/60TICOT|

99

26] 898PI09IS

SHITANASSY

TG

96

06/68 QNVWad QNVWad OTISTTeey YOZ—

|7Z

|

Z91L¥

THOA

faNTeA dO dO

28/98) Var ~OE+

|v

INAdS uMFUuOINT,

|

vVITS

S8/ faeTMY

dO

78/€8|

|

WadWN uotqoeTes

Ov1 ON

97]

zg

O|

TS

0 Temtjadg

|

O|

62/8

0 ‘*gc-Vy eaANnsTy

ADUVAOSIG dO UvaA 195

GHSUVHOSIC SAI'TENASSV Q/UMA

Tanda INAdS 40 WaaWN OF1DeTA_ OF1DeTA_

est €8t €8T Z

esl esi

Sy [Terseuey [Terseuey |L6|

96 fopyieussg fopyieussg 6 76] S6|

GHCNVWAG 189 189

€6) Bupsseooidey Bupsseooidey 26;

SaT'IGNASSVY $380) $380)

TE 872476 872476 06/68

QNVAad

untueIn untueIn DTASTTeey DTASTTeey

Tanda

dO TH TH

£8) Z%OZ+ Z%OZ+ UvaA

INadS

98

OTYET OTYET

YOE+ YOE+ ‘aseg ‘aseg

40 feTMY feTMY 78)/€8|

WHaWNN

LOTK9 LOTK9 woTqoeTes woTqoeTes

csi |0 |0

TS

Teupadg Teupadg

*@C-V *@C-V 2ANBTT 2ANBTT

ADUVHOSIG dO AVaA 196

CaDSUVHOSIC SAI TENASSV Q/UMA Tand INddS dO WadWNn SFlAIOeTY

GTTQELT GTTQELT OT

[ezsuey

L6 L6 169 169

fofFaeussg

Slav77pgc Slav77pgc

S6| S6|

76 76

(aHCNVAAC (aHCNVAAC

| | £6) £6)

ButTssadoraday 26| 26|

s3s09

SHITGNASSV SHITGNASSV

TG TG 8 8

osegq 06) 06)

QNVWad 68 68 oOTIASsTTeey

fenTeA TaNd TaNd

dO

STUOTIETT STUOTIETT £8/ £8/ UvVaA

wnpTuojINt”d

INdAdS INdAdS 98 98

YOE+

40 40 |2vYZOT] |2vYZOT]

feTMY

781€8} 781€8} WadWnn WadWnn ON

voTFIoeTesg

29 29

78 78

|0 |0 T8 T8 ; ; Tewpado *Q9-V ean3Tyq

ADUVHOSIG dO avaA 197

CaSUVHOSIG SAI TENASsSV Q/UMA Tand INdadS dO UWaeWiN OFA}ZOOTY

€8t €8t 1 1

Terzousy

| |

46 46 Tellela Tellela

toTzeusss

S6| S6|

76 76

vod vod

QHQNVNAG QHQNVNAG

| | sodcecsode sodcecsode

3sOD £6] £6]

SuTssa.0idey 76] 76]

uNFurPIN

SATIGNASSVY SATIGNASSVY

T& T&

06) 06) QNVWad QNVWad

YOZ+ 68 68

OFASTTeey TaNa TaNa

SONTEA

dO dO

£8|98/| £8|98/|

YVaA YVaA

OTIe OTIe INAdS INAdS UNTUOINT_

YOE+

S8) S8)

40 40 lucy lucy

fSaTNY

78)€8| 78)€8| WaaWNN WaaWNN ON

uoTIoeTes

78 78 T8 T8

Tewpado 62 62

"T9-V

ean3Ty

ADUVAHOSIG dO avas 198

CHSUVHOSIG SAI TERASSV

S S

5 5

> > a a

: : un un

YUMd

$3809

esnoySuyt

179 179

} }

[9 [9

9 9

79 79 79 79

79 79 "9 "9

99 99 "9 "9

99 99

79 79 fo fo

79 79 79 79

79 79

9 9

79 79

ae ae

9 9 79 79

|| ||

|| ||

|| ||

|| ||

|| ||

Il Il

jj jj Wt Wt

BBe103§

ELL] ELL]

9 9

Yet Yet 9 9

€€ €€

9€ 9€

LE LE

1% 1% ts ts

79 79 79 79

79 79

79 79

Sy Sy 79 79

sem

72S} 72S}

[esp [esp |L6| |L6|

Parr Parr

YOZ-

SrA SrA

8S 8S foTieusss a a 94 94 wh

]99 ]99

9~PLayaArth 9~PLayaArth

elt elt

S6| S6| AAs AAs

‘eBe103S | |

EL} EL}

nessa nessa

¢ ¢ 46} 46} QHCNVWAC

Butssod.oidey

cL cL

|8 |8

€6| €6|

TST TST

LE LE lds) lds)

VO VO

ZO7T+

fet fet

19K 19K

76] 76]

oswa2 oswa2 | |

TS TS [TS [TS

SHITENASSVY

T& T&

OF OF Ll) Ll)

‘uNFURIN

ivy ivy

we we

06/68) 06/68)

GNVNAG GNVNAG

lL lL | |

OTASTMTSSeg

i i

TE} TE}

teh teh

87 87

ZOZ-

Ba Ba 8 8

THOA

) )

JO JO 4+ 4+

17 17

LOE: LOE:

27; 27;

Uva 4 4

‘uNTFuUeIN LA LA

INAdS

Ze) Ze)

OE OE

AA AA AALKEE AALKEE

eseg | |

ALAA ALAA

AAA AAA

EZ] EZ]

eeLe eeLe G8] G8] 40

feTny

LTT LTT

LL LL

ET] ET]

€T €T

8; 8; CA CA

%OT+ SAEWNN

A A

A A

Bee Bee

ALT ALT

OK OK

€8| €8|

AA AA OF OF

uoTIDeTeS

rH rH

‘AMS

p

7 7

7 7

AK AK

OT OT

t t

OF OF

OY OY

— —

AA) AA)

Ze Ze

Kast Kast aA aA

KK KK

oH oH

O O

LE LE

Cceoewa-w Cceoewa-w

18) 18)

OA OA

r r atk, atk,

ZOZ-

Kl Kl

AAS AAS

| |

PPT PPT NY NY

TS TS

waas waas

OF OF

A A

OF OF P) P)

Tewradg Ne Ne

‘NMS

Te Te

Cpe Cpe

O O

62/8Z2| 62/8Z2|

| |

lL lL sea sea

7 7 Eye Eye

ZOT+ OF OF

O O

°*79-V Z Z

‘eSeE

96 96

s s

€6 €6

76 76

26 26

16 16 06 06

68] 68]

dg} dg}

¢e| ¢e|

$8 $8 78) 78)

z8 z8

TS TS

6L 6L el el

9 9

il il | |

eAN3TY | |

| |

rw rw

8 8

oy oy

S S

2 2 & & 199

GHSUVHOSIC SAI TERASSV Tanda INAdS dO WasWNN WMd asnoysutisem

)

9

79 yo

49

29

79

79

79 “9 79

79 mf

79 79

79

79 79 79 79

79

99

|

||

|] |

|| |]

||

|]

I]

ELL]

19 Wet ho

TT

t€

9€

TY

TS

79

79 79 8; 79

79

79 79

PCr

7S|8S

iesP

|46| fofTieuess

BS

rrr

ae

94

]99

nT

Z

S6|%6|

|

ON rrr

ELI|ZZ

yr

6

CaQNVWAC ZuTsses0idey

+

8

Kh

€6

tt

|

|

Ft

L9|TS

9S

TT]

26|

$380)

esas

i)

tb.

97

L

SHITENASSVY

TA

lL

|

vy

oseg

we

06/68

Atl)

| GNVWAd oFASsTMEsseg

|]

Vy

TE

tery

hb

fen[TeA

|

|ez-|

8a"

8B

TaNd dO

lL

4.1.4 At

Z7|O€

OTA

28/98]

wNyTuo uvaa

ll

LNAdS eseg

PAA

|€Ez

A.A

ALLA

INT,

OO

Wore

Ss

dO fatTny

JET]

€T

4A

78;

ON

WaaWON

PA

CECesewa-zA

AA

41.1

atte

A

es]

KK

O|

Oe uoT_oeTes

PANY

LA

7

O}|

ON AY

ZE

KN

eee

AOA] TK

KL)

AKL

| OF O|

AK)

gy

KY

KE

LY

I Kb] Tewtjadg

I a”

a

a

ET

O

i.

[7

|]

ra lL

BZ

O

ry

‘*Eg-V

;

9

C

£6

76

T6 76

06

68

88

£8

€g

28 78

T8

08

SZ 6

9L LL

° 2ANSTY

ADUVHOSIG dO uvad 200

CHSUVHOSIC Sal TENASSV

Tad LINadS dO WaeWNN Wd

VesnoyZut4say VesnoyZut4say

ELLYCS ELLYCS

"9 "9

cL cL

9 9 {cS {cS

L6|

8S 8S

8S 8S fofTazaeuess fofTazaeuess

96

| |

99) 99) 79 79

S6|76|

EZ EZ 979 979

GaCNVWAGC

IeL IeL

Butssavoidsay Butssavoidsay

3809 3809 79 79

€6)

| | LOITS LOITS

26| unzuern unzuern

SHITENASSVY

TG

| | vYITE vYITE

06)

GNVWad GNVWad

oTAsTUTSseg oTAsTUTSseg ¥OZ+ ¥OZ+

68 BC BC

THNA

| |

fenTeA fenTeA

dO dO LZjO€ LZjO€

£8} UVaA UVaA

INAdS

98

eseg eseg

WNTUOANT, WNTUOANT, EZ EZ

dO

falTny falTny JET] JET]

78)

WadWNN

€8|

OF OF

uofzoeTes uofzoeTes

ON ON O O

78 |

T8

OF OF

O O [Teuz3do [Teuz3do

‘79-V

21n3T

ADUVAOSIG dO AVaA A 201

GHOUVHOSICG SAI TENXSSV

Tanda INddS dO UWaEWNN UMd

Vsnoy3utTjsem

ELLIZS ELLIZS "9 "9

cL cL 9 9

ct ct IT IT

ve ve 9E 9E

79 79 TS TS TY? TY? LE LE

99 99 79 79 79 79 79 79

79 79 79 79

87

| {es {es

16

[8S [8S 8S 8S

fopTaeuess

| | ODJEL ODJEL

S6|

76

(aQNVWAd | |

|

Burssesooiday

aso) CZ} CZ}

€6 ZO ZO

26|

unqTuein ITS ITS

SAITENASSVY

T6&

| | vHITE vHITE

06| (NVWad

of4Astuysseg

voz-

68

| | Bz] Bz]

Tafa

SenTeA

dO ZZ ZZ

£8| UVaA

LNAdS jO€ jO€

eseg

98

wnTuoINT_

| | ETIET] ETIET]

dO

fatTny

78/€8|

WHaEWON OF OF

uoTAdeTas

ON O O

78 | |

TS

O01 O01 O O

TemfadgQ

64

‘*cg-V

eaAN3TY

ADUVAOSIG dO UvaAs 202

GHSUVHOSIG SAI TANKHSSV

Tanda INHdS dO UeEWNN UMd

esnoyZutysem

cl 79 ELLICS|8S

9

TS TS

TY TY

29 79 79 79 49 79 1 1

{cS |46| |46| foTrzeusos

8S

94 94

| | 99} 99}

79

S6/76| S6/76| ELIZ ELIZ

6 79 (HQNVWAG (HQNVWAG BuTssoovoidey

18 79

3809 3809 €6) €6)

|

| | LZ9)TS LZ9)TS

26; 26;

aBei07g aBei07g

SHIIGNASSVY SHIIGNASSVY

T@& T@&

| |

ve] ve]

06/68 06/68 QNVWad QNVWad

oOTASTWTSssg

yOT+ yOT+

TE} TE}

82 82

Tad Tad

SENTRA SENTRA

dO dO

ZZ7}O€ ZZ7}O€

28) 98| 98| 28)

UvaA UvaA INAdS INAdS

sseg

WNTuoANTY, WNTuoANTY,

| |

ETHET] ETHET]

S8} S8} 40 40

faTny

78) 78)

WaadWNN WaadWNN

€8| €8| OF OF

uoTzosTes

ON ON

OF OF

zg zg

O O T8 T8 Teupt3ado 6£|8

°99-V

ean3sTy

ADUVAHOSIC dO Yvas 203

CHSAVHOSIC SAI TENASSV Tanda INAdS dO WaaWON UMd

VBsnoyZutj3saem

|

179

m9

v9 ape

79

49

"9 v9 79 79 79

79

79 79 79

9

79

79

79

|[

=f

|| ||

{I

ELL|ZS

Yet

19

WIT

|e

9€

fe

Ty WY

79

79

79

79 79

8;

pr

bes

|16|

|

rr

fofieuscss

BS]

BIA

94

Vr

99

79

C

S6|46|

ease

(EL

9

6

| CaCNVRAC

BuTssadoiday

OA

3809

ZZ)

we

|s

€6

CATE

AA

L9

coo

[s

26|

A

a8vi103s

ITS

|zr

6

SHITENASSV

A

Ta

TE

|

vYITE

|v

06/68

KA

(NVNAC oTAstwysseg

¥O7-

“bl

ter)

|

|

Bzi

sz

SB

Tad

fanTeA

dO

DAARP

Zeeeeeseese

SAP

Le]

RETA

28/98!

UvaA

INdAdS

O€

eseg

OF}

|

mMyFuoantg”

ALA

AATEEE

Ec{ET]

CL

SB

dO

feTny

8)

WaaWON

AAAI

ANY ALAA

TAL

AA

EE

€8|

OF

uofoeTes

on

1A

f

Cay

O

AK)

Atk

DAK

Ze

|

ALE OF

T8|

AKA

e

O

Temtadg

IE

0

|

ST

O|

62/82)

|

LOH

K..

lO

lL.

ET]

7

LE

7

O

TY

"

ey

|O

‘*/9Q-V

LZ

76

6]

vel

06

e8| 68

|

$8

ve|

c8

08

82

UL

9

2AN3TY

)

uy

5

&

8 S

204 UMd UMd

ae

ta BB HO By 54

Ba

By XOOTIM XOOTIM

[89

)

189

89

go s9

89

[et 89

89 ©6189 «(189 89

89 89 89

89 89 89 89

89 89

||

HL pue

||

|/ ||

|}

|]

3}

eseles feo

ot fst [z

[lez

[ee 9¢ yt’

GY 89 cS 89

89 89 89 {189 89

8, yoooqeg yoooqeg

Cae

esr

|46|

jes

rrr

94

| fotaruscs fotaruscs

>

99|7z

nee

lt

S6|/46|

Seta

so

| GHONVWAG

€z|

sr

4" es

€6]

rs ButTssa.0rday ButTssa.0rday

eaa

89

a9

76|

tll)

Ll

\zs

SHITIGNASSV

|

Ta

lL

a aA4Aeeeceesesaaa4ak

A

Sy|ze

Ate

06/68|

ONVAAC

ee $180) $180)

a oTASsTMTSSag oTASsTMTSSag

|

6c

6z|

THNd

8B

dO oseg oseg

LZ

Lz

28/98]

dvds

JOE LNAdS

7

aL

Of

|

ZA

ZEA.ceeseaa4a aseg aseg

EZJETJO

SLOP

€Z

aA

SB

40

ZLA

€T

v8/€s|

WHEWON feTnYy feTnYy

TA

AEP ZEeesasZ ALAA

At)

AA

AA

Kk

LE

]O

y

A

Sees

A uoTIIeTeg uoTIIeTeg

ze

MA

oe

jO

OK

oy T8]

Ba ko

Ae

AX

AA

|

NY

oe

0

OF

|

jO

i TeuUT TeuUT

64/82]

|

|

Le

0

A dO dO

JO

ZZ

*g9-V

=)

5

kK: 76

26 e 6

68 ge]

YT] 98] €8 $9

Z8 8 T8

08

6L cy

iL

eansTa

gs

5

8

205 UMd UMd

by

>

i Bg

°

Ba fa 3 BupsassuTrsugq BupsassuTrsugq

8

Ps

og

08 os

08

08

08

08 O08

08 [28

08

O8

08 08

O8

08 08

08

08 08

4

fos 990Tiz¢

fez

|[ZT

|e

|iT uotysnquoy uotysnquoy

19

9%

fee

187

flog

[99 |/SS

#08

08 08

08 foe

4/08

Sy

{25

|L6|

Pe

1€9

€9

94

|

CA

eh fotzeusss fotzeusss

72108

$6146

08

OA AtHK

GHGNVRAC

|

|62

Ae

€6|

OF

oT

|

Pr

le Butssadoidey Butssadoidey

72

76

19S

SP

SHI

T@&

gs

| 7

a

TANASSV

SvivE

06/68

KK (NVAGC (NVAGC

S3so) S3so)

wr ITAsTwTsseg ITAsTwTsseg

|

REPT

ITE

88

Tana

A dO dO

|

oseg oseg

ZEeOeeaaa-A

62

67{ZE

28) UVaA

A

CCcceesesewsa

INddS

ce

98|

|

LL

GZ

SZi¥T]

a aseg aseg

S8

dO

WELT

78le8)

WAgWON

feTny feTny

ON

LA

mara

At ZCesetea-a ae

AAA

AAA

OF

ra

rere

O

ze

uvuoTjo.eTes uvuoTjo.eTes

DY

nt

Coe

|O

oY

OP

Ts)

A

KK

|

7

Ky

OF

010

Ne

A

OF

KS

KK

Le

Pe aA

a1

NLT]

Ll

|

62) Tewrjdo Tewrjdo

|

Lo

LL

a

82)

0

]0

Z

"69-V

9

S

£6

76

76

16

es}

6

98}

Z8 es} 78);

c8

T8

08

62

SL

SzI

Lt

|

canst

5 ~

3

&

e

2

y 206

CHSUVHOSIC SAIIENASSV Q/AMG

5 5

B B

3 3

s s

m m

ql ql

8 8 W2AIDET_ W2AIDET_

est

est est

EST EST

eet eet

eet eet est est

ee ee feat feat

{est {est

|£8T |£8T

€8T €8T

€8T €8T Est Est

Est Est egt egt

ESt ESt

€8t €8t eat eat

Est Est

EST EST

81 81 81 81

fos fos

66EZEETIZYT89T| 66EZEETIZYT89T|

fest

|9e |9e

FST FST

fos fos

[sor [sor |{tot |{tot STL STL

lest lest

{ToT {ToT |iszt |iszt |[90T |[90T

fest fest

[lest [lest |icet |icet

Hest Hest lest lest

|Ieet |Ieet

8; 8;

Tersuey Tersuey | |

FE FE

tr tr

46 46

LY LY

| |

bb bb

of of s}so) s}so)

ree ree

s9IP s9IP

foTreuedg foTreuedg

| | ce ce

KA KA

est’ est’

Set Set

¥6| ¥6|

oseq oseq cle cle

GaQNVNAC

9SUSZTICETISTI\ 9SUSZTICETISTI\

LB LB

AK AK

€61 €61

t- t-

SanTeA SanTeA

PPT PPT

Bupssadoidsey Bupssadoidsey

[SZte7 [SZte7

26| 26|

git git

ese ese }- }-

cIp cIp

SHITMNASSVY

TG TG

[7 [7

wNTuoINTg wNTuoINTg be be

P| P|

TE TE 06/68] 06/68] (NVWad

ze ze

cep cep

Zi Zi

Sz Sz oOfAstTuTSsseg oOfAstTuTSsseg

GL GL Se Se

Ta0d

4 4

2 2 ON ON

dO | |

WEeeeceseaesaa2 WEeeeceseaesaa2

89|zZz 89|zZz

99 99 28/98! 28/98!

UVaA

EET EET

[7 [7 £89809 £89809

PAA PAA

INAdS

eEaceeewa eEaceeewa

A A

AA AA

LL LL

wa wa

Bs Bs

AA AA

8S 8S

eseg eseg

Sel Sel wNTUReIQ wNTUReIQ

dO

APPEL APPEL

|zz| |zz|

cL cL

yeles| yeles|

AA AA YP YP

HEWN LA LA

f f

fatTny fatTny

wa wa

AAA” AAA”

“A “A

Att] Att]

of of

PY PY ADA ADA

PAH PAH

T_T T_T

407+ 407+

0 0

A A

TY TY

24). 24).

ze ze Lhd Lhd

AN AN

HY HY woTAveTes woTAveTes

>> >>

Sawa Sawa

|o |o

PPE PPE

Te! Te!

I I

OP OP

4 4

| |

Ley Ley ‘Saseg ‘Saseg

TK) TK)

o o

i i

OF OF

og og

KL, KL,

I I

EK EK

wae wae

< < A A

Jo Jo

a a

62/82] 62/82]

iS iS

| |

TemtTadg TemtTadg

“ “ Lo Lo

LL LL

LL LL

0 0 EY EY

Jo Jo

LZ LZ

*O/-V *O/-V

$ $

£6 £6

76 76

16 16 26 26

ie ie

gs] gs]

48) 48) 53 53

cs} cs}

ce ce

78 78

98 98

te te

08 08

6L 6L

gL gL

9 9 iL iL

2e1Nn3TY 2e1Nn3TY

: :

Q Q

oy oy et et

5 5 & & 207

O/UMA GHDuUVHOSIC SAI'TMNASSV Tanda INdadS dO UaeWNN

WAIST

eet

at

est

€St

EST EST

€ EST

EST

ae

EST

EST EST

EST CST

EST

EST

BT

|}

||

[pe

|

|]

f}

ff

|[

Il IT

|]

ff

]

OS

COTCIEE

fest

CST

0S

89

TOT

80T

STI

T9T Sc

EST €8T

est

CST Cet

Sy

Tersuayg

|

KET

16

Pr

TL

fotzeusds

rere

AOL

i

88T

estr

or

76

CHONVWAC

8

3809

J

Burssaooidsy

WNTUPIQ

a ra

CETICTT]Z8

ceIE

SHITENASSVY

T4

7

Baas

STIF

06] QNVAGd QNVAGd

YOZ+

|]

68

coy

OTAstTMysseg

|SZ

t+

cL

4

=a

SON

Tanda

| dO dO

|)

ALLL

89]

89

£8|/98|

TeA

Lo UVaA UVaA

LA TA

INAdS

Ae

ZZ

Tae

WHTuoINTY,

IBS

AA

eseg

8S

AH

Ss}

40

YT

|zz]

CC

78)

MD

feTny

BAaWON

Zcewa-a

V2aeeeaa2a

ZZ

BEeeoeses

Tatty

ON

€8|

OF

on

NY

Bb)

7

pt

AA

OL O/0

rasa

uoTIIeTag

ze]

PAK

T8|

Saas

A

A

|

er

on

OjJO

AE

“|

OF

“|

AA

v4

KL

ere

TewUTIdOC

62/

|

lL

LO

BZ

O

°

|

.

"[T/-V

9

S

€6

6

06

68

me

88

99

£8

€8 98

z8

T8

6L

gz

9 LL

|

aansty ASUVAOSIG dO vas S350) e8e101g ZOZ- ‘e8er101gZ%O7+ “UNTUReINZOZ- ‘wNTUeIN ZOT+ ‘NMS ZOZ- “NMS ZOZ+ “O8eE UMd esnoysuTjsem foTzeuscs Bufssvooidey OTISTMTSseg ¥CT+ SetTny uopTZoeTes [Teupadg “*7Z/-V eaNn3Ty CACNVWAG SHITENASSVY TaNd INAdS dO WAGWnN | 9ZIST] O}O JO |0 jo JO] O 949109| Zo oZ|¥e8| EslzZ |6S| IS]9E | ZTE] TE |SE "9 = atts MAAL KK KS AA AT RK) ~ A OA a 79 |? [09 99 MOKA) ZECeeseesea-7 $6] 79 yt err tre le JAA. Ana nA KS 76 99 yer ert WEeeeeaaZs £6 nr |) | PA A YK) 26 79 79 wsesasa as At rr T6 iil AAAL LZ 06| & "9 cles Pe

WaaWNN A AN OK! 68 Ss 79 ¢ 78 TS TENASSV 79 7T| VT SC eee er or oarPe 208 dO 88] &

SAL a A Tt LO “Big 79 =| TT 9 Ze asHes te TALE ET 8 INGdS 79 W162 Ge A) AN PS lL ce E "A YY -) 79 HSE 9z Traore oe 4 i 79 Ilo” Taha Z| 2) pia €8 Ga5SaVHOSIC Ga5SaVHOSIC rT KL z8 79 || 79 79 1179 A WL Ts 79 |] 79 a lL 08 79 {1 79 6L SL 9 1/79 9 Hf 479 LL 79 199 9L

8; | 16 76| €6| z6| Ta 06/68 | Se 28/98| Seivsles| ze TS BZ

QNVWad dO UVaA

209

GaSUVHOSIC SAI TENASsv

Tana INddS dO WaEWNN UMd

esnoySuzjsem

979 po 79 79 "9 79 79 79 79 79 79 979 79 79 79 "79 9 3 79 "9 |] || ||

Sy L9 |? IT Bt ee 62 6% 79 79 49 79 79 #9 9

109 |09 |16|

{249 foTaeusos 79 € 94 |

Fa 92}78 79 ony S6| A

9 zz “A 76} Ant AoA (HCNVWAC |

Butssaoo0radey C8} 611 99 €6) KA bk bk

LZ S17 ce 76|

SSO) rl) AA | ra hb hb

6S SHITGNASSY or or LT TG Ssaa-a A |

TS]

9Sseg é AT

06/68 (NVNAG (NVNAG L~ lL OTASsTuTSsseg ft

TZ str 9E} | |

fanl[ePA

ZE|TE CE 89 IBAA“EeEeeas Tad

FL dO dO

Te

£8/98| UVaA |

WNTUOINT, y LL

ADAM INAdS Gt

St} LAT ¥CoT+

DC ra AAA 9cTIST}] S8} | 40 fe

STL A 78)€8} TT Tny WAEWNN

ON

we Ze AAA ATL Ata 0 KK MN uofjsveTes Tt

, ea 7O AT A “A. 28 A YL XY XY “| ra |O0 |O0 a TS] KL A KT] HO MN

Bars 0 I Pr) I 08 KL Le Ad Tewt3dg LL a aA

i }0 A! 62/82) | La “ T CE 4 ea

0

|0 "€L-V LZ ¢ €6 96 I6 z6 yl 88] 68 99 98 S8 £8 z8 08 T8 QL 6L 9 LL 7] oin3stTa

ta § 4 S o E Yo Yo 210

GHSUVHOSICG SAI TMNASSV

Tanda INadS dO WHdWN YMd

Psnoy8urzsem

"9 19 9 79 29 "9 49 "9 79 79 79 79 79 7 r9 "9 99 79 79 79 99 79 || iy | || | i] |

&; PY £9}09 fv tt 672 €e 6? 8 19 79 79 79 79 #79 99

oP |46| |49

Fr) 99

foTreusess et et 94 |

ke 92/48 79 6 € S6|%6| ll) Pe

Prats lr jez |

CHQNVWAC

BupTsseooidey CAA

Eg] 3809 nT [otlet €6| PPL

ZZ %9 26] i)

UNTUueIQN les

SHITENASSVY lO Ta |

[7 TS ST’ 67

06/68! QNVWad QNVWad ]9€

oTASsTuTsseg

ree

YOZ+ Te (ST CeQstesaAaeecewewas | |

F zel 26 Be Be

TaiNad

fenNTeA dO dO

TE Te

Ze] UVaA |se

PA [7

LINAdS 4 AAA GE AANA 98|

¥oT+

UNTUuO |

9zist}| VET

Oe Sel

dO

feTny

A STL

INT, AAA AK yelee| Oe

WaaWNN

FeEssas AAAS ECs A A O

uoTJoaeTes

ON fo

AAAI A PA AT AA A cel FIT Jo HK nt

Bawa Ts] YY A [0 WK WK “~~ Tt

A 1 a SS Od

Teufadg I Jo ts A) 1-7 AW

aa2 62Z[8Z| [0 [7 lL lL Le LY] Jo

‘*H/-V ZZ LTS €6 76 76 oe 16 88] 68 98] C8] es} cg | z8 Te 08 eZ 6 9L Ll

saNsTy

: & y E 8 211

GHSUVHOSIG SAI TENASSV

Tand INGdS 40 UAAWIN WMd ssnoysutjsem ssnoysutjsem

|

"9

"9 99

79 "9

"9

79

ie 9

v9 9

79 79

79

779

79 79

79

9

| =f

|i

||

||

{I

{I

92909

fe

tt

62

{ee

67

79 79

79

¥9

79

Sy

looper

116|

|

79 foTzeuels foTzeuels

£9]

94

|

92178

mY

ztler

$6/4%6|

rre

ON

se

aA)

|

CHONVNAC

|

FP

Butsssvoradsay Butsssvoradsay

€8| 3809 3809

och}

WSlOT

a

€6|

KL

ZZ

79 €

26}

ek. unTuRIn unTuRIn

J6s

fre

8Z

SHITENASSY

Ta

|

|b

TS

joer

Tz

06/68}

A+ CNVWHd CNVWHd

Joe OTASTMTSseg OTASTMTSseg

])

¥OZ-— ¥OZ-—

9s

7

ep)

|

ZE|

cer

TF

88

Tad

|

SeNTeA SeNTeA dO dO

TE

TE

28/98) UVaA

LO

|SE

ua

INAdS

AAA

ZeZzeeeeawa-

AA

SE

YCT+ YCT+ wWNTUOINTY, wWNTUOINTY,

|

LY

ZEeeeeaaa4a

9z]sT}]

MLA

Ss

dO feTny feTny

GRHES

CT

AA

Slee]

WHaWNN

PA

AAA

ALY

AAA

ALALEL

KK

O}O

uotzoeTes uotzoeTes ON ON

Seas

Pr OK

PCA

Ze

jo

rr}

YW

A

Ts} YK

OE

A

FIL

KK

SK 10

Le

ve

A

OF Tewradg Tewradg

Tar

SK

itn

HK

jo

|)

62/82/

LT

I

x

|]

jo]

‘“c/-V ‘“c/-V

oO

Z

YT

9

g

Ek: 16

Z6

° T6

68

gs]

Ze]

98]

ce

z8 cal

T8

=

iL

9 ean3Ty ean3Ty

L

|

E

y &

5 uw

B 212

GaDUVHOSIG Sal TeNASsV

TaNd INAdS dO wagWN UMd esnoysutjsey esnoysutjsey

PF

179

ued

73 7

"9 79

99

79 "9 79

79 79 "9

99 79 ah

79 79

79

|

||

|

{| |}

||

949

fy

TT ct

et 62

79 ¥

79 79 79

Sy

|09

(OP

|16|

|49 fopyaeuscs fopyaeuscs

Te

ELLA

9G

|

Pt

9L178

MELA

ZT

S6|%6|

19

€z

GaGNVWAG

|

| Bupssedoiday Bupssedoiday

3809 3809

€8)

"Yr tice

A

€6|

AL

ZZ

OS ¢

ATE

26; a38109§ a38109§

bt

|)

16S

SHITENASSVY

6s

TG

LO

|

TSISE

Wi cry)

06/68

A

1

BEASTWITSseg BEASTWITSseg (NVWad (NVWad

x4OZ+ x4OZ+

TZ

Le

|

|

Ice

TEI

89

Taha

ee

fen, fen, dO dO

TE

Te

£8) eA eA

ja

| Vas

To LAA

INddS

ZA,

St

Ot ¥CI+ ¥CI+

Se;

98] uUMTUOANTY, uUMTUOANTY,

|

AAeeeeeaea-a

wAZzZeeen

AL

ON

azisTio

S8|

40 faeTNy faeTNy

tata AALS

OE

78)

WHaWON

ee

PA

BEeeweawas

AY “A

Of

AM

Ss

€8|

wotqo.eTes wotqo.eTes ON ON

2

[0

Op

ESBaazs HO

7B OL

Nt

err

AK

10

Con

OF

Or

TB}

A

ay

;O0

eee Oe

oD A TewrT3do TewrT3do

O8

Ke

Le)

I

10

a

62/82)

|

lL

Lo

LLY

0

{0

"Q/-V

Z

5

£6 76 T6 76 06

68 ge]

98]

L8

vel cg

Z8

Te

62

81]

5 Li

ean3T

|

S

§

w& y

e 6

a 213

GHxSUVHOSIC SAI TENASSV

Tanda LNadS dO WadWNNn YUMd

aesnoyZutjsemy

9

99

79 79

"9

79 79

79

"9

79 "9 99

79

99 79

79

49

79 79

79

ym

4

|l

HT |}

||

H

919]

hy

fy

CE TT

Bt

62

79 67

79

79 Sy

79

79

79

09/29

[or

|16|

rr

foTaeusess

m9PF

rT

94

|9Z

rT

ai

S6|46|

|

ib

bi

PP

78/8

ty

0z

QHONVWAC

|

4+

te)

Butssaooidey

mr

[61

380)

A

£6

tL

lL

o8e10qS

7

ee

66|@

SHITENASSV

TG Ao

“4

gz

TZ

TS}

06]

|

AA GNVWad GNVWad

ofFAsTMTsseg

tril

i

xOzZ—-—

9€

joe

68

Kerli)

|

{ZE KH

Tad

I

fenTeA

|

LE dO dO

TE;

Te

£8] UVaA UVaA

Cees

-

La

INAdS

Se

Z<

AA

cL

~¢T+

98

UNTuoINTg

dO

fetny

POP

PALA

PLL

AA)

Att

HE

WadWNN

Ot

Za

AALAS

&

esas

€8]

O;0!10

uofIoetes

oN

OP

2

a

On AK

tt

OP

A

saawa4-2

EI

zg]

Pee

YK)

rx

18

Oe tA

LA

Oe

OL

rl)

AKA

MA

|0

x

A

PL A

I

Tewpjadg

|

Le

HK

0

4

a

wa

{0

8Z

‘*//~V

9

$

€6 76

c6

O61

68

es}

9] 78]

€8 ¥8 ce

A)

T8

08

81

9 iL

2san3sTy

|

|

5

&

E Ys

&

8

214 Q/AMG Q/AMG

td

fy

a Be >

Be

3B

°

Ba ae

Pa WTAQOeETY WTAQOeETY

apap

cst

EST car

eet €8T EST

CSTy

EST] €STy} EBT

EST}

EsT|| €8T||

EST] est

CST EST|| €ST]]

mn

il

PalCHCTIBOLTIEOLISLC7

of

ot

82

26

ITT 46 SOT

est eet 8st

EST

Sy COT Est EST E8T Terseuey Terseuey

ESIF

|26|

PAP

94 fotzeuessg fotzeuessg

bt

estrp

OL;

S6|%6|

|}

|p)

Ml

T

ze

CAGNVWAG

LC]

zt

|6T

€6| BurTsseooiday BurTsseooiday

TOCIESTIZE

este

{etiest

76)

Pa.

|

s3S09) s3S09)

SHITANASSV

fb

Ta

eer

06/68|

TI

LA GNVWad GNVWad

untuein untuein

[p77

bg

"6b

A OTASTMTSSeg OTASTMTSSeg

|

Lb

ogi

98

8B

Tad

1 dO dO

A

gz

gL yoz+ yoz+

28) Wvar

|”

1

INddS

l6g

DAA

68

AA

98|

|

wa Saseg Saseg

errr

|

L9 ¥CT+ ¥CT+

coisz~|

Ss

40

AK

cl

yBlES| faTNy faTNy

WHaWON

eee

LA

AM aL

AA

of0

MAA

tO

Seaa

Se

A

NN

AA

A

A uoTIDeTeS uoTIDeTeS

ZB

|

DL

Ot

LE

OO

f T l oT ol OT of

Ts)

ay

A

Tt

“i

OK

OK

0G

Pa

A

HK

AW TeuTIdO TeuTIdO

62/82|

|

rT

|

lL

IE

EY

7

_.

Lye

re

0

Z “SL-¥ “SL-¥

9

88

76

T6

06

86|

99

gl

cal 781

z8 c8

T8

08

61

yi

9 li

ain3tTyz ain3tTyz

ua

:

*

oy

E

8

215

Q/AMA Q/AMA

on on

> > Be Be

eS eS

Be Be

Ba Ba

8 8

A A

w w WZAWeTY WZAWeTY

IcsT IcsT

CST CST

EST EST

ert ert

€8T €8T

eet eet

EST EST

€8T €8T

€st €st

CSl CSl

EST EST

€8T €8T

€St €St

Cet Cet

aT aT

eT eT

QT QT

ST ST foe foe

OSTCESTIOITIC6TPICIVICILOCESTIZETIV6

fest> fest> Wt Wt

|[soT |[soT

ve ve {OTT {OTT

|IssT |IssT ficst ficst

Hest Hest

[est [est

lest lest

COT COT

8; 8;

leer leer

[leet [leet

Tersusey) Tersusey)

| | St St

16 16 ye ye

32 32

foTzeusog

Pele Pele

tolp tolp

G6| G6| et et

“TL “TL

Esty Esty

76 76

& & 0 0

ob ob

QHGNVAAd QHGNVAAd

| | | |

bt bt

€6| €6| Butsssooidey Butsssooidey

7 7

76| 76|

S}SoD S}SoD

Pp Pp | |

i i

cote cote i

SAITENASSV SAITENASSV

“A “A

2 2

T& T&

|| || [7 [7

eseg eseg

06/68 06/68

i i QNVWad QNVWad

ae ae

2 2

oTIsTMTsseg oTIsTMTsseg

fenTeA fenTeA | | | |

98182 98182

88 88

Tadd Tadd

Gee Gee

dO dO AL AL

37 37

28) 28)

UvaA wntuojntTg wntuojntTg

TA TA

168 168

INAdS INAdS

A111 A111

98)| 98)|

68 68 | |

2222244 2222244

Y¥COT+ Y¥COT+

291Sz 291Sz

L9 L9

AAP AAP

SB} SB} 40 40

NN NN

PALA PALA

fT fT

78;E8| 78;E8|

Z Z

ON ON

faTny faTny WHaWNN WHaWNN

Zit Zit

A A

AA AA

ofo ofo 0 0

PP) PP)

OP OP

. .

“4 “4

AO AO

YY) YY)

24) 24)

uoTIveTeg uoTIveTeg

Zs Zs

IEEE IEEE NY NY

wr wr

Oe Oe

fo fo

“| “|

T8| T8|

OA OA

te te

oe oe

KK KK

De De

OT OT

7 7

7 7

Jo Jo

| |

A A

AS AS

08 08

1 1 A A

Le Le

LL LL

7 7

7 7

Jo Jo

TemTIdg TemTIdg

62/82) 62/82)

2 2

LZ LZ

Le Le

OZ OZ ft ft

7 7

[0 [0 3 3

[0 [0

ZZ ZZ

‘*6/-V ‘*6/-V

LYS LYS

S S

46 46

€6 €6

T6 T6

66 66

Ty Ty

so| so|

ve| ve|

cs} cs}

Z8 Z8

Ts] Ts]

08 08

6L 6L

ya ya

il il 5 5 3 3

eANn3Ty eANn3Ty

3 3 ~< ~<

*™ *™

S S & & 216

Bj 9/AMG 9/AMG

Be

Be Be

a

9 of

Ba ae WF1Z0eTY WF1Z0eTY

esttioe CSTAcSE

est Est

€gT €8T

E81 [rere

esti

EST]

Estll

€8tt

E8t||

STH] €ST||

EST}

Est||

€st||

EST] EsT||

OSTCRSTOOTEOLO

71

76 SOT Ze

9IT

8ST

€8T

€8t E8T

8,

est est

cst

EST Terausy Terausy

KO

ESTP

|26|

6th

OF

94 foTieuacs foTieuacs

1

er

OT

A

S6|%6/

1

ELI

LIVI

yy

7b

LP

CGAQGNVNAC

ee

Wl 380) 380)

€6l BuTssaedoidsy BuTssaedoidsy

clTOcIeS

of

OTE”

7

76]

rile wntueig wntueig

17

Ee

cir

SHITANASSV

Ta

|

lize]

06/68]

|

GNVAAd

tk

yo7+ yo7+

P77

6/98

a+ WTASTMTSSeg WTASTMTSSeg

98 fenTeA fenTeA

TaiNd

Be

dO

AAT

R/

ez

48/98]

UVaA

4S

|

INAdS

AA AAA

6s]

AEP

68 WNTUOANT WNTUOANT

Ke

ra

ADP YOT+ YOT+

19

zo}sz{o

Sei

dO

eee

Lt

78) feTNYyY feTNYyY

WHaWN

AA

rT

Be

€8|

AE ON ON

NA

PAA SEA

r fo

LA

eee

OL

AA

I

ON UoTIoeTesg UoTIoeTesg

LE

7B

r

[Oo

BOA

OH

OO

TS]

Ea

OO A

ti

LE

be

Ne

NW

fo

LE

A

Of

NT ACAI

A CO

]

KK

na

IE

aA

0 Tewradg Tewradg

62/82)

Ae

LZ

Jo

LT]

TN

70

LZ ‘oOg-V ‘oOg-V

9G

C6

eG 96

Te]

06

ey ate

99 8]

7) 98

z8

$8

Te

08

6L

81

iL

oZI

eANsTyZ eANsTyZ

S

a og

E

2 217

GaHDUVHOSIG SAI TANASSV Tand INAdS dO WaHWON YMd

esnoySut3zsemM

|

|

[9

EE

a 79

9

79

79

73 79

9

99 m9

¥9

79

79

79

79

79 79

79

79

||

|

| ||

fi

Wf

€8S

—479

VC

79 fy

79 99

Sy 79 79

79

sjsoj

foTaeueos

“i Beer

98

at

e8e103$

|

S6)

Vor

7

i

96

|

GAGNVWAC

|%

Bup~sssooidey

|

76]

79

9

«ao

1

€6

yoz-

28)

rh

cle

FI

1}

9

#9

SHITHMISSY

‘es3ei07g

|

oTAsTwTsseg

QNVAAC

eK

“pL

OV)9E

OP “|

Pada

Y%oz+

Tid

8

dO

Tr

ISe

‘uMTueIg

COT

£8|98|

UVar

|

Le!

va

Zeeee

AATEC

INAdS

6E}

oe

yoe+

at

Of

OCF

Ss

dO

faTMY

~Oz7-

Loo

AAA

211

ZT}O

MTT

78

WAGWAN

AAA

Aaa

AACS

EDDA

AAA Cees

€8|

uoTIoeTes

“AMS

|

CILLA

NOK

AK

OF}

78

t

nt

KK,

ZOZ+

0

T8

AK

ri

y

A

|

Ll]

OF

KA

[Tewtidg

a Ye

‘oeSeg

i

Le

ny

0

waA

6Z18Z

le

LY

Le

JO Z A

|]

‘*TEe-V

$

€6 76

26

16

06

88 68

93

£8

€8 98 o8

z8

Te

08

6L

8

SZ] Ll

aaAnst

ADUVAOSIG dO UvaAs a 218

GaDSUVHOSIC SAI TENASSV

Tanda INdAdS dO WaedWNNn UMd

esnoyZutjzsem esnoyZutjzsem

BS BS | |

79 89)}S2}

£6 £6 folazeusos folazeusos

79 981S6)76 981S6)76

"9 G6| G6|

99

76; 76;

GHQNVWAC GHQNVWAC BuTssavo0idey BuTssavo0idey

979

€6 €6

| | £8199} £8199}

"9 26| 26|

é

79

SHIIGNASSV SHIIGNASSV

T& T&

ZS} ZS}

06/68 06/68

GNvNad GNvNad

4809 4809

DTASTUTSSeg DTASTUTSSeg

O07 O07

|9E |9E

OMS OMS

Ta0dt Ta0dt

| |

dO dO

SE} SE}

£8/ £8/

407- 407-

UVaA UVaA

INAdS INAdS

GE GE

98 98

¥OE+ ¥OE+

JOE JOE

| |

JO JO

faTNY faTNY

ZT]IO ZT]IO

78/€8| 78/€8|

WAGWON WAGWON

uoTA.eTeS uoTA.eTeS

| |

010 010

cs cs

TS TS

| |

O O TeWFIdO TeWFIdO

“78-V

eansT

ADUVAOSIG dO AVas a 219

GHDUVHOSIC SAI TERASSV

Tafa INddS dO WAdWiN WMd

esnoyBuryjsem

BE

49

"9 "9 79 79

"9 79 79

79

7 9

79

oe

"9

9

79 79 79

79

| ||

{|

{I

{I

€8S1

Hr

79

8; 79

49 79

79

479

89

"79

|16|

te)

fofareuseos

{SZ

79

96

A.

S6

09 “4

ee

96

AO

CHQNVNAG

Bupssa.0rAdey

PT

BaZa

1K

i.

a

~~

99

PRP

as

SHITENASSVY

T6

tb

|ZS

3809 QNVAAd

oTASTWTSseg

CEE

|OV

uNTUeIN

“A

PT

log

9€

gs

Taha

a

| dO

cel6c

28/98] UVaA

|

LA

CC

ee

INAdS

YZOZ+

AA.

AAA

oto eee

vog+

|

A

O€{ZzT|

sei

dO

feTnMy

LAA

A

AMAA

AA

sles]

UAGWiN

(LALA

AA:

LATE

AA

O|

KK

uopTAoeTes

MA

roa

rH

A

A KK

OLO

AT

A

ze

Saaa

OW

KK)

Ts]

bl

ZOO-aA

AK KS

KL

At)

|

LA

oO}

Tewpadgo

1)

A

0g

A

0

62]

ra

[7

{oO

8Z

‘Eg-V

9

£6 s

76

T6

06

ye

es]

Ag 78

c8

z8 yl

08 18

Sl 6

4 il

eANsTy

S

y &

&

8 220

CHaDSUVHOSIG SAITENASSV

Tanda INadS dO UatWiIN WMd eSsnoysutT3seM |

79 9 79 79 49 79 "9 3 79 79 79 79 79 "9 79 79 79 79 79 79 I || Il || || |] || HI t}

€8s

72 79 LY Sy 79 79 79 79 79 ¥9 Poe |

891S2| wT 0 0 |L6| (OP

foTzeuscs CT er 94

A ZZ 98] OEE S614¥6| Aer)

EKA $6] 6yr

rl GHONVHAG GHONVHAG

BuTsssdoidey 46 o¢ mT €6] | | Ft

£8]99|ZS eS ve 26| s}soj bl EI

9 SHT'IGNASSY SHT'IGNASSY Pe Te I bl.

OP oseg Tt 42]

06/68] (NVNAG (NVNAG | DTASTUTSsseg

OV|9E OF ten[eA | |

Ee 9€

8B THAI THAI |

XL dO dO tT

ZAAA LOT CE SE; 28/98) wnTucoINTY,

x. UVvaA | (TAAL

INZaS INZaS AAA GE ZA

OT 672 YOC+ JOE

AA {O€ AAA

SB] JO JO feTNY

“TT AA |ZT}o LTH AA 78/€8|

ON WHGHON WHGHON

TA OT Att AT rrr A AA APPELLEES AYE uoTIDeTeS J

OT OT AK olo AKL OND Ze KK TY

aH Or 18] OY dL A OK XK "| | Ke

of A OF I TewFAdQ KL. A) bh). I I) Fe KE KE

| o 62) lo

LL ELE 8Z|

‘Hg-y Jo LZ 9 €6 Tv 16 26 88] 68 98] 18) cs, 781 Ze T8 08 6L yi 9 Ll 8 eaNnstTy

oy & & E 2 = 221

GaSUVHOSIC SAI TENASSV

Tanda INHdS dO UaEWNN UMd

VesnoyZuyt4sem |

9 "9 "9 79 79 9 49 "9 "9 79 "9 79 9 79 "9 Se 79 79 79 5 1 || || |[ || |}

fr €8S}89 79 LY 42 79 41479 79 79 87 |

BUCeCOesSaAA2eeecesesesea4Vk mPa 16 Payers |SZ

fofzeuacs ST Ta |

eet 98156 y~P 22

67 v€ {ZT 76 GHONVHAC | | |

rar)

Bursssooridsy

3s0) 76] O€ WE €6 Fk Fk

LL 28199 ez| 99 26| IL

untTueIn

EL SAT'TEASSV "9 z|s Isaa-aA To | lL

LS]ov ete 06/68 AK (NVAad

OEASTUTSseg

707+ | |

“xt SE] 8B Tila

fenTeA dO

BAA4nneewewa- LL Zeta

SE S€ AE 28/98) UVaA lL |6E

INAdS AA. OT [6z

¥OE+

UNTFUOINTY | |

OE}ZT} 0€ Ss 40

SaTnyY

TA IT tt AMAA v8] WagWnn LALA

TAA AA AAT ZLA taal A AOKI E8| OF KA

uotzeTeS

oN

OA 0 1 Ze ae | A OH AK) 18) A O| A A AA KITE A XY AK A A A OF

TewmT3dQ OAL ese qos le

O}0 O}0 62/82] | Le Le IL 4

O}O0 LY]

“*Ccg-V Z 3 €6 96 16 06 68 88] 8 z8 $8 C8 TS 6L el 9 Ll

eansTy |

S : 8 222

GaSaVHOSIC SAL TENASSV

Tanda LN&dS JO WadgWNNn UMd

[79 [79 Psnoysutqssm

9 9

"9 "9

99 99 79 79

79 79

79 79

79 79

29 29 79 79

79 79

79 79

9% 9% 19 19 "9 "9

73 73 79 79

79 79 79 79

79 79

79 79

| |

|} |}

|| ||

|] |] |] |]

€8¢189|92 €8¢189|92

fir fir

[LP [LP 7Z 7Z

79 79

79 79 79 79

79 79 81 81

ME ME

9 9

|16| |16| Pa Pa

9 9 wT wT

fopTrzeusess

94 94 | |

98/56 98/56

mE mE

ag ag

$6|76| $6|76| eet eet

q q

ALA ALA

rae rae

eviiz eviiz fespor fespor rl rl

QHGNVAAC | |

Buysseooiday

e e "9 "9

380) 76] 76] £6] £6]

28/99 28/99

[eee [eee "9 "9

26] 26]

Pe Pe

ei ei kK. kK. unTueIn

9 9 LZ LZ

SHITENASSY

bl bl

T4 T4

aK. aK.

| |

| | | |

le le

Zs}oy Zs}oy

&t &t

97 97 06]68| 06]68| QNVWad OTAstuTsseg

wb) wb)

~OZ-

[07 [07 PPP PPP

joe joe

9€ 9€ 8B 8B

Ta0d a a

fenTea | | 40

AA AA

cel6e cel6e

ce ce 28/98) 28/98)

UvaAr 1] 1]

i i LAA LAA

INAdS

Z.eeeeaas Z.eeeeaas

oT}ooLE oT}ooLE ez ez

¥OE+

wNTuo

| |

PL PL

DARPA DARPA

o€|ztlo o€|ztlo

AA AA SB] SB]

40

faTny OT OT

fA fA OO OO

ANT

ATL ATL

78/ 78/ AKA AKA

WAGWAN TT TT

AT AT

ZA ZA

AAA AAA

7 7

Att Att

OT OT

OY OY

Es) Es) KA KA uoTAoeTeS ON

i” i”

Jo Jo

OY OY —aosas —aosas

Ze Ze 1 1

TAA TAA

fo fo

A A

OH OH

T8) T8)

AAA] AAA] OF OF

1) 1)

Jo]o Jo]o

A A

A A OF OF

Teumpidg

Pete Pete

We We Ye Ye

2 2

62/82) 62/82)

IZLE] IZLE]

p p

lL lL Ll Ll

Fofo Fofo

‘gg-V

Z Z

96 96

s s

€6 €6 %6 %6

16 16

26 26

06 06

68 68

88] 88]

9] 9]

cs} cs}

"8; "8; cB cB

28 28

T8 T8

6L 6L

eZ eZ

iL iL

GL GL | | eaNn3Ty

& & log log

5 5 38 38 223

GHOUVHOSICG SAI TENASSV Tanda INadS dO WaeaWN UMd

VPsnoy8utyzsemM

[79

|

"9 STS

¥9

99 79 99

979 79 79

79

79 79

2

79 79 79

79

“9

79

||

|| II

Hl

II

€8S] €8S]

=

8, 79

49 LY

¥9 79

ED

79 79

89) 89)

mPrrrr

9

|46|

Pre

sfoTzeuscs SZ SZ

mT

TT

94

I9 I9

ZZ

TA $6|%6| ©

G6

ES

7719

%9TaA

CaCNVAA

Bupssaooidaey

76

99

280)

AK

¢

€6

|

Baa

(91

cy

6z

281991zS

z6|

ll

tL

a8e109S$

“1

79S

|z

SHITIGNASSV

Tq AAA

KL

|e

7%

06/68]

|

oTAsTMTSsseg QNVWad

4%OZ+

AX

[ovioc

OY

4

9€

8a

‘Tanda

feNTVA

| 40

KX

sel

GE]

28/98) UVaA

|

Tot

7

LNadS

Aad OAT

AA

6eloe

OT

62

Yo¢+

WNTUOINTY,

La

OE

sel

40

fatny

cL

AAA)

[zt]o

Aan

LT

AA

veles|

WAGWON

LA

AL A

AA

i

TA

A714

uotqoeTes

oN

i”

fo

A

At

AA)

KK

ze

Perr

Le

HN

OT

waa

XK

[To

AE

ON

te!

UX

AK.

A

a

Ba

a

Jo

KS

De

Teuzadg

i

Og

YY

TL

7

i

o fo [o

6Z/

LO

IL

SS

7

ra

SZ

<

|

‘/g-VW

To

CZ

9

g

£6

76

T6 76

06

68

gs|

98 7B]

z8 €g #8 $8

Te

08

6L

2

il

SZ]

ean3sTy

S

w oy

i

E

Q

i 224

GASUVHOSIC SAI TENASSV Tand INadS dO UAEWAN WUMd

VBsnoysut VBsnoysut

79 €8S}89)S2 sem sem

79

L6

fofyazeuass fofyazeuass

| | 98) 98)

G6} S6)}76 S6)}76

76

GaQNVWAC

|

BuTssed.oidsy BuTssed.oidsy 3809 3809

£6)

| | £8)99 £8)99

76] e8ei0j3g e8ei0j3g

SAITENASSVY

T&

| | LS} LS}

06)

IT IT

(NVWad (NVWad

YOZ-— YOZ-—

07 07 AsTwTSsseg AsTwTSsseg

68

| | 9€] 9€]

TaNd

fanTeA fanTeA

dO dO SE16E SE16E

8 98] £8) UVaA UVaA

INAdS

yO¢+ yO¢+

wny_uoINTg wny_uoINTg

| | O€})LZTIO O€})LZTIO

S8| feTnyY feTnyY

dO

78)

UadWON

€8|

uoTAdeTeg uoTAdeTeg

ON ON

| | O]0 O]0

78

T8

JO JO Tewtado Tewtado

*S8-V

emn3sTy

ADUVAOSICG dO uvas

225

ba ba

Q/AMA Q/AMA

aS aS

a a

a a a a

5 5

ge ge

8 8

| | WTAQOETY WTAQOETY

EST EST

eeteest eeteest

eat eat

EBT EBT

€8T €8T

EST EST

est est

fe fe

Est Est

€8T €8T

EST EST EST EST

ESTYSE ESTYSE

estilyst estilyst

esTcst esTcst esT|leet esT|leet

ESTIEST ESTIEST

ESTi|cet ESTi|cet

esTfeet esTfeet

ESTI|est ESTI|est 4 4

€69 €69

8; 8;

Tereusey Tereusey | |

esIP esIP Pr

|26| |26| 9T| 9T|

ey ey

LE LE

rrr rrr

94 94 foTzeuesg foTzeuesg

Ft Ft

By By

{OZ {OZ

G2 G2

BIE BIE

ryt ryt

S6|%6| S6|%6|

ecele|Icpollcl ecele|Icpollcl

Estp Estp

E9 E9

Ke Ke | |

CaCNVWNAC

| |

£9 £9

ZE ZE

€6 €6

eel eel

i i Buyssavoidsy Buyssavoidsy

7 7

sip sip

SES SES

[ez [ez

z6| z6|

rt) rt) ses ses

ee ee

i i

Tt Tt $3Ss0) $3Ss0)

SHITANASSV Tq Tq

POPP POPP

06/68 06/68

tect tect

QNVAAG QNVAAG

wntueIn eclp eclp

oTAsTMTssag oTAsTMTssag | |

86 86

86] 86] PPA PPA

Ta0d

ee ee

A A dO dO

AAA AAA

AAA AAA

AAD AAD

|| ||

88 88

88 88

407+ 407+

cel9s| cel9s|

UvaA | |

[ool] [ool]

INAdS

AA AA OIL OIL

‘eseg ‘eseg

AA AA

YOE+ YOE+

SZjoz]| SZjoz]|

GL GL Sel Sel

dO

mEeweswaa mEeweswaa

A A

HK HK

AAS AAS

velee| velee| feTnyY feTnyY

WadWNN

CA CA

Esa Esa

AAPL AAPL

Atte) Atte)

1 1

Ot Ot

0]0 0]0

ND ND

OP OP

TALE TALE

A A

KAS KAS

OH OH

OP OP

uoTIOeTes uoTIOeTes

ze ze

eT eT Tt Tt

Ke) Ke)

Pe Pe

10 10

poe poe

Zi Zi

Te] Te]

OF OF

rb rb

OA OA Oe Oe

|0]0 |0]0

ELL ELL

of of

ITPA ITPA

Oe Oe

as as

DA DA

7 7 At At

TeuTIdQ TeuTIdQ

6Z[eZ| 6Z[eZ|

| |

Le Le

[7 [7 |) |)

ere ere

00 00

A A Ay Ay

_ _

ZZ ZZ

1 1

°6g-V °6g-V

$ $

76 76 €6 €6

26 26

te te

88] 88]

98] 98]

8] 8]

se se

78} 78} es} es}

Z8 Z8

Te Te

08 08

64 64

eZ eZ

LL LL 94) 94)

PANTY PANTY

§ §

w w : : 3 3 226

Q/AMA

ba

BS

a >

HO

a

S ae

Ba 8

Bs

tai

VDFlIDeTY

[eleuseg

AZZ

TA

es

BSwaa@

94

foTaeussg

OX

LG

69

[Ot

°

S6\%6|

alae

frit

pot

a

KX

CAGNVWAG

cs

a

ea

AA

A

€6l

tr

¢

ButTsss.o0idey

TOCHE6TICZTIZZT] TOCHE6TICZTIZZT]

[Oetl

mH

$4s0)

Z6|

KL

1K

CST

Terr)

SHITGNASSVY

bb

Ta

asegq

CF

89

06168]

td

QNVNad

oe

AA

DTIsTuTsseg

fan[eA

8 86

6

TaNa

8B

a

dO

|88 |88

ZLAA

eZ 14

STOOL

L8198|

wnTu0RINTY

UVaA

DOTISz DOTISz

INAdS 7

LAA

ea

AAA

YOE+

SLL

Se]

NK

dO

6zi0

AAA

CLT

7B/Es|

MAA

ON

feTMY

WAGON

ZCeCeaZ

ress

AA

ON

A

KEE

|

Seaseaa-24

LT

LA

LAA

1

rye]

Of

KKM

ON UoOTIDETAaS

A

ze

Pe

0

AK)

TS]

AA

A

YT

jo

OF A

O@ KL

A

A

TT

au

[0

Temt3dg

62)

LT

x

10

82

[0

ZZ

*Q6-V

9

ITS

£6 76

te] c6

06

68

881

93 8)

$e

68

T8

08

SL 64

9

LL

|

|

|

eANn3tTy

og

Es

E

B

a ®

227 Q/UMA Q/UMA

fa

fg

>

a

Bm ge

Bg ey AB oy

5 ITAWIETA ITAWIETA

|

€8t

Est E81

est EST

€8T

€st [cst

[eet tbe €8T [est

est

est

€8t

Est E8T

EST

€8t €8T

Est

|

|

|] ||

||

||

||

ft

ESoTpeT

8;

€8T

€8T €sT 9ST

cSt

Csti. est

eT Ters8uey Ters8uey

psir

OTL

|26|

|

Vcc)

fb

94 foftzeuacsg foftzeuacsg

Tc

est

€5{89

s6/

zirez/8Lc|

tte

cst

eT

46!

DK

Pe

GAQNVHAG

|79

S6 3809 3809

ST

€6

of Butssao.oidsey Butssao.oidsey

+r

F

To@66T\z/T|zzTB6

|"

t8

[82

z6|

DK WNTuUePIN WNTuUePIN

sil)

SHI'IGNASSVY

Pr

Te

ta

|

|)

ZZT

06/68] (NVNad

¥OZ+ ¥OZ+

orp

Tt

era

tO DTISTWTSseg DTISTWTSseg

Th?

LE

le

9T| SENTRA SENTRA

THN

So

Ft dO

EE

[ge

88

L8|98| UVaA

TET

loot]

[7 INAdS

Lal

TEE |6/

AA WNTUCIANT, WNTUCIANT,

AAT YOE+ YOE+

sz}6z

Se

40

eeL

AH

velEs| SeTNY SeTNY

aA

WAaWNN

jo

PA

FECeweaw

A.A “AY

CN

AN ON ON

DT

KT

LA

fT

[o

OA

A

ATA

EPpy woTIoeTesg woTIoeTesg

ze

Tt

IIE

tT

KK

Jo

PA

Ts]

OA AK

Oe)

yO

Pl

nt

HK

b

I

I

1)

OF

AK

KK

Para

Jo

_ TeuTIdo TeuTIdo

62/82]

Le

wa

Le

jo

7

7

"

fo

Z

‘T6-V

9

s

£6

76

6 76

eel

68

es]

98] cg)

z8

8

Te

08

6

81

5 iL

)

i

ean3T

i

3

& oy

E &

yz 228

B. Computer Code for Data Generation 229 OST SST OL Sct CHT OS Cit STt cet GT OgT 06 COT Ce Ce SL Ce OcT GSE OS SS SOT Oct Cl Gé GY G9 S6 ST ce CY SMG SHQ Ska SMG SHO SMC SMG SMG SMa SMQ SMG SMG SO sé SMG SMO SKC SMG SMG SKhQG SMO SAG SMG SMG SHG SMG $KQ SMa SMG SMG SKQG SMG

HHH HH HHH HHH HHH HH HH HHH HHH BHR HHH HH RC SIGVUSAOQDSu

>(ATGWSSSV ICICI a II ORO AHL

Usd) CH A aR SLIVINDWI

Ou

*(ST1ISSTS)

SCS

AVEWwSSSY D4

SH

on

O4 RIC

SFPOTIGS

OM SSITGWSSSV

Ltecy

T1SSTA) aC

6902°2¢

8cel

ON

BSLlE°%?

Sty? RK

T*TlLe

AVEAISSVY ICI

¢€1e

sAVSSV

*AVSSVY

zAVSSV

2

?™

eeS*O

eeS*C

@eceG*O

SV RC ok OL

Ud

SODUVHOSTOQ

SGYVHOSIG

ATUw3aSSV

329uVHOSIG aC

sa90eVYHISTIQ

s3SuvHOSIC EIS

Suv

SOYVHOSTC

oS8°O

2S$6°O

268°O SI ae

ONT

SONVHOSTG

SOUVHOSTIG

SOYSVHIOSTCQ T3N4 gg

t3409

$4309

PJUOS t34090

Uhd

GSNIAVX3S WV¥e80dd

F4OD

YSSRIONS ai ok ai LN3dS

2atQ3

32309

sae

:4Xx03 ae

XCVIIM

UMd

HUOD 2g

Ad

WAT

KATSELIIANGA

WALYCT BATYEIT

Ad

Md KNITSGIVIASS

A

9

A 2k af ak

eGR

S2SACHSNILSIM

2LVWixXOuddy- ALVENIXONddY-

SiVwITXxXO8ddv—-

SLVWILXOodddV-

ALVKIXONddY-

SLVWIXONddY-

ALVnRIXGaddY¥-

SLYHIXG¥ddY-

ALVWIKCdddY¥ STHL WI

WILIKI] IVILINI

WILINE

S3SV9 a

TWILINI

WWILINI a

T

MOLLSAAHOD Be Be

TINGS

TACT

3

TINGS

cake AR AR ONINIVESY afc

NVIOIGVEG AR AR 40

a AR ap ap AR a

3IH1ID2dS

a aR oR oR aR 3SQdeNd

age WYYoOUd WYYoOUd

(9

(V

(e €V

¢¢e (a

€V

(3

(vo a ae

a aR AR AR aR a

ak AE AE

CE

(T

Ce OR OR BLYOM a

ae AE AE

ak AE AE

SHIL JHL

ale

AS AS NIV NIV

ae Ok Ok

ak OR OR a

%

K

oK

2K

% Of Of

x

* * 53

7%

x * ae

* ok *% *

%

36 sk

xk *

* x *

ok x

OVOYOMUUGUNQDOVOVOQOUUOOUYVOUOVUYOOUOUOO

230

GTt GTt OL2 OL2

OTE OTE COE COE S92 S92 C9 C9 See See

062 062 Sle Sle CGe¢ CGe¢ SE2¢ SE2¢ oit¢ oit¢ ORT ORT

Oc! Oc! Cte Cte S6T S6T

OE OE

GOL GOL S62 S62 Gee Gee cec cec GS¢ GS¢ S¥¢ S¥¢ SO¢ SO¢ CLT CLT

CH? CH? O€e O€e 002 002 SST SST GLT GLT

O6T O6T

col col

SMG SMG SMG SMG

SMG SMG SMG SMG

SMG SMG SMG SMG

Sq Sq

SMQ SMQ

SMG SMG

SMG SMG

SMG SMG

SMG SMG SKO SKO

SQ SQ

SMO SMO

SMO SMO

SMG SMG

SMC SMC

SK SK Sma Sma

SMG SMG SHG SHG SMC SMC

SMG SMG SKC SKC SMa SMa Sa Sa

SMa SMa

SMG SMG SMG SMG

SMG SMG Te Te

Hwee HR HHH HG HH HHH KKH HH KH K se * eH tH He Ke tt Ht He

(A

(3

TISST4) JSVD JSVD

TISST4)

zAG zAG S809 S809

(JIVISSTS} (2T1SS14}

SATiVasddS SATiVasddS

GaNIWds GaNIWds

SSV@ SSV@

MOINYYO MOINYYO SOVUOLS

Ad

Ad

WS SHI SHI

KO

fid Ad lad

OWSS9D 4D 4D

T

HS WOUd WOUd

wWO

T

*SQOHLiSW

GARDTUNS GARDTUNS

ST ST

OL SALLVINAS ONTAVS ONTAVS OL

2(370ISST4) SH

Om

OH OX

TOL T LNA ALIVIgvVilaCed

OGL 20 20

NE LATWAINGS OH AVGWSSSVY 9686°O

LEEH LTCH*C

SCb6TP? e+ e+

IWAINGS

GANIWeslaeaq

iNa

¢€°99T LNZIVATING *NO

OML

¥ ¥

>AVSS¥Y >AVSS¥Y

GHLUVA GHLUVA

GeO GeO

265 265

ceoerc ceoerc

-— -—

&7R°O &7R°O kU kU

TC TVATOOS GASVEG

39edVHISIC 3nNTV 3nNTV

Ae

%O %O OL OL S/UMG FO¢VHOSIG

O

NO

z z

G344 G344 9 9 GaLy

og*’o

4d 4d

2 2

NEL NEL 3d

WNOTLHSdCtd WNOTLHSdCtd A 4a 4a

TLV TLV Te Te I I

t3y0d 23S 23S

2dO

P4y0D P4y0D

240 240 FdUO9 FdUO9

GALVINIW 43 43

HUVHOSTAQ

Ms Ms NMMS NMMS

WA] WA] LVM LVM

de

TAT

V9 V9 ASSAY ASSAY

3:

4h 4h

NCTLISOdbkOoD NCTLISOdbkOoD

ON SUNSVSk Ses Ses

24y09D

OILS OILS RCLNITd RCLNITd

PINVEA PINVEA DIHLOs DIHLOs SxuOD SxuOD

OKCD 4uU09 4uU09

OM

WNTtEaPVIAes WNTtEaPVIAes KNTESITIAGS 9% KNTVETTIAGS KNTVETTIAGS

Oy om 3SVG

Aa Aa

NA NA lakyevd lakyevd

WO CLETPO CCetec CLETTOG

JLVwWITXOuddv¥—- JLVwWITXOuddv¥—- SCET"O LIGayHd LIGayHd

SIVWIXOtddv—

sl¥¥wTADddd¥- sl¥¥wTADddd¥-

Cd¥OS Cd¥OS SI AQNA

WILINI WILINI IWILINI

WILINI WILINI Ta Ta SHL

ST

ATSES ATSES

Wenaly Wenaly + + § §

sniy COQ COQ

TVA

WusaNnsas WusaNnsas sn sn I I

WO

SATIVA

ON ON

3 3

STIVL STIVL

STIVE STIVE ahi ahi

ff tuhd= Hiab nav

SS¥ Ak dd

TAGS vA

dhe—

INCWIG4S (9

(d (V €V (Vv (9

GNY

eG¢c- A NINCifN NG HA WNINV ddd

“(CT

TR CV CV

(% (<é

(d (d CASVe CASVe

}wOQK VY 3SHL

CNY

ZHI SN dd

3¢ fe 3% % 4 y a He Ht

YOU UUVYUOUVUYVOUVYVOUOVOUVOUVUOUOUVUVUVBOUOVOYO

231 OSE OSE

C94 OLF

SOF CEY GY¥y OSY GLY CE8Y

OVE Cc Sth OF GGt

G6E GTY GOFF CSE O9t SSE GlE G8E C6e O1n Gdet OLE SCY CEE SCE SSE 00O¥ SUE SMG SMq SMG SMO SMO SMG Sd SMa SAG SMG SHO SMG SMa SAG SMG SMG SMG SHG SMa SMG SAG SMQ SMG SMG SMO SMa SMQ SMG SQ SMQ SMO SMd

He

ok

sho

a

BER BER

ACHE ACHE

(TOVLSTISS (TOVLSTISS

AR AR

(TCIDESSETZIIZS (TCIDESSETZIIZS

ea ea

FTCVLSOINS FTCVLSOINS

BOK BOK

(2c2'27 (2c2'27

(TZIAVDSG£ (TZIAVDSG£

I I

S(T S(T

ACK ACK

ZILSOOTS ZILSOOTS

arid arid

2 2

(TJ (TJ

aC aC IOC IOC

(22*27Z)ONdSTASETZISICUAA(T2)9VS

Ad Ad

IECINAS IECINAS

£ £

(TCIDTSS (TCIDTSS

SKOTLISFOUd SKOTLISFOUd

(121d (121d

ah ah

$(TZS $(TZS

SCT SCT

2 SC SC

SNOT

CSTZVLSODLS CSTZVLSODLS

FUN FUN

SOIC SOIC

TZ TZ SETS SETS

SIIVIYd SNOPLISP

UTZ UTZ

d d

LO9CONd CTSSTHLSCTIVASCOAD) CTSSTHLSCTIVASCOAD)

(1Z*T=L*

eM eM

AC AC § §

(TZ*T=14£(1)S09uN)

)VLSCIRS )VLSCIRS

C12 C12

A A

TAN TAN

LSC LSC

ofc ofc Sdlad Sdlad

SLSOD

ge ge

VESODADS VESODADS 2K 2K

KWNINVUN

OHSS OHSS Ae Ae

Odd § §

CLT

S351td S351td ea ea

L800

62e§ 62e§

f f

SLi$SCD SLi$SCD

0024 0024

(Te (Te

a a Gssve Gssve

OFS ISCINES)

Of Of LT LT

LS00 /CEOKPED/INIWAd /C°OQe

/C*CHPEN/SANIVAN

ak ak 72) 72)

/C*Cxte8b/s0udy

ae ae ZI ZI

NCI

227) 227)

SLSOD SLSOD

fT fT

(12 (12 ak ak GILISFOvd

CALQ9FGYNd

ak ak

LSODES LSODES

WAIN WAIN

AN AN

A9VUOLS A9VUOLS

2) 2) oie oie

SHSAKO]

LL6T LL6T 29VeOALS AG AG

bOH/ONdSIG

NENG NENG

eae eae

ac ac

IWAN IWAN

ake ake

ad ad

ok ok

AMS AMS (066°C) (066°C) (0664S)

(CH6*G)

UN UN

3 3

VV VV

35 35

NOTSN3SRKIG NOTSN3SRKIG

at, at, MK MK

NOI NOI NCTSNARIO

NOPSNSWIG NOPSNSWIG NOPTSNSAKIC NOPTSNSAKIC Hi Hi NCTSNAKIG NCTSNAKIG

ORL ORL aty aty

NI

(4 (4

(3 (3 (Vv (Vv

NI a! a! KI

NI

SNSWIC SNSWIC

Cada Cada

CON CON "whe "whe Gvay av3e

VLVC GV3u aGvay GVae GV3Y

Viva GVA. GVA.

VLiVG OK OK

VIVG whe whe

AK AK

« «

eK eK ‘ ‘ Ht % Mu oH 4

VVYVYVYVOY WOO Ooo Oo QO WU 232 O6S O£9 Ccso O%S ces Og Sco G6S CO? S29? OOS O€S OSS G9S OlS Ges cT? S64 GSTS GLS O09 GUS GSS C44 02S GZS GEG GSO9 O9¢ Gey GOS OTS SMG $M SMG SHG SMG ShQ SMG SMa SMO SMG SMG SMO SMO SMG SMG SMO SMG SK SMG SMG SMQ SMQ SMa SAG SMa SHAQ SMG SMO SMG SMG SMG

SKG

NOLLSNGHOD NOLLSNGHOD

O/UME O/UME

SAN SAN

IVA IVA

Vo Vo

*AIGWASSY *AIGWASSY

wOd wOd

LIN3WS3DVIidid LIN3WS3DVIidid

VouG4a VouG4a ATIVNIG ATIVNIG

(To*T=1*

LXSN LXSN

JSNCHONILSIA JSNCHONILSIA

(To*T=r' (To*T=r'

(TofS (TofS

(Te*T=1S€119€S) (Te*T=1S€119€S) (t2fT=14 (t2fT=14

Ce? Ce?

CLT CLT Cél

C1? C1? 062 CST CST Cit Cit

OT OT

MPAINOLA MPAINOLA

GNV GNV

T=1° T=1° fATOnKSSSY fATOnKSSSY

(I)

OL OL Ol Ol

OL OL

Gh Gh OL OL Ck Ck

GOL GOL

Cl Cl

‘A ‘A

(11929) (11929)

CIOS} CIOS} (1)9"S) (1)9"S)

dsdnd)

uo uo C9 C9

OO OO 09 09 Q9 Q9

Oo Oo IO cry

a TEHWASSY TEHWASSY

(FYSOOAAS=CFFLSCOMS

Td Td G*T=LNNODI G*T=LNNODI

(fF

Y Y

(s*tsa* (s*tsa*

(TSCS*LNAGII) (TSCS*LNAGII)

(E°OS°LNAODOIT) (E°OS°LNAODOIT)

(L°8s* (L°8s*

(e'cs* (e'cs*

(2° (2° (h* (h*

(FDES=CFILSOCIES (PFYUOTS=CFILSOOTS (FIBCSHCHFLSCIAY’S (9°@s3"*INNCIT} (9°@s3"*INNCIT}

(FYDVS=CFPLSOIVS JATLOSS4d35 JATLOSS4d35

}SODsAM=

YeOd YeOd

MAG MAG

O3° O3°

O4°L O4°L

T2‘t=f T2‘t=f

F*T=N F*T=N WYUOOUd WYUOOUd

(C96°C) (C96*G} (C26°S)}

(CSO64'C) (C964°S)

ONT ONT

Y Y

LNACII) LNACII)

inna) inna)

iNACSL) iNACSL) LVHL LVHL

innoo) innoo) NACI) NACI)

CF

YOd YOd USSNIONG USSNIONG

Cet Cet ILSCON

C6 C6

076 076

LAGNI LAGNI LSard LSard

avay

GVA

AVSe aGvVay NIV

NAHE NAHE

AVSu

OG OG oa oa

Gd Gd

i] i] 4d] 4d]

dl dl 3] 3] Ad] Ad] A] A] 4d]

4d] 4d] Ctl Ctl

Wooo Wud Quo

233 CCL CCL

cél

OSL Oil C8L C9oF OlL9 OTL etl Sel CHL S6L S49 ¢89 069 Ged Cel Sek GGL

SOL GiL Gel S99 SL9 O89 S69 SUL Ook SOL

CS9 OG8 GS9

SMG SMC SMC SMQ SéQ SMG SMa SMa SKO SMG SMG SMQ SK SMG SMG SMQ SMG SMa SMG SMG SMa SMO S$éMQ SQ SMG SMG SMG SMG SMG SMC SMG

SMG

(FISOCINNS&?S*T=CLPLSODMS (FISOCINNS&?S*T=CLPLSODMS

(FISGOAMNS*E* (FISGOAMNS*E*

(FPF) (FPF)

(F)SGOYUNKESO=(FFLSOIN (F)SGOYUNKESO=(FFLSOIN

(fF (fF

(FICS (FICS

(FIDTSKESCHIF)LSGOTIS (FIDTSKESCHIF)LSGOTIS (FYOBCS*XE*O=HCFILSOI?S (FYOBCS*XE*O=HCFILSOI?S

(FIDESeC (FIDESeC

(FYDES*E (FYDES*E

(PF (PF

(FP (FP

(FYSBODAMS=(CFILSOOMS (FYSBODAMS=(CFILSOOMS

SOo3dNe?* SOo3dNe?*

OTSee* OTSee*

POESKk POESKk

DHSkE* DHSkE*

(F)SODEN=(FLSOON (F)SODEN=(FLSOON

(FIOTS=(FILSOSTS (FIOTS=(FILSOSTS

(PFIDESHCHILSODES (PFIDESHCHILSODES (PFIBES=(FILSUDCS (PFIBES=(FILSUDCS

C* C*

CT CT

Tz‘t=f Tz‘t=f

Tz7*t=f Tz7*t=f

Tz*‘T=f Tz*‘T=f

Te*‘t=f Te*‘t=f

T2*T=F T2*T=F

T2*‘T=f T2*‘T=f

T2*‘t=F T2*‘t=F

TT=ELILSOBES TT=ELILSOBES

CHICK CHICK

CHEF CHEF

CHIL CHIL

T=CKILSOI?SS T=CKILSOI?SS

T=(F T=(F

THER THER

T=OF)PLSCON T=OF)PLSCON

OlZ OlZ

CLée CLée

OLl¢2 OLl¢2

Cle Cle Cl2@ Cl2@

O12 O12

Cle Cle

SONTLNGI SONTLNGI

ILSOOBS ILSOOBS

ILSCIES ILSCIES PLSODPS PLSODPS

YLSOITS YLSOITS

DLS DLS

cc2z cc2z

C&T C&T

Cee Cee

C22 C22

Cyt Cyt

CS2 CS2

COT COT

CL CL

OL OL

CL CL

Gi Gi

CL CL OL OL

CL CL

ODS ODS

ca ca

AN AN CG CG

Ad Ad OG OG

OQ OQ

09 09

CG CG

09 09 CO CO

G9 G9

O9 O9

O95 O95

0 0

OLT OLT

OCT OCT ObT ObT CE? CE?

OT OT

CBT CBT COT COT COLT CéT CéT

OC? OC? CC? CC? 234

076 SS6

O16

S8s S16 CEE C¢6 GY5 096

0€8 OS& O98 S18 O88 006 S06 G¢é6 S€6

Sé8 GSEs OL8 068 0S6

Cc8 S68 Cv¥8 G8 SSB GOS

S08 OTs G18

SHG

SMG SKG SMG SMQ SHG SMO SEQ SMG SO SMG SMQ SMG SMG sma SMa SMa SKG SMG SMO SMG SéMQ SMa SMG SMG SMG SMG SMO SMG SéQa ShG

SMG

VY VY S¥ S¥

ATG COPVLSODNKSSOTE*

CUP

WAT WAT WASSV WASSV

VLSOIN=LTT NY¥VYN NY¥VYN

(PFS

LINN LINN ONINIVWS¢Y ONINIVWS¢Y TPUNTGxO*ZTIEP=(FSTIENIVAN

TS ead ead Ode Cte 2° TACK

Tt sOUVHOSTG sOUVHOSTG OL JL

OP dO dO oce OGeE SZCOO°CHNX ASOORSkI6SET LSOOKS CH A9D

EOCO*C=HKX SNIWA SNIWA OL OL (ETSNON (F7°aN°NPONV eye OO HLL

OS

20 20 SHL SHL OL e*T=STIVII (econ

ECT 3xIL 3xIL (FIDPS=(FILSGBVS (T°OS*STIVIT) (C*EA*STIVIT) (eOC* TONY C*c=(F

09 4G 4G c*t=AdI *O=(fF "O=(CS "C=(F "O=(F TCI Iz‘t=7 T2* Té*T=1 LTéef‘T=f "O=(fF OH *or*ha*hx)}) SE

NOLLIVINDTWS NOLLIVINDTWS 49 49 “O=(f (F°ESG°N) CT°OS°N) OT OT ETLO* HCF *O=(F =F bS°Rx) ST) fT} S3A7°T) Cee £ fF (Ff £1)

SANT NOILOANA NOILOANA TUM SNNELNOD TPANIWAd TISN ST) CedS O&2 Cet LSOILS OFF CCé Cés CéZd }AVIAG TW) 30edV CL TT) TANS aK eK IVAN TANG LNOD IG IG IG UG CA Od CO CA AI OA oa Al dl GI Gl AI

al JI

Cie Cie CEE

CE? O¢E O¢E

CE?

CE? CCE CTE CTE

YQWOuoO

235 C2oT C2oT

S96

OTT OTT

OSOT OSOT

OLOT OLOT SLOT SLOT SOT SOT

Sgot Sgot

065 OctT

OfOT OfOT

CSCT CSCT

O60T O60T

Colt Colt

STItT STItT

GZoTt GZoTt Scot Scot OFOT OFOT SHOT SHOT GScOl GScOl

ccolL cé60T C86 cCOOT CTOT GTOt Csot

OL6 S66 S86 S901 G26

SMG SMG SMQ SMO SKQ SMG SMG SKG SMO SKO Sha SMG SKq SMQ SMG SRQ SMG SMO SMO SMa SMG SsMQ SMa SMO SMQ SMO SMG SHO SMQ SMG SMG

SRO (CFP (CFP CEP

(

CEP

COPILSCINES (CUP MNINQiNId MNINQiNId

(PF

LSODNKEDTSE PLSOINKGSCEOE

YLSOBNKEYLZE*TECP

LSOINKES

LSODNKGOGE LSODNKGOGE CPS CPS

(PS

(FEVER (FEVER CFE CFE

(Fo

Tas Tas TIUMTGxOS TIUMTGxOS

VENTE VPUMTGETTGLE=CPETIANTIVAN YOsa YOsa

CTE

697°

ST ST

OOF OOF

Tde Tde TORT TORT Oty Oty

STAC

STAC

ASN ASN TH TH

*TH(F

THF

T

Tt Tt (FE (FE

TO

OL OL OL OL

OLE=(PETIAN OLE=(PETIAN

ZT ZT

8Cb=(F 8Cb=(F AG AG

PR (PF

EFS

IV

BA

Ob=a(F

ILSCIMS&GOO ILSSOMSHRIGLETT

LSOOMS#SECST LSOIKS LSOIKS

LSODPSKEHH

CD CD OO OO

STEP

HCP HCP

TEE AN

IVA IVA

(HT (HT

(PT (PT

ATEN ATEN cet cet Cty C9€

Cer

Cce STISNIVAR STISNIVAR

TCKeC SeFCETTPOVH(F SeFCETTPOVH(F

STISNTIVAN

TC?

SNPNTONV SNPNTONV

ANT ANT

HOUGHC HOUGHC SHL SHL

GL

Of OL OL

OL

Ci

°

TIAN TIAN

TYAN TYAN NTGNVTETaT NTGNVTETaT

CT SOS

ETT

aS O09 O09 OS

CO AC AC

69 OS Té* Té* T=

PORCH COVERS COVERS

TO)

=({f

OCI=ACLS

OV

NOLLY NOLLY TCT TCT

(4°

(h*O4°N) (h*O4°N) (H*ioe CEPCaeN)

(¥SST°T)

CETEITND

(TP (TP €9°37°T) (2°ES°N) OF

Cc°bath)

HCP

SCRA =f =f

OS

Cle O27 CLY CLY Ceb

Cg’e

§

fT)

iS* iS* DStN) DStN) SANTLNG3 SANELNGD

TISATVAN

15° SNNTLNOD

ETD fT) fT)

ST)

SA

O19 O19

INDIWV5 INDIWV5 TUN TUN

TYE

TV)

1) 1)

CL CL CL CL

OL

OL OL

CL 1) 1)

1)

1) HR HR

TVAN UM

eh

UAIG

TC TC 09 09 GS GS OD

Al TA

OG OG OD OD JI

O09

SI SI IG

1G GI GI

Gl

4k 4k

TG TG SI SI Gl GI

Al

Al

Che

CGE OLE CS co

CHE CEE C07 OLY C8E Cle C2 CSy

CSE 2 236 Stct GicT Cectl Cecl OFTT C6TT cect SUCcT C92T Socl Ole Cull SIidct CScT SScl SStT S6Tl Soct Ol2t Sécl O72T GET Colt ectl Coct Get GY Goll CLI Gclt OSIT CLIT

SMG SK SKQ SMG SMG SMG SEQ SK SMG SFG SMO SMO SM SMG SMG SKOG SMG S&Q SMO SMQ SMG SMG SMG SMG SMG SMG SHG SMa SMa ska SMG S&a

CC

PFILSCOADF+

(PSTN (PSTN

(PS

(FETUS

(CS “COOTHECP) “COOTHECP)

(PSV

GOHLAW TIMATANEXE SHL

TIUM “CCOTe NT

dE

TANEHESOL*

TANG TANEKSGET*Z=HCFS

TANS SSISINGSIS

TANG

EL Gad013A00 COP} SHEL

PALSCONKT LSOINKEIOT*OFEPDLSCOMSSCOT LSOINKEIOT*OFEPDLSCOMSSCOT

LEB

CP CP CCE CCE

ASLE*

Ceo8y90*O-(fidsuna

SOF

CEL

LSOONKLTSTYOCH

ETPUM ETPUM TIUM TIUM LVHL

YE

*S=HOKS

CHOPS

C=CP

ZHU

ZH=(P ST=Adi

COT

TANG TANG TAN TAN Ld39NC9 SSLAINSIS

AVIAN C3G

S

SVAN

TIAN TISN

TOC kLTOS*CH(P kLTOS*CH(P

TIANIVAG

VIAN IGS IGS €T

+P 01

IVA ETCH WAG OFS

TVAG

(PY WAG

WAd CES CES WAIN -— O09

VISSORS LSOORS%2 N3Y¥L *2=Mdi

de

Ob

O€G O€G 06% 06%

OL

ETISNIVAG ETISNIVAG

fer fer

(S*°aV (S*°aV

feta feta (E°Lo* (E°Lo*

fE°iG* fE°iG*

(Cf (Cf (E*sT* (E*sT* EAR

CCF

CGS CGS

CLE CLE

CCS CCS

CTS CTS TIS TIS 69

GO

C1 C1

GL GL Loe Loe

XE

PNANSDHCR JHV GSA

Chev

T° T°

OL OL

CL CL

Ci OD OD Ci CL CL (6700°C*OS°MX)

(2

VCh VCh Tanve Tanve

T°O)=

CO CO

TWAG TWAG

O95 O95

Teanv Teanv 76G*CTZP

TeONV* TeONV*

FGRV FGRV VGNV VGNV

(fOC°CTES*KX)

ORV ORV

CIE CIE

OS OS CD CD

AMS OG OG SEHOVONddY £G4SN

T2'tsr

$I $I

T2*4=F T2*4=F

(2*Oa°ndl) (2*Oa°ndl)

(T*t3a°Ad!) (T*t3a°Ad!)

vee vee *e *e

(FS

SE SE

(PET) (PET)

€H°371°7)} €H°371°7)}

(Ht (Ht (6°15"°

EY EY

(493797) (493797)

(¥#°U3SN) (¥#°U3SN)

EY EY

(¥#°AN°R) (¥#°AN°R) Z*GS4°N) Z*GS4°N)

INA

c*Oatn) c*Oatn) T*Ga"Nn} T*Ga"Nn}

TGs TGs IOINOZA IOINOZA

Sf *GstNny} *GstNny}

0e9

O¢2S O¢2S

sist sist TbSTH) TbSTH)

TES Tah 49°1)

HEF SANILNOD SANILNOD ST

WATADA UN UN

oFs

O25 O25

h) h)

7) 7)

1) 1) CWS39 OL OL

AENS TANG TAN

And CML

60 C Ad]

OG OS

4} 4} 4a] 4a]

4] Al

ST ST 40 41 dl 4d! Ad] 4] AT i 4] A]

4d] J]

CTS CTS CHG

COS

CES CES C64 C64

Ooovov 237 —OvCtT

GScT

OcvT OcvT

OT+T OT+T Se7T Se7T

CSET CSET

S9IET S9IET

O6ET O6ET

GCyT GCyT Géyvl Géyvl OCFVT OCFVT

Geet Geet G6tl G6tl

STV STV G¢éctl G¢éctl OvoT OvoT

OLET OLET

Gilet Gilet C&eT C&eT

COFvT COFvT

Oct Oct OceT OceT

SGET SGET

Geel Geel

GYvET GYvET

O9cT O9cT

O62T O62T S6¢éT S6¢éT OCET OCET SCel SCel STel STel Ocet Ocet

SMG SHG SKa SMG SMO SMG SMG SMG SMO SMG SMO SMG SMG SMQ SHG SMa SMG SMQ SMG SMG SMG SMG SMG SAQ SMG SMa SMa SMG SMa SMa SMO SKG COPVLSCOADF CP (PAT) (PAETPUNTANGELGOEO=(PFETISNAWAd (FETDENTANdR (PS (PS CP (PET ETP STPEM TIAMIANG UNIAN TPUHTANGKOOOL*Z=CRETIANIV UMTAN HM TANG IATHSOS*Z=CPATIIN (PILSOINKELOS ELE KE : EBLE LTOS*O=CFSTIANWAG KBZELTZH(LFTIANTWAd (ZH (LESEST*CH(P)d3UNG) (L6E969T*C—EP (CHEGTT*O-( SET (98450° ST SETTC-( Z=(PAIDSAWA Z=(PATISN Z=CK O-(P}ddufd) AVIAN O19 *SZZ4 dU PI PI dauNd OL dSEN TWAS WAG WAd (LF) AG OO LSCOMSHTTE6SE6TIEIP) IEC ds eC * COTLOS (CETLOTTGNDTETUSTN) CETLOS COTS (H° (eTSTT (ETS x (6t2TtTaNYsHt49'T) 629 (CP COS (OCATTVGNV'TSOS'N) CUP CUP CP OP LOT TI IMENT 7° PeNad= INEM) NUNS CL GL SNAP TONY TONY TGRV TONY TGNY* TONY 09 05 "yes TZ‘ 1z‘1=f IEC = =P =P (CET) TET (P41) (6°19°T) HOUR (493797)

etOSeh)

eT eT

Geaw1) Geaw1) CETET CETET

TZ TOS°N) ZPEZ9N) cV6S cV6S T=f =F 4 cee 0€9 oes 686 Ob° 4 4 ST) OSIN)

TUM GET*O=TY. GET*O=TY. °CStN) ANNI ANNILNOD SNANTLNGO

TUE T° T° O19 C69 CEs SETA He ue OL C1 ND C1 OL

GL

SCHEER SCHEER O=ce O=ce TANG LNCD NUNS TANG TAN ANd OG 69 G9 OG 99 OG

09 GI al AI AI AI ail AI AI] 09 AT Al GI 4l

CEG C6éS C6éS CH9

COS CT9 C¢c9

CoS CLS CLS 0es. 0es.

238

S6ST S6ST

CYST CYST

Get Get

STIsT STIsT S¢cST S¢cST

SSST SSST C8sTt C8sTt OO9T OO9T

Co4HT Co4HT

OLFT OLFT

COcl COcl

OTST OTST

SesT SesT G¥sct G¥sct OSST OSST CLStl CLStl

C6rT C6rT

OSGT OSGT GScT GScT C6ST C6ST

GvtT GvtT

SLT SLT

SOST SOST CesT CesT

OEST OEST SLS1t SLS1t

OcHT OcHT SStT SStT SOT SOT OS+7T OS+7T G6yT G6yT GOST GOST SMG SMO SKG SMQ SMG SMG SMG SMG SMG SMG SK SMa SMO SMOG SKG SMG SHG SMG SMG SMG SMG SMG SMO SMG SMG SMG SKG SHG SMa SMG

$M sad

ALE ALE VIGVLI VIGVLI (CCLE*9LGL6°C-)dX3-"T)

(PS 40edd 40edd TIAN

cd=ad JG JG

TVAds 3ensval 3ensval

(6°ST*

CR? CR?

CUL CUL

Cel Cel COL COL PGNV

(FAV

Gi Gi

CL CL

Gk Gk

OL OL AVEHASSY AVEHASSY

cd=au

xY—-* xY—-* SHL WASH=C(FSVILSODLS

ISG=CF

AO AO

OD OD

OO OO G2 G2

réq=ff ré‘q=rr Té*t=f Té*t=f ré*q=rF

réd=rr

(FF

(FF (FF

EFFILSADTIS=HDS

TPT

ONTLVY ONTLVY

TI=CUFIJAVIAG TI=CUFIJAVIAG

(E°L9"° (7°

(T*Os3°N) (T*Os3°N) (¢°6aen) (¢°6aen) €€°O5°N) €€°O5°N)

OSFKAS

IS

XISFtWASH=RNS

IS

YLSOIES=dS YLSOI!?S=dS

VLSGIES

cel

ool 092 STANT

Loe

SONT SONT

Oa"N) Oa"N) LINN LINN

FERS

FR

ASSNAS

cel

ces

T-F=HLI T-F=HLI OTL CLL CLL

cel

IAD IAD *G=hWAS *G=hWAS

OL

aL TT)

OL 1)

=HeNS INOS INOS

=RAS

HDS

VAd

usd usd TV9 TV9

G9

G9

aa OC OC

as oa

OCG

Al Al dl dl GI GI GI JI ac

GI

CSL CSL

CHL CHL

CCL CCL OTL OCk COL

089 CED CéL CéL

OO OO

239 —O99T —O99T

OSLT CEST CEST OL9T

S89oTt OTLT CyVLT O¢9T O¢9T

SS9oT SS9oT SPot SPot STAT GCLT

GE9I GE9I COLT

cC9oT cC9oT Soll OG9T OG9T GYLT OVOT OVOT S99T SLOT CEST S69T SOLT STS STS

ORGt OELT SELT Gcot Gcot OTST OTST

OcLT COLT

SMG SMG SMQ SERQ SHC SMO smd SMG SMG SMG SMG SAG SMG SMQ SMG SMa Sha Sa SMa SMG SMG SHO SMQ SMa SMa SKC SMG

SMG SMO SMa SHO SMG

C(C4VPLSCILS—OPSTIINWAdt C(C4VPLSCILS—OPSTIINWAdt

(Pf (Pf

Vy Vy

sCddV sCddV (ee*2T=ré (ee*2T=ré

CTTS xO xO

Tar’

(CT (CT

(Cr (Cr LI-} LI-}

(FS

(22°2T=INSIN) (22°2T=INSIN)

OZCT OZCT OvEeT OvEeT O6607T O6607T Oc€CT Oc€CT

OeCT OeCT CSCT CSCT CCCT CCCT OGOT

(TTS

f$ f$ (COOT*SS) (COOT*SS)

(CTOT‘9) dy dy

Vane

(C56°C)} (C56°C)}

(CeefS) (CeefS)

CTTT CTTT

ex ex OOTT OOTT shed shed

T=IN‘S

iNItd iNItd

INTdd INTdd

LN]ltd LN]ltd LNT LNT

(lS (lS

LNTed LNTed INTed INTed

AKT AKT

isTéd isTéd (YINI-°T (YINI-°T

dv)

vd vd

TISNIVAN= TISNIVAN=

ed ed

iNeed iNeed ud ud INIdd INIdd

IN)

fT fT

Silum Silum Bil Bil

MX SLTEN SLTEN Sil

44

(98° (98° (L2°Os (L2°Os (T*O3° (T*O3° (8° (8° (¢* (¢*

Ce*Oat*innOst) Ce*Oat*innOst) (Vv° (Vv°

€¢ €¢

SM SM

“OA°LNAODI) “OA°LNAODI) am am }d=€F

(OF1TT (OSTT£9) (OSTT£9) (CSTT4S) (CSTT4S) (CYTTSO) (CYTTSO) (CcTTfO) (CcTTfO)

OS" OS"

BPA°iNNODT) BPA°iNNODT) C3"°LNNG31) C3"°LNNG31)

R2° R2° f f

ec*T=1 ec*T=1 gco*t=1 gco*t=1

(T°Oa* (T°Oa*

(c°l3°Ad1) (c°l3°Ad1)

*iNAGDIT) *iNAGDIT)

CC°OS°N) CC°OS°N)

(8 (8

(e°Oarnh) (e°Oarnh) (T°Gatn) (T°Gatn)

Cf Cf

CeTT CeTT

CoTT CoTT Celt Celt

inna) inna)

tNAQST) tNAQST) INNO) INNO) 61) CT*C=dLNI

S&S) fT) fT)

SANTLINGS

OA*h)} OA*h)} ANNTLNGD ANNTLNGD

SANELNDD

JAM JAM Adi) Adi) T-f=TLI

GudSIG

GEL GEL

COB COB

40ud¥ 40ud¥

INIT INIT SLIUM SLIUM

ALTIUM ALTIUM SLIOM SLIOM

SLIM SLIM

INltd INltd LNidd LNidd

SLIM.

TLRS TLRS

dd dd

OC OC

AT AT OG OG

Al Al AI AI

Al Al

Al Al Al Al Al Al I I

4l 4l

GI GI

4I 4I SI SI sl sl

al al

CEL CEL

Oll. Cél Cél Cce

240

SL8T SL8T

SYST SYST

CCT CCT SCST SCST ST6T ST6T

CEst CEst

Cé8T Cé8T OTST OTST

GEST GEST

SST SST

OLST OLST Gat Gat Sé6ésl Sé6ésl

CLLI CLLI OeLT OeLT

G6LT G6LT

OceT OceT SceTl SceTl

COST COST Geet Geet

Ocb6T Ocb6T

cell cell

SIeT SIeT

Ovel Ovel

OSstl OSstl C8et C8et

GLLT GLLT

CTST CTST

GOLT GOLT

COST COST

O6LT O6LT COST COST

SMG SMG SMQ SMa SKQ SHO SMO SMG SMG $40 SMa SMa SMG SHG SMG SMO SMa SKG SMQ SMG SMG SMG SMG SHG SMG SMG SMG SHO SMG SMQ SMG SMQ (ec*eT=r

(2e4 (TTS (TTS

(1TS

ZFS TSP TSP

T=F Tar f§

4 f ECF ECF (FST)

(Ff (rf

(Ff

(22

(C242 ST) ST) (TTST=INSIN)

(TTS (TTS (TTS

TI VIOedSTCS VSNTVAd)

2T=IKN SNIVAN)

OudSIC) SNIVAL) SNIVAL)

t=ih THINS THINS

=I f f

SIN}

iN)

th) IN) IN)

47

41 Sf Sf

I

(CHTTSS) (CHTTSS)

(CSTTS9) (CSTTS9)

(CSTI*S) (CSTI*S)

€CrTTS9) €CrTTS9)

(CbTT‘9) (CbTT‘9)

(C9OCTS9) (C9OCTS9)

(OS2T*9) (OS2T*9)

(C+TTS9) (C+TTS9)

(CSTT49) (CSTT49)

(C¥T1‘9) (C¥T1‘9)

cc‘T=1 cc‘T=1

ez*t=1 ez*t=1

cé*T=1 cé*T=1

cé*‘T=1 cé*‘T=1

ccf*1l=) ccf*1l=)

CLIT CLIT

CoTT CoTT C321 C321

OLTY OLTY

C8cTt C8cTt

CS2T CS2T

O°TT O°TT

Celt Celt

CETT CETT

OGYTT OGYTT

OCTT OCTT

COT COT

SANT SANT

JANTLNOD JANTLNOD

SANTINGS SANTINGS

SONTINGS SONTINGS

SANT SANT

CeB CeB

OGe OGe

C28 C28

OT8 OT8

CFs CFs

ALIUM ALIUM

LNItd LNItd

SLINM SLINM

LNIad LNIad Alls Alls

INldd INldd

ALTE ALTE

LNIdd LNIdd

iN] iN]

iNldd iNldd

SLIUM SLIUM

LINTad LINTad ZLTUM ZLTUM

SLIUM SLIUM

SLI SLI

iNled iNled

INT INT iNled iNled

INL INL

SLIUM SLIUM FLTaM FLTaM

INIdd INIdd

LNOD LNOD

LINES LINES

td td

add add

Ca Ca

aC aC

OG OG

dd dd

OC OC

CG CG cze CEs C18 CSP

241

—O86T —O86T

S102 S102 OL02 OL02

OSST OSST

GSO0¢ GSO0¢ C9CE C9CE

G¥O0d G¥O0d Cd0e Cd0e

CS6T CS6T

6S0¢ 6S0¢ 0S02 0S02

CLO? CLO?

6002 6002 S661 S661 Cé6T Cé6T

Gc&T Gc&T S€6T S€6T

S96T S96T 080d 080d

GEO? GEO? &1TO0¢ &1TO0¢

OO? OO?

S20¢ S20¢ O02 O02

OF6T OF6T Shel Shel SS6T SS6T OL61 OL61 SLl6T SLl6T

S86T S86T

CEét CEét Coad Coad

SMG SMG SMG SAO SMa SMG SMG SMa SHG SMG Sd SMO SKQ SKG SMG SMa SMG SMG SO SMG Sha SG SMG S40 SMG SMG SMQ SMQ SMO SMG SMO SMG

(22*7t=r (ce*

(TTS

(T2* (T2* (I2*THL4 (I2*THL4 cari

(ZS (TefT=1* (TefT=1*

Tar THATS THATS

T=TS

ter CPS (FF

(22 (22°

CTP CTP (CLV (CLV

(TT‘T=INS

eq CL CL TV TP

CL

anWwaAd)

ILSCINST) ILSCINST)

CT=iN LSQOMS LSCOADSIY LSCOADSIY LSCOLS)

eTsin ASODLS)

edaend ‘I

tty fT} fT}

$1)

IN) SI

£4 47 t * {

)

(CZZT4S) (CZZT4S)

(O22T49) (O22T49)

(CHTTS9) (CHTTS9)

(OZZT4S) (OZZT4S)

(COZT*S) (COZT*S)

(CSTT£9) (CSTT£9)

(CHTT*O) (CHTT*O)

(OSTI*S) (OSTI*S) (ChIT£9) (ChIT£9)

(OSTT£9) (OSTT£9)

Z2*T=17 Z2*T=17

Z2*T=1 Z2*T=1

ZZ*T=1 ZZ*T=1

CLZ1 CLZ1

CL2T CL2T

Ch2T Ch2T C€ZT C€ZT

OSZT OSZT

O61TT O61TT

O9TT O9TT CSTT CSTT CTZ21T CTZ21T

U9TT U9TT

COTT COTT

COTT COTT

SANT SANT

SANT SANT SANILNOD SANILNOD SANT SANT

ANNILNOD ANNILNOD

SANILNGO SANILNGO

SANITENGI SANITENGI

cee cee

Cle Cle

098 098

INIdd INIdd SLTUM SLTUM LNIvd LNIvd LNItd LNItd

INIud INIud

LNIYd LNIYd

SL1UM SL1UM

3iTuM 3iTuM LINIud LINIud LNIdd LNIdd SLIUM SLIUM

iNTYd iNTYd

3LTUM 3LTUM

SLTUM SLTUM

INIYd INIYd SLIUM SLIUM

Silem Silem INIYd INIYd

LNI&d LNI&d

SLTUM SLTUM INI&d INI&d ALIUM ALIUM

LKOD LKOD

INE) INE)

LINGO LINGO

ad ad

OG OG GA GA

C16 O¢c6

C98 C18 068 006 CEE

242

0602 0602

Sole Sole S9oT¢ S9oT¢

Gece Gece

Sete Sete

O6Te O6Te

CLee CLee S€ce S€ce

Scte Scte

OSTt2 OSTt2

Clie Clie Oste Oste

S8T¢ S8T¢

G61¢ G61¢ SCee SCee CTéc CTéc

COT? COT?

SETeé SETeé OVT? OVT?

OLTe OLTe

COce COce

OTT2 OTT2

STée STée

GSce?e GSce?e

OV? OV?

G6Gc G6Gc

GeOod GeOod

SOI¢d SOI¢d

O2Te O2Te OCT? OCT?

O9T? O9T?

me me

i i A A

SMG SMG SMG S#&G SMG SiG SMG SMG SMG Sha SMa SMG SMG SMG SAG $MQ SMG SMQ SéO SMa SMG SMhQ SMG SHG SHO SMG SMQ SMa SAG SHG SAG SMG

(/£9*os*

3S]

(/

‘GOH

NOTLVINOW)

L2K

(/*NOTLDSf C/*AV9k

(/4SH (/*NOTLOSf (/*SLSQD

(/*S1S69

STOINOSG

(/*ATIWSSSY

(/f8mMd

a$SV

JS

(7

SIHL

Odd

ONISN ASVSGLS

(/*NOTLISC

(/fuMd (/£O/49ME

Odd

(xG§

3OVUOLS

(/*SSNTWA

(/*WOTLIAPOUd

dad

ONTeS3NION

AG

(/*ATEWASSY

3JDIed

dot

CIVTTSXOT 4a

GALVINIWS CSLVIADITYS 31led SNA

(sf

XOOD1DM

G3LIarCdd

wad

NOLLISUawO)

GALDSfGad

usd

Jiuloa

Odd

WOINVYUA KAINYWSA

LNAY ((

HistM AAINCLN

Ker’ ASACHOMTISSMHETEXCGG) ASACHOMTISSMHETEXCGG) “any

NHS

(/*3SV2

(te (/

yd

NOTLSP AMS 1d

ts

43S

IV

SOWA SNIWA

"OA

SCUL

MAINVNDHOSSXGG)

AC WICDES AC

WAN Idae

AC

40 S)TTSX2*

4G Td LIATUGHET

4C V9

SVIVLKEHSxXES)

*

EY

Z0CTHEESEX Z0CTHEESEX PO?CTHE? PO?CTHE? ZOCTHTE .t ERODE Re

ASVEHS

GYGH??2 GYGH??2

&CEHTZ4XES) &CEHTZ4XES)

eCEHOESXSS} eCEHOESXSS}

ZOGHTE ZOGHTE ISVEHE ISVEHE SRLHCE

Nat GO*THTSX4) GO*THTSX4) NdHTe

fdHTC&xGG} SINSKSIVILS SINSKSIVILS

SDHC?

(/////°XT) (/////°XT) *CIPXT)TT) *CIPXT)TT)

LiRQe LiRQe

(2°0TH9) (2°0TH9)

I92* I92*

(2° (2°

(2°59) (2°59)

(z°839) (z°839) (2°94) (2°94) el el §

SX

£XK

*xCS) *xCS) £XSGS) £XSGS)

*XSG) *XSG) £X¥CS) fyaqq) fyaqq)

*XSS)

KES) KES)

&KESC) &KESC)

KGS) KGS)

XSG XSG

956) 956)

EG) EG)

SS) SS) *x4) *x4)

SS) ) )

“ivneg 1vwuod 1vwuod

LVeuOS iVesoOd LVRuOsd LVRuOsd

LVweod ives

L¥iactGd L¥iactGd LVKeOd LVKeOd IViaves IViaves

ivVkwucd LiVweos LViesod Lviwedd iVievad LVweos Lvbets Lvbets

LVkREOS LVkREOS

Lveid Lveid iVeeOQ4 iVeeOQ4

ivwuecd vhs

IVieocd IVieocd

LV LV iV iV

LVwudd

I¥Vnwengd I¥Vnwengd LVwet LVwet

Yrwoodd

KYO KYO

EOS EOS

CST CST

CETT CETT

CSOT CSOT O60T O60T CHTT CHTT CBILT CBILT

CEeeT CEeeT Oectl Oectl CTIT CTIT OS OS CLIT CLIT CeTT

CTOT CTOT COCT COCT O20T O20T COT COT OcTtt OcTtt

COT COT CO?T CO?T

COCT COCT CeOT CeOT

CGE CGE O16 O16

Ck6 Ck6 C66 C66

CE6b CE6b C+6 C+6 096 096 TT TT

OOoOvVo

243

O87d O87d

GSé¢e GSé¢e

S922 S922 Clée Clée Gece Gece

Glée Glée

GYCE GYCE OS22 OS22 OS22 OS22 SAG SMa SMG SMG Sha ShQ SHO SMOG SKC (/*ATIWSSSV (4*SiSO9 (/*SiSOD (/*SH9Tad C/*S30 NOTSYSANSD edd SOVHOLS WNINVGN Tedd LIAGYd COXTST AMS SATLVINKNDHE?fXGS) ((2°es*xe®el*xe)s) "CTSA GALISrOudHec! G3LBSFOUdHO?S GALISGddhyZ LNACOSIGHE?*XSGS) ITE XZ* 2if fXC9) (THT) XC) yo?)

xy)

LVWweoOd LVWweoOd iVweod iVweod

iVkuod iVkuod

ivweed ivweed ivkwuCd ivkwuCd L¥WweGd L¥WweGd iVweod iVweod

L¥WweOd L¥WweOd

CNG CNG

OSZ2T OSZ2T

OCCT OCCT OS OS CLZT CLZT

Cy Cy CECT CECT

CiéT

O2et O2et

ZT. ZT. ZT ZT 11. VITA

The author was born in Nashville, Tennessee on June 20, 1954. He was educated in the public school system of Metropolitan Nashville-

Davidson County and in June 1972 graduated from Maplewood High School.

In September of 1972, the author entered Tennessee Technological

University in Cookeville and graduated summa cum laude in June 1976.

During the time enrolled in Tennessee Technological University, the author gained technical experience in the field of engineering through employment with Nashville Machine Company, Inc. as a draftsman, and

I. €. Thomasson and Associates, Consulting Engineers as an associate engineer in the solid waste department. After receiving a Bachelor of Science degree in Engineering Science in June 1976, the author worked as a research assistant to Dr. Ray Kinslow in the area of hypervelocity impact studies. In the fall of 1976, the author entered

Graduate School at Virginia Polytechnic Institute and State University as an ERDA Fellow and completed requirements for the Master of Science degree in Nuclear Science and Engineering in August 1977. After graduation,the author will begin employment with Union Carbide Corpora-~ tion (Nuclear) in the division of Operations Analysis and Planning.

e

David Wesley Swindle, Jr.

244 AN OPTIMAL WITHDRAWAL POLICY FOR

SPENT NUCLEAR FUEL FROM ON-SITE STORAGE

by

David Wesley Swindle, Jr.

(ABSTRACT)

The need to extend light water reactor spent-fuel on-site storage requirements and the future need to relieve resulting stockpiles necessitates the determination of optimal spent~fuel-withdrawal patterns under various end-use scenarios. End-use scenarios include no- economic-return throwaway and uranium recycle with and without plutonium recycle. Results from developing, analyzing, and solving a spent-fuel- withdrawal model are used to recommend specific stategies.

The spent-fuel-withdrawal problem involves the interaction of spent-fuel generation, time and capacity-dependent reprocessing demand, and expected spent-fuel value. Spent-fuel characteristics based upon burnup history and initial composition, are considered along with uranium, separative work, and storage cost projections to realize profitable spent-fuel dispositon. Application of the spent-fuel- withdrawal model is done on a per-reactor basis.

Assumptions inherent in the application of the model developed include, 1). unconstrained on-site storage capacity, 2) realizable uranium and plutonium values, and 3) capacity constrained reprocessing demand. Examining supply, demand, and characteristics of spent-fuel during a twenty~year horizon, the model application is developed through, 1) a dynamic programming approach, 2) a Hitchcock problem to be solved similarly to a minimum-cost~flow problem, and 3) a linear program defineable as a Transportation problem.

In the model analyses, the dynamic programming formulation proved to be computationally infeasible. The analyses of the Hitchcock and linear program problem is done by the use of the Out-Of-Kilter Algorithm and the proprietary mathematical MPS-III system,. respectfully.

Specific results indicate that the economically optimal withdrawal pattern is:

1) for uranium and plutonium recycle, a Last-In-First-—Out pattern,

and

2) for uranium recycle only, no discernable pattern.