REVIEW of FUEL FAILURES in WATER COOLED REACTORS the Following States Are Members of the International Atomic Energy Agency

Total Page:16

File Type:pdf, Size:1020Kb

REVIEW of FUEL FAILURES in WATER COOLED REACTORS the Following States Are Members of the International Atomic Energy Agency IAEA Nuclear Energy Series IAEA Nuclear No. NF-T-2.1 No. Reactors Water-Cooled in Failures Fuel of Review IAEA Nuclear Energy Series No. NF-T-2.1 Basic Review of Principles Fuel Failures in Water Cooled Reactors Objectives Guides Technical Reports INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–102610–1 ISSN 1995–7807 10-08811_P1445_cover.indd 1 2010-06-24 14:41:44 IAEA NUCLEAR ENERGY SERIES PUBLICATIONS STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES Under the terms of Articles III.A and VIII.C of its Statute, the IAEA is authorized to foster the exchange of scientific and technical information on the peaceful uses of atomic energy. The publications in the IAEA Nuclear Energy Series provide information in the areas of nuclear power, nuclear fuel cycle, radioactive waste management and decommissioning, and on general issues that are relevant to all of the above mentioned areas. The structure of the IAEA Nuclear Energy Series comprises three levels: 1 — Basic Principles and Objectives; 2 — Guides; and 3 — Technical Reports. The Nuclear Energy Basic Principles publication describes the rationale and vision for the peaceful uses of nuclear energy. Nuclear Energy Series Objectives publications explain the expectations to be met in various areas at different stages of implementation. Nuclear Energy Series Guides provide high level guidance on how to achieve the objectives related to the various topics and areas involving the peaceful uses of nuclear energy. Nuclear Energy Series Technical Reports provide additional, more detailed, information on activities related to the various areas dealt with in the IAEA Nuclear Energy Series. The IAEA Nuclear Energy Series publications are coded as follows: NG — general; NP — nuclear power; NF — nuclear fuel; NW — radioactive waste management and decommissioning. In addition, the publications are available in English on the IAEA’s Internet site: http://www.iaea.org/Publications/index.html For further information, please contact the IAEA at PO Box 100, Vienna International Centre, 1400 Vienna, Austria. All users of the IAEA Nuclear Energy Series publications are invited to inform the IAEA of experience in their use for the purpose of ensuring that they continue to meet user needs. Information may be provided via the IAEA Internet site, by post, at the address given above, or by email to [email protected]. 10-08811_P1445_cover.indd 2 2010-06-24 14:41:44 REVIEW OF FUEL FAILURES IN WATER COOLED REACTORS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NORWAY ALBANIA GREECE OMAN ALGERIA GUATEMALA PAKISTAN ANGOLA HAITI PALAU ARGENTINA HOLY SEE PANAMA ARMENIA HONDURAS PARAGUAY AUSTRALIA HUNGARY PERU AUSTRIA ICELAND PHILIPPINES AZERBAIJAN INDIA POLAND BAHRAIN INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ REPUBLIC OF MOLDOVA BELGIUM IRELAND ROMANIA BELIZE ISRAEL RUSSIAN FEDERATION BENIN ITALY SAUDI ARABIA BOLIVIA JAMAICA BOSNIA AND HERZEGOVINA JAPAN SENEGAL BOTSWANA JORDAN SERBIA BRAZIL KAZAKHSTAN SEYCHELLES BULGARIA KENYA SIERRA LEONE BURKINA FASO KOREA, REPUBLIC OF SINGAPORE BURUNDI KUWAIT SLOVAKIA CAMBODIA KYRGYZSTAN SLOVENIA CAMEROON LATVIA SOUTH AFRICA CANADA LEBANON SPAIN CENTRAL AFRICAN LESOTHO SRI LANKA REPUBLIC LIBERIA SUDAN CHAD LIBYAN ARAB JAMAHIRIYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI THE FORMER YUGOSLAV CÔTE DIVOIRE MALAYSIA REPUBLIC OF MACEDONIA CROATIA MALI TUNISIA CUBA MALTA TURKEY CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO GREAT BRITAIN AND DOMINICAN REPUBLIC MONGOLIA NORTHERN IRELAND ECUADOR MONTENEGRO EGYPT MOROCCO UNITED REPUBLIC EL SALVADOR MOZAMBIQUE OF TANZANIA ERITREA MYANMAR UNITED STATES OF AMERICA ESTONIA NAMIBIA URUGUAY ETHIOPIA NEPAL UZBEKISTAN FINLAND NETHERLANDS VENEZUELA FRANCE NEW ZEALAND VIETNAM GABON NICARAGUA YEMEN GEORGIA NIGER ZAMBIA GERMANY NIGERIA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR ENERGY SERIES No. NF-T-2.1 REVIEW OF FUEL FAILURES IN WATER COOLED REACTORS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2010 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2010 Printed by the IAEA in Austria June 2010 STI/PUB/1445 IAEA Library Cataloguing in Publication Data Review of fuel failures in water cooled reactors. — Vienna : International Atomic Energy Agency, 2010. p. ; 29 cm. — (IAEA nuclear energy series, ISSN 1995–7807; no. NF-T-2.1) STI/PUB/1445 ISBN 978–92–0–102610–1 Includes bibliographical references. 1. Nuclear power plants — Safety measures. 2. Nuclear power plants — Management. I. International Atomic Energy Agency. II. Series. IAEAL 10–00635 FOREWORD In spite of the low fuel failure rate in currently operating water cooled nuclear power reactors, there is a continued high level of interest in fuel failures, for two reasons. First, the problems and inconvenience caused by fuel failures in plant operations can still be significant. Second, the generally accepted goal of achieving a zero failure rate requires detailed knowledge of existing failure mechanisms, their root causes and remedies. Against this background, and following a recommendation by the Technical Working Group on Fuel Performance and Technology (TWGFPT), the IAEA decided to update an earlier study on fuel failures, Review of Fuel Failures in Water Cooled Reactors (Technical Reports Series No. 388), study data from different water cooled reactor types, including LWR, PWR, BWR, WWER and heavy water CANDU/PHWR types, and to gather as much experience as possible. Fuel failure statistics were derived from a questionnaire distributed to all TWGFPT members and through analysis of available publications. This review provides information on all aspects of fuel failures in current nuclear power plant operations. The IAEA is grateful to all of the experts who contributed to the present study. The IAEA officer responsible for this publication was V. Inozemtsev of the Division of Nuclear Fuel Cycle and Waste Technology. CONTENTS SUMMARY . 1 1. INTRODUCTION . 3 1.1. Background. 3 1.2. Objective. 3 1.3. Scope. 3 1.4. Structure . 4 References to Section 1 . 4 2. EVOLUTION OF FUEL OPERATING ENVIRONMENT AND FUEL DESIGN CHANGES . 5 2.1. Evolution of fuel operating environment . 5 2.1.1. Economic drivers . 5 2.1.2. Safety . 7 2.1.3. Water chemistry . 8 2.2. Fuel design evolution . 8 2.2.1. BWRs . 9 2.2.2. PWRs . 9 2.2.3. WWERs . 10 2.2.4. CANDU/PHWRs . 10 2.3. Fuel types in operation . 11 References to Section 2 . 12 3. WORLD OVERVIEW OF FUEL FAILURES FROM 1994 TO 2006 . 13 3.1. Introduction. 13 3.2. Coolant activity levels. 13 3.3. Methodology of fuel failure rate evaluation . 13 3.3.1. Fuel rod failure rate calculation methodology used in Technical Reports Series No. 388 . 13 3.3.2. Fuel failure rate calculation methodology used for the present review (Part 1) . 14 3.4. Collection and treatment of fuel failure data . 15 3.4.1. Involvement of the IAEA Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT) . 15 3.4.2. Questionnaire . 15 3.4.3. Completeness and quality of data sets . 16 3.4.4. Fuel failure rate calculation methodology used for present review (Part 2). 17 3.5. Evaluation of PWR fuel ‘leakers’. 20 3.5.1. PWR fuel failure rates. 20 3.5.2. Distribution of failure causes in PWRs. 22 3.5.3. Number of reactors free of defect evolution . 24 3.5.4. Major observations regarding PWR fuel failures . 24 3.6. Evaluation of BWR fuel ‘leakers’. 25 3.6.1. BWR fuel failure rates . 25 3.6.2. Distribution of failure causes in BWRs . 26 3.6.3. Number of reactors free of defect evolution . 26 3.6.4. Major observations regarding BWR fuel failures . 28 3.7. Evaluation of WWER fuel ‘leakers’. 28 3.7.1. WWER fuel failure rates. 28 3.7.2. Distribution of failure causes for WWER fuel . 29 3.7.3. Number of reactors free of defect evolution . 31 3.7.4. Major observations regarding WWER fuel failures . 31 3.8. Evaluation of fuel ‘leakers’ in CANDUs/PHWRs . ..
Recommended publications
  • Security Operational Skills 2 (Tracing).P65
    Unit - 4 K Operating Skill for handling Natural Disasters Structure 4.1 Objectives 4.2 Introduction 4.3 Operating Skill for natural and nuclear disasters 4.4 Accident Categories 4.5 Nuclear and radiation accidents and incidents 4.6 Geological disasters 4.7 Operating Skills for handling Mines and other Explosive Devices 4.8 Operating Skills for handing hijacking situation (other than an airline hijacking 4.9 Operating skills for antivehicle theft operations 4.10 Operating skills for facing a kidnapping or hostage situation 4.11 Operating Skill for handling coal mines and other explosive devices 4.12 Hostage Rights : Law and Practice in Throes of Evolution 4.12.1 Terminology 4.13 Relative Value of Rights 4.14 Conflict of Rights and Obligations 4.15 Hong Kong mourns victims of bus hijacking in the Philoppines 4.16 Rules for Successful Threat Intelligence Teams 4.16.1 Tailor Your Talent 4.16.2 Architect Your Infrastructure 4.16.3 Enable Business Profitability 4.16.4 Communicate Continuously 4.17 Construction Safety Practices 4.17.1 Excavation 4.17.2 Drilling and Blasting 4.17.3 Piling and deep foundations 234 4.18 Planning 4.18.1 Steps in Planning Function 4.18.2 Characteristics of planning 4.18.3 Advantages of planning 4.18.4 Disadvantages of planning 4.1 Objectives The following is a list of general objectives departments should consider when creating an Information Disaster Prevention and Recovery Plan: O Ensure the safety of all employees and visitors at the site/facility O Protect vital information and records O Secure business sites
    [Show full text]
  • Characteristics of Spent Nuclear Fuel and Cladding Relevant to High-Level Waste Source Term-CNWRA 93-006 Property of CNWRA 93-006 CNWRA Library
    CNWRA 93-006 :~~~~~~~~~ I I S _~~~~~~~~~~~ Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Center for Nuclear Waste Regulatory Analyses San Antonio, Texas May 1993 462.2 --- T19930511000 8 Characteristics of Spent Nuclear Fuel and Cladding Relevant to High-Level Waste Source Term-CNWRA 93-006 Property of CNWRA 93-006 CNWRA Library CHARACTERISTICS OF SPENT NUCLEAR FUEL AND CLADDING RELEVANT TO HIGH-LEVEL WASTE SOURCE TERM Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Hersh K. Manaktala Center for Nuclear Waste Regulatory Analyses San Antonio, Texas May 1993 PREVIOUS REPORTS IN SERIES Number Name Date Issued CNWRA 92-017 An Assessment of Borosilicate Glass as a High-Level Waste Form September 1992 CNWRA 92-018 Leaching of Borosilicate Glass Using Draft ASTM Procedure for High-Level Waste August 1992 ii --- ABSTRACT This report, based on literature study, describes characteristics of light water reactor (LWR) fuel assemblies for boiling water reactors (BWR) and pressurized water reactors (PWR) and the changes that take place in both cladding and uranium dioxide fuel during service in commercial power reactors. This information is provided as a background for the evaluation of important factors related to fuel stability under geologic repository conditions. Data related to discharged fuel storage (both wet and dry) are also provided, along with the condition of the fuel in terms of damaged and leaking fuel assemblies. The degradation of spent fuel and cladding while in service in the reactor and likely degradation in a geologic repository are discussed in terms of cladding oxidation and corrosion, and fuel-pellet cracking, fuel restructuring, microstructure and fission product mobility, inventory and distribution of fission products, fuel pellet rim effect, and fission gas release and pressure increase.
    [Show full text]
  • Background, Status and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities
    NUREG-1909 Background, Status, and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities ACNW&M White Paper Advisory Committee on Nuclear Waste and Materials NUREG-1909 Background, Status, and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities ACNW&M White Paper Manuscript Completed: May 2008 Date Published: June 2008 Prepared by A.G. Croff, R.G. Wymer, L.L. Tavlarides, J.H. Flack, H.G. Larson Advisory Committee on Nuclear Waste and Materials THIS PAGE WAS LEFT BLANK INTENTIONALLY ii ABSTRACT In February 2006, the Commission directed the Advisory Committee on Nuclear Waste and Materials (ACNW&M) to remain abreast of developments in the area of spent nuclear fuel reprocessing, and to be ready to provide advice should the need arise. A white paper was prepared in response to that direction and focuses on three major areas: (1) historical approaches to development, design, and operation of spent nuclear fuel recycle facilities, (2) recent advances in spent nuclear fuel recycle technologies, and (3) technical and regulatory issues that will need to be addressed if advanced spent nuclear fuel recycle is to be implemented. This white paper was sent to the Commission by the ACNW&M as an attachment to a letter dated October 11, 2007 (ML072840119). In addition to being useful to the ACNW&M in advising the Commission, the authors believe that the white paper could be useful to a broad audience, including the NRC staff, the U.S. Department of Energy and its contractors, and other organizations interested in understanding the nuclear fuel cycle.
    [Show full text]
  • NRC Collection of Abbreviations
    I Nuclear Regulatory Commission c ElLc LI El LIL El, EEELIILE El ClV. El El, El1 ....... I -4 PI AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 2. The Superintendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC 20402-9328 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee docu- ments and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference pro- ceedings, international agreement reports, grantee reports, and NRC booklets and bro- chures. Also available are regulatory guides, NRC regulations in the Code of Federal Regula- tions, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions.
    [Show full text]
  • Consolidated Safety Analysis Report for IF-300 Shipping Cask
    REVISION CONTROL SHEET TITLE: Consolidated Safety DOCUMENT NO.: NEDO-10084 Analysis Report for IF-300 Shipping Cask AFFECTED | DOC. REMARKS PAGE(S) I REV. I __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .I.I by General Electric Company. 1-i 3 Last revision prepared Incorporates all C of C 9001, Revision 29 references 1-1 & 1-2 2-i & 2-ii From 2/8/84 through 5/10/85. A vertical line on the right hand margin indicates a 2-1 - 2-15 Revision. "N" denotes new information while "E" 3-i & 3-ii Denotes an editorial change. 3-1 - 3-16 4-i - 4-ii 4-1 - 4-21 5-i - 5-vi 5-1 - 5-311 6-i - 6-iv U 6-1 - 6-82 7-i - 7-ii 7-1 - 7-22 8-i & 8-ii 8-1 - 8-22 n 9-i & 9-ii 9-1 - 9-6 10-i & 10-ii 10-1 - 10-15 A-i & A-ii V1-i - V1-iv V1-1 - V1-52 V1-A-i/ii V1-A-1 - V1 -A- 3 Vl-B-i/ii V1-B-1 & V1-B-2 Vi-C-i/ii V1-C-1 - 1 of 4 V1-C-8 PAGE J. I 9906220178 990608 PDR ADOCK 07109001 iii-1 B PDR REVISION CONTROL SHEET TITLE: Consolidated Safety DOCUMENT NO.: NEDO-10084 Analysis Report for IF-300 Shipping Cask AFFECTED DOC. REMARKS PAGE(S) REV. Vl-D-i - 3 Vl-D-vi Vl-D-1 - Vl-D-132 Vl-E-i & Vl-E-ii V1-E-l - V1-E-34 U V2-i - V2-iv V2-1 - V2-64 V3-i - V3-iv V3-1 - V3-32 VI-i & VI-ii VI-1 - VI-6 i - viii First revision prepared by VECTRA Technologies, Inc.
    [Show full text]
  • Accelerator-Driven Systems: Safety and Kinetics
    Accelerator-driven Systems: Safety and Kinetics Marcus Eriksson Doctoral Thesis Department of Nuclear and Reactor Physics Royal Institute of Technology Stockholm 2005 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen fredagen den 18 mars 2004 kl. 10.00 i sal FA32, Albanova universitetscentrum, Roslagstullsbacken 21, Stockholm. ISBN 91-7283-988-0 TRITA-FYS 2005:13 ISSN 0280-316X ISRN KTH/FYS/--05:13—SE Copyright Marcus Eriksson Tryckeri: Universitetsservice US-AB, Stockholm 2005 2 Abstract The accelerator-driven system (ADS) is recognized as a promising system for the purpose of nuclear waste transmutation and minimization of spent fuel radiotoxicity. The primary cause for this derives from its accelerator-driven, sub-critical operating state, which introduces beneficial safety-related features allowing for application of cores employing fuel systems containing pure transuranics or minor actinides, thereby offering increased incineration rate of waste products and minimal deployment of advanced (and expensive) partitioning and transmutation technologies. The main theme of the thesis is safety and kinetics performance of accelerator-driven nuclear reactors. The studies are confined to the examination of ADS design proposals employing fast neutron spectrum, uranium-free lattice fuels, and liquid- metal cooling, with emphasis on lead-bismuth coolant. The thesis consists of computational studies under normal operation and hypothetical accidents, and of evaluation and identification of safety design features. By itself, subcritical operation provides a distinct safety advantage over critical reactor operation, distinguished by high operational stability and additional margins for positive reactivity insertion. For a uranium-free minor actinide based fuel important safety parameters deteriorate.
    [Show full text]
  • Fundamentals of Boiling Water Reactor (Bwr)
    FUNDAMENTALS OF BOILING In this light a general description of BWR is presented, with emphasis on the reactor physics aspects (first lecture), and a survey of methods applied in fuel WATER REACTOR (BWR) and core design and operation is presented in order to indicate the main features of the calculation^ tools (second lecture). The third and fourth lectures are devoted to a review of BWR design bases, S. BOZZOLA reactivity requirements, reactivity and power control, fuel loading patternc. Moreover, operating 'innts are reviewed, as the actual limits during power AMN Ansaldo Impianti, operation and constraints for reactor physics analyses (design and operation). Genoa, The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality Italy and low power operation are illustrated in the fifth lecture. The banked position withdrawal sequence mode of operation is indeed an example of safety and design/operation combined approach. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact Abstract between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the These lectures on fundamentals of BWR reactor physics are a synthesis startup of a commercial BWR. A control .od calibration is also illustrated. of known and established concepts. These lecture are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation.
    [Show full text]
  • Assessment of the Nuclear Power Industry
    Assessment of the Nuclear Power Industry – Final Report June 2013 Navigant Consulting, Inc. For EISPC and NARUC Funded by the U.S. Department of Energy Assessment of the Nuclear Power Industry Study 5: Assessment of the Location of New Nuclear and Uprating Existing Nuclear Whitepaper 5: Consideration of other Incentives/Disincentives for Development of Nuclear Power prepared for Eastern Interconnection States’ Planning Council and National Association of Regulatory Utility Commissioners prepared by Navigant Consulting, Inc. Navigant Consulting, Inc. 77 South Bedford Street, Suite 400 Burlington, MA 01803 781.270.0101 www.navigant.com Table of Contents Forward ....................................................................................................................................... ix Basic Nuclear Power Concepts ................................................................................................ 1 Executive Summary ................................................................................................................... 5 1. BACKGROUND .................................................................................................................... 9 1.1 Early Years – (1946-1957) ........................................................................................................................ 9 1.1.1 Shippingport ............................................................................................................................. 11 1.1.2 Power Reactor Demonstration Program ..............................................................................
    [Show full text]
  • Tracg Analysis of Boiling Water Reactor Control Rod Drop Accident to Optimize Analysis Methodology
    TRACG ANALYSIS OF BOILING WATER REACTOR CONTROL ROD DROP ACCIDENT TO OPTIMIZE ANALYSIS METHODOLOGY D. Miranda*, C. McElroy, D. G. Vreeland, J. Yang, J. Banfield, and J. Vedovi GE Hitachi Nuclear Energy 3901 Castle Hayne Road, Wilmington, NC 28402, USA [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] ABSTRACT During transient events, it is important to confirm that the plant maintains compliance to regulatory standards that provide safety criteria to prevent the release of fission products. The design basis Reactivity Insertion Accident (RIA) considered for Boiling Water Reactors (BWRs) is the Control Rod Drop Accident (CRDA). During this postulated scenario, a control blade becomes decoupled from the control rod drive mechanism as the drive is withdrawn and remains lodged in place. At a later time, the blade falls out to the position of the drive causing a reactivity insertion into the core. This leads to a power excursion and terminates due to the Doppler Effect or upon completion of the SCRAM. Many BWR plants adopt a Banked Position Withdrawal Sequence (BPWS) methodology that was developed to minimize the control rod worth and mitigate the consequences of the CRDA event. The BPWS methodology places restrictions on control rod movement to ensure that no CRDA could exceed the applicable event limits by reducing the incremental control rod reactivity worth to acceptable values. In this paper, the best estimate model code TRACG, the GE Hitachi (GEH) Nuclear Energy proprietary version of the Transient Reactor Analysis Code, TRAC, is used to model CRDA event to ensure that the plant is compliant with the new more restrictive regulatory standards.
    [Show full text]
  • Occupational Exposure at Nuclear Power Plants in Tarragona Spain in April 2000
    INFORMATION SYSTEM ON OCCUPATIONAL EXPOSURE Ninth Annual Report OCCUPATIONAL EXPOSURES AT NUCLEAR POWER PLANTS 1999 ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: - to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; - to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and - to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996) and the Republic of Korea (12th December 1996). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention). NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agency.
    [Show full text]
  • BWRX-300 (GE Hitachi and Hitachi GE Nuclear Energy) USA DATE (2019/9/30)
    Status Report – BWRX-300 (GE Hitachi and Hitachi GE Nuclear Energy) USA DATE (2019/9/30) The BWR-300 is the 10th generation Boiling Water Reactor (BWR) crated by GE Hitachi Nuclear Energy (GEH). It is a SMR evolution of the ESBWR which is licensed by the US NRC and utilizes many of the components for the operational ABWR. The first BWRX-300s are expected to start construction in in 2024 and 2025 and enter commercial operation in 2027 and 2028. INTRODUCTION Indicate which booklet(s): [ ] Large WCR [√] SMR [ ] FR GE Hitachi Nuclear Energy’s (GEH’s) BWRX-300 is a designed-to-cost, 300 MWe water- cooled, natural circulation Small Modular Reactor (SMR) utilizing simple, natural phenomena driven safety systems. It is the tenth generation of the Boiling Water Reactor (BWR) and represents the simplest, yet most innovative BWR design since GE, GEH’s predecessor in the nuclear business, began developing nuclear reactors in 1955. The BWRX-300 is an evolution of the U.S. NRC-licensed, 1,520 MWe ESBWR. It is designed to provide clean, flexible energy generation that is cost competitive with natural gas fired plants. Target applications include base load electricity generation, load following electrical generation within a range of 50 to 100% power and district heating. GEH, a world-leading provider of advanced reactor technology and nuclear services, is a global alliance created by the General Electric Company (GE) and Hitachi, Ltd. to serve the global nuclear industry. Development Milestones 2014 ESBWR DCD Issued 2017 BWRX-300 Evolution from ESBWR
    [Show full text]
  • Limerick Generating Station, Units 1 & 2, Revision 19 to Updated Final
    LGS UFSAR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION OF PLANT TABLE OF CONTENTS 1.1 INTRODUCTION 1.2 GENERAL PLANT DESCRIPTION 1.2.1 Site Characteristics 1.2.1.1 Location 1.2.1.2 Site Environs and Access 1.2.1.3 Geology 1.2.1.4 Seismology 1.2.1.5 Hydrology 1.2.1.6 Meteorology 1.2.2 Principal Design Criteria 1.2.2.1 General Design Criteria 1.2.2.2 System Design Criteria 1.2.2.2.1 Nuclear System Criteria 1.2.2.2.2 Safety-Related Systems Criteria 1.2.2.2.3 Process Control Systems Criteria 1.2.2.2.4 Power Conversion Systems Criteria 1.2.2.2.5 Electrical Power Systems Criteria 1.2.2.2.6 Auxiliary Systems Criteria 1.2.2.2.7 Radioactive Waste Management Systems Criteria 1.2.2.2.8 Shielding and Access Control Criteria 1.2.2.2.9 Fuel Handling and Storage Facilities 1.2.3 General Arrangement of Structures and Equipment 1.2.4 System Description 1.2.4.1 Nuclear System 1.2.4.1.1 Reactor Core and Control Rods 1.2.4.1.2 Reactor Vessel and Internals 1.2.4.1.3 Reactor Recirculation System 1.2.4.1.4 Residual Heat Removal System 1.2.4.1.5 Reactor Water Cleanup System 1.2.4.1.6 Nuclear Leak Detection System 1.2.4.2 Safety-Related Systems 1.2.4.2.1 Reactor Protection System 1.2.4.2.2 Neutron Monitoring System 1.2.4.2.3 Control Rod Drive System 1.2.4.2.4 Control Rod Velocity Limiter 1.2.4.2.5 Control Rod Drive Housing Supports 1.2.4.2.6 Nuclear System Pressure Relief System 1.2.4.2.7 Reactor Core Isolation Cooling System 1.2.4.2.8 Primary Containment CHAPTER 01 1-i REV.
    [Show full text]