The SPIDER CMB Polarimeter

Total Page:16

File Type:pdf, Size:1020Kb

The SPIDER CMB Polarimeter The SPIDER CMB Polarimeter Thesis by Amy R. Trangsrud In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2012 (Defended July 26, 2011) ii c 2012 Amy R. Trangsrud All Rights Reserved iii Acknowledgements My journey here began one September day, walking into Andrew Lange’s office in the basement of West Bridge, excited and nervous. In a moment he saw me, took me in, welcomed me, and set me at ease. Then we were off like a whirlwind. We walked briskly over to the high bay, where BICEP was nearing deployment. Andrew sent me up on a ladder to take in the technology, while he told me about B-modes, Spider, and BICEP2, his eyes alight with excitement. He oozed curiosity, ingenuity, and enthusiasm. Back in Bridge, he toured me through the White Dewar lab, where Chao-Lin Kuo was beam mapping. I remember Andrew saying, this could be you in a couple years. Sure enough, it was. Andrew was exceptional in his ability to advise, understand, and nurture his students. When I sat down with him, he would immediately focus in on my situation and perspective, and on how he could best aid me in moving forward. He saw things in context, and gave science a sense of humanity. Andrew understood that the relationship between a PhD student and an advisor is a special one; one that plants a seed that shapes the student over a lifetime. So it will be for me. I am grateful and honored that Andrew shared his spirit with me, and I will carry and treasure his mentorship and example. Thank you Andrew. When we lost Andrew, our Obscos team grew even stronger as a family. Kathy Deniston, Sunil Golwala, and Jamie Bock, while handling their own grief, opened their wings like protective parents, and swept everyone under. They were heros in a dark time. Simply put, we would not have a group without Kathy. She and Barbara Wertz are simultaneously the glue that holds everything together and the grease that keeps everything moving. To this day, I am not sure how Kathy does it all. Sunil selflessly and apparently without hesitation took me, and others, under his advi- sorship when we were orphaned midstride. He has been an important part of my education from the beginning of my work here. Sunil affected me most notably with his willingness to spontaneously sit down to teach us something, and with his ability to explain physical iv concepts clearly and to derive relevant results on a moment’s notice. There is no one in this group with whom I have worked as closely and over as many years as Jamie. Spider is made compelling by its detector technology more than anything else. Jamie is the core of the detector development effort, and therefore at the root of everything that we do. After four years of Thursday detector meetings, I sincerely hope that a bit of Jamie’s deep understanding and intuition have rubbed off on me. I appreciate all that I have learned from him not only about the devices themselves, but about the process of developing new technology, patiently, methodically, and creatively. I have had a number of mentors over my years here, and I appreciate each and every one of them for mentoring me, and showing me their style of science. Matt Kenyon at JPL showed me how to fly by the seat of my pants and get a lot done. Bill Jones had a way of making any task feel fun and valuable. Chao-Lin Kuo showed me how to manage experiments from start to end, and operate my own cryogenic test bed. Jeff Filippini and Marc Runyan mentored me in receiver characterization, and provided opportunities for me to take important roles in our team. There are many others. I would like to thank all of my colleagues and collaborators here at Caltech/JPL, and around the world. Caltech is a community, and my memories of this place will extend well beyond the walls of the astronomy building. While enrolled here I met the love of my life, was sexually harassed by a janitor, was awarded a fellowship, had a life-changing surgery, lost my advisor, and got married. My friends have been with me through it all, and made this journey possible. You all know who you are. Thank you! There is no easy way to put into words the debt I owe to my Mom and Dad for their love, support, sacrifices, patience and just plain hard work in helping me to grow into the person that I am, and in filling my life with an incredible abundance of opportunities. It takes a special person to love and marry an academic. Especially a mad scientist, and, worst of all, an experimentalist. Lorelei has stood by my side through all my work here. She has driven with me to campus late at night and on weekends for cryogen fills, and sent me off at the airport as I embarked on a month-long deployment to the South Pole. She has patiently supported me and been my cheerleader as, every six months or so, I have told her about some change in my deployment schedule or planned graduation timeline. Most of all, she has been my partner in life and love. v The SPIDER Collaboration California Institute of Technology J. P. Filippini, S. Golwala, V. V. Hristov, P. V. Mason, T. A. Morford, M. C. Runyan, M. A. Schenker, A. R. Trangsrud, R. S. Tucker Cardiff University P. A. R. Ade, C. Tucker Case Western Reserve University R. Bihary, S. Bryan, T. E. Montroy, J. E. Ruhl Imperial College C. N. Clark, C. R. Contaldi, D. T. O’Dea JPL J. J. Bock, J. A. Bonetti, B. P. Crill, O. Dor´e, W. Holmes, A. D. Turner Kavli Institute for Cosmology, University of Cambridge C. J. MacTavish NIST G. Hilton, K. Irwin, C. Reintsema Princeton University H. C. Chiang, A. A. Fraisse, J. E. Gudmundsson, W. C. Jones, A. S. Rahlin Stanford University C. L. Kuo University of Toronto S. J. Benton, M. Farhang, L. M. Fissel, N. N. Gandilo, C. B. Netterfield, J. D. Soler, J. A. Shariff, J. R. Bond University of British Columbia M. Amiri, B. Burger, G. Davis, M. Halpern, M. Hasselfield, D. Wiebe vi Abstract Spider is a balloon-borne millimeter-wave telescope designed to study the polarization of the Cosmic Microwave Background (CMB). Spider will map 10% of the full sky with degree- scale beams to search for the distinctive inflationary gravitational wave signal on angular scales between 1◦ and 10◦, thereby probing the energy scale of inflation. In its first flight, Spider will field 2,400 antenna-coupled bolometers split between two bands centered at 93 and 148 GHz. Slot antenna arrays, band-defining microstrip filters, and superconducting bolometers are all fabricated photolithographically on a shared silicon substrate. Spider’s detectors are split amongst six monochromatic on-axis refractors in a shared helium-cooled cryostat. This thesis reviews the design of Spider and its antenna-coupled bolometers, and details the currently achieved performance of Spider’s receivers. vii Contents Acknowledgements iii The SPIDER Collaboration v Abstract vi 1 Introduction 1 1.1 The Beginning of Physical Cosmology ..................... 1 1.2 Discovery of the Cosmic Microwave Background ................ 4 1.3 CMB Statistics .................................. 5 1.4 Inflation Theory ................................. 9 1.5 CMB Temperature Anisotropies ......................... 12 1.6 CMB Polarizing Mechanisms . ........................ 13 1.7 Polarized Foregrounds .............................. 19 2 The SPIDER Balloon-Borne CMB Polarization Experiment 22 2.1 Collaboration ................................... 23 2.2 Frequency Coverage ............................... 23 2.3 Sky Coverage ................................... 26 2.4 Ballooning ..................................... 26 2.5 Cryogenics ..................................... 30 2.6 Optics ....................................... 33 2.7 Half-Wave Plates ................................. 37 2.8 Magnetic Shielding ................................ 39 2.9 Simulations . ................................. 40 viii 3 Detectors and Readout 42 3.1 Bolometric Technology Development ...................... 42 3.2 SPIDER Detector Architecture .......................... 45 3.3 Fabrication Process ................................ 49 3.4 TES Bolometer Basics .............................. 52 3.5 Readout ...................................... 58 4 Receiver Performance 61 4.1 Beam Profiles ................................... 61 4.2 Frequency Band Definition ........................... 71 4.3 Polarization Efficiency .............................. 79 4.4 Efficiency of Optical Response .......................... 80 4.5 Internal Optical Loading of Devices ....................... 86 4.6 Bolometer Properties ............................... 90 4.7 Noise Performance ................................ 94 4.8 Temperature Stability . ........................... 100 4.9 Magnetic Field Response ............................. 101 4.10 Summary and Recommendations for Future Work .............. 102 A Definitions and Methods 107 A.1 Optical Efficiency ................................. 107 A.2 Alternative Methods for Calculating Internal Loading ............ 109 B Measured Detector Parameters 112 Bibliography 124 ix List of Figures 1.1 Example of a CMB temperature and polarization map (from B2K) ...... 7 1.2 Illustration of E- and B-mode polarization patterns .............. 8 1.3 Definition of coordinate system for Thomson scattering calculation ...... 14 1.4 Measurements to date of EE and BB power spectra .............. 21 2.1 Spider bands and atmospheric emission model ................. 25 2.2 The Spider observing region ........................... 26 2.3 The Spider gondola (drawings and photos) ................... 29 2.4 The Spider flight cryostat (photo and cross-sectional drawing) ........ 31 2.5 An assembled focal plane unit and a 3He adsorption fridge (photos) ..... 32 2.6 Modular telescope insert bays in the flight cryostat (photos) ......... 34 2.7 A telescope insert (photo and cross-sectional drawing) ............. 34 2.8 A half-wave plate assembly (photos) ....................... 37 2.9 Diagram showing rotation of polarization by a half-wave plate ........ 38 2.10 Sensitivity of Spider bands to polarized dust .................. 41 3.1 A spider-web bolometer and a polarization sensitive bolometer (photos) .
Recommended publications
  • Instrumental Performance and Results from Testing of the BLAST-TNG Receiver, Submillimeter Optics, and MKID Arrays
    Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays Nicholas Galitzkia, Peter Adeb, Francesco E. Angil`ea, Peter Ashtonc, Jason Austermannd, Tashalee Billingsa, George Chee, Hsiao-Mei Chof, Kristina Davise, Mark Devlina, Simon Dickera, Bradley J. Dobera, Laura M. Fisselc, Yasuo Fukuig, Jiansong Gaod, Samuel Gordone, Christopher E. Groppie, Seth Hillbranda, Gene C. Hiltond, Johannes Hubmayrd, Kent D. Irwinh, Jeffrey Kleina, Dale Lif, Zhi-Yun Lii, Nathan P. Louriea, Ian Lowea, Hamdi Manie, Peter G. Martinj, Philip Mauskopfe, Christopher McKenneyd, Federico Natia, Giles Novakc, Enzo Pascaleb, Giampaolo Pisanob, Fabio P. Santosc, Douglas Scottk, Adrian Sinclaire, Juan D. Solerl, Carole Tuckerb, Matthew Underhille, Michael Vissersd, and Paul Williamsc aUniversity of Pennsylvania, 209 S 33rd St, Philadelphia, PA, USA bUniversity of Cardiff, The Parade, Cardiff, United Kingdom cCenter for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA dNational Institute of Standards and Technology, 325 Broadway, Boulder, CO, USA eArizona State University, PO Box 871404, Tempe, AZ, USA fSLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, USA gNagoya University, Furocho, Chikusa Ward, Nagoya, Aichi Prefecture, Japan hStanford University, 382 Via Pueblo Mall, Stanford, CA, USA iUniversity of Virginia, 530 McCormick Road, Charlottesville, VA, USA jUniversity of Toronto, 60 St. George Street, Toronto, ON, Canada lUniversity of British Columbia, 6224 Agricultural Road, Vancouver, BC, Canada kLaboratoire AIM, Paris-Saclay, CEA/IRFU/SAp - CNRS - Universit´eParis Diderot, 91191, Gif-sur-Yvette Cedex, France ABSTRACT Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM).
    [Show full text]
  • SPIDER Experiment
    Searching for the echoes of inflation with H. Cynthia Chiang University of KwaZulu-Natal Madrid: CMB, LSS, 21cm June 24, 2016 B mode polarization in the CMB E modes are the CMB's “intrinsic polarization” We expect them to be there because of scattering processes in the CMB Temperature anisotropies predict E-mode spectra with almost no extra information Not only that, but “standard” CMB scattering physics generates ONLY E modes. Why do we care about B modes? Inflation: exponential expansion of universe (x 1025) at 10-35 sec after big bang creates a gravitational wave background that leaves a B-mode imprint on CMB polarization. Gravitational lensing by large scale structure converts some of the E-mode polarization to B-mode. Use this to study structure formation, “weigh” neutrinos. How can we tell the difference between the above two? Degree vs. arcminute angular scales. The moral of the story: B modes tell us things about the universe that temperature and E modes can't. Inflation scorecard Inflation predicts: Our universe (Planck 2015): A flat universe Ωk = 0.000 ± 0.0025 with nearly scale-invariant ns = 0.968 ± 0.006 density fluctuations, well described by a power law, dns / d lnk = -0.0065 ± 0.0076 with scalar perturbations r0.002 < 0.01 (at 2σ) that are Gaussian fNL = 2.5 ± 5.7 and adiabatic, βiso < 0.03 (at 2σ) with a negligible contribution from topological defects f10 < 0.04 (Adapted from Martin White) Constraining inflation Planck 2015 CMB polarization power spectra E-mode E-mode is mainly sourced by density fluctuations and is the intrinsic polarization of the CMB Degree-scale B-mode from gravitational waves, amplitude described by the tensor-to-scalar ratio r.
    [Show full text]
  • CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
    CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.
    [Show full text]
  • CMB S4 Stage-4 CMB Experiment
    Cosmic Microwave Background past and future June 3rd, 2016 28th Rencontres de Blois Akito KUSAKA Lawrence Berkeley National Laboratory Light New TeV Particle? Higgs 5th force? Yukawa Inflation n Dark Dark Energy 퐵 /퐵 Matter My summary of “Snowmass Questions” 2014 2.7K blackbody What is CMB? Light from Last Scattering Surface LSS: Boundary between plasma and neutral H COBE/FIRAS Mather et. al. (1990) Planck Collaboration (2014) The Universe was 1100 times smaller Fluctuations seeding “us” 2015 Planck Collaboration (2015) Wk = 0 0.005 (w/ BAO) Gaussian Planck Collaboration (2014) Polarization Quadrupole anisotropy creates linear polarization via Thomson scattering http://background.uchicago.edu/~whu/polar/webversion/polar.html Polarization – E modes and B modes E modes: curl free component 푘 B modes: divergence free component 푘 CMB Polarization Science Inflation / Gravitational Waves Gravitational Lensing / Neutrino Mass Light Relativistic Species And more… B-mode from Inflation It’s about the stuff here A probe into the Early Universe Hot High Energy ~3000K (~0.25eV) Photons 1016 GeV ? ~1010K (~1MeV) Neutrinos Gravitational waves Sound waves Source of GW? : inflation Inflation › Rapid expansion of universe Quantum fluctuation of metric during inflation › Off diagonal component (T) primordial gravitational waves Unique probe into gravity quantum mechanics connection Ratio to S (on-diagonal): r=T/S Lensing B-mode Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes It’s about the stuff here Lensing B-mode Abazajian et. al. (2014) Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes Accurate mass measurement may resolve neutrino mass hierarchy.
    [Show full text]
  • JUAN DIEGO SOLER Address: Max-Planck-Institut Für Astronomie
    JUAN DIEGO SOLER Address: Max-Planck-Institut für Astronomie Königstuhl 17 D-69117 Heidelberg Germany Phone: +49-(0)176 64475267 Email: [email protected] Citizenship: Colombian Webpage: http://www.mpia.de/homes/soler/ EDUCATION Sep. 2007 - Sep. 2013 Ph.D. Astronomy and Astrophysics University of Toronto. Toronto, Canada. “In Search of an Imprint of Magnetization in the Balloon-borne ​ Observations of the Polarized Dust Emission from Molecular Clouds” ​ Advisor: Pr. Barth Netterfield ​ Jury: Pr. M. Houde, Pr. P. Martin, Pr. D.-S. Moon, Pr. C. Matzner. ​ Sep. 2004 - Sep. 2006 M.Sc. Physics Universidad de los Andes. Bogotá, Colombia. “Imaging and tomography with silicon microstrip detectors” ​ Advisor: Pr. Carlos A. Avila ​ ​ Sep. 1999 - Sep. 2004 B.Sc. Physics Universidad de los Andes. Bogotá, Colombia. PROFESSIONAL APPOINTMENTS Jan. 2017 - present Post-doctoral Fellow. Max-Planck-Institut für Astronomie, Germany. ​ ERC project “The HI/OH/Recombination line survey of the inner Milky ​ ​ Way (THOR)” directed by Dr. Henrik Beuther. ​ Sep. 2015 - Jan. 2017 Post-doctoral Fellow. Service d’Astrophysique, CEA, France. ​ ERC project “From the magnetized diffuse interstellar medium to ​ ​ the stars” directed by Dr. Patrick Hennebelle. ​ Sep. 2013 - Sep. 2015 Post-doctoral Fellow. Institut d’Astrophysique Spatiale. France. ​ ERC project “Mastering the dusty and magnetized interstellar screen ​ to test inflation cosmology” directed by Dr. Francois Boulanger. ​ Sep. 2008 - Sep. 2013 Research Assistant. University of Toronto. Toronto, Canada. ​ ​ ​ Sep. 2007 - Sep. 2008 Teaching Assistant. University of Toronto. Toronto, Canada. ​ ​ Sep. 2006 - Sep. 2007 Research Assistant. CIEMAT. Madrid, Spain. ​ ​ ​ Study of intensity-modulated radiation therapy (IMRT) in the Unit of Medical Physics directed by Dr.
    [Show full text]
  • Arxiv:1911.11210V1 [Astro-Ph.IM] 25 Nov 2019
    Robust diffraction-limited NIR-to-NUV wide-field imaging from stratospheric balloon-borne platforms – SuperBIT science telescope commissioning flight & performance L. Javier Romualdez,1, a) Steven J. Benton,1 Anthony M. Brown,2, 3 Paul Clark,2 Christopher J. Damaren,4 Tim Eifler,5 Aurelien A. Fraisse,1 Mathew N. Galloway,6 Ajay Gill,7, 8 John W. Hartley,9 Bradley Holder,4, 8 Eric M. Huff,10 Mathilde Jauzac,3, 11 William C. Jones,1 David Lagattuta,3 Jason S.-Y. Leung,7, 8 Lun Li,1 Thuy Vy T. Luu,1 Richard J. Massey,2, 3, 11 Jacqueline McCleary,10 James Mullaney,12 Johanna M. Nagy,8 C. Barth Netterfield,7, 8, 9 Susan Redmond,1 Jason D. Rhodes,10 Jürgen Schmoll,2 Mohamed M. Shaaban,8, 9 Ellen Sirks,11 and Sut-Ieng Tam3 1)Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ, USA 2)Centre for Advanced Instrumentation (CfAI), Durham University, South Road, Durham DH1 3LE, UK 3)Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham DH1 3LE, UK 4)University of Toronto Institute for Aerospace Studies (UTIAS), 4925 Dufferin Street, Toronto, ON, Canada 5)Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA 6)Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway 7)Department of Astronomy, University of Toronto, 50 St. George Street, Toronto, ON, Canada 8)Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, Canada 9)Department of Physics, University of Toronto, 60 St. George Street,
    [Show full text]
  • The Antarctic Sun, December 24, 2006
    December 24, 2006 HowHow McMurdo Got Its Groove On Local music scene heats up By Peter Rejcek Sun staff OTHER RIFFS t’s possibly the cool- Even Shackleton got the est music scene on the blues, page 10 planet. McMurdo Station Pole, Palmer also jam, is certainly the hub page 11 Iof operations for the U.S. AntarcticI Program (USAP) wise, this is a real hotbed of with an austral summer popu- potential.” lation of a thousand people Fox is a pretty good judge or more. But in the last 10 or of what makes a music scene 15 years, it’s become a cross- pulse. He came of age dur- roads for musicians playing ing punk rock’s angry genesis in just about every genre in the late 1970s and early imaginable in their leisure 1980s, playing bass for the time, from reggae to rock and band United Mutation in the from blues to bluegrass. It’s Washington, D.C., area. (See a scene where a punk rocker the Dec. 18, 2005, issue of can share the night’s billing The Antarctic Sun at antarc- with a folk singer and a blues ticsun.usap.gov for a related guitarist – and the audience is story.) there to see them all. A conversation with Fox is “We have been really itself like listening to a punk lucky down here,” said Jay rock set – briefly intense out- Peter Rejcek / The Antarctic Sun Fox, the retail supervisor for bursts, each riff a variation Barb Propst plays guitar at the McMurdo Station Coffee House.
    [Show full text]
  • No Slide Title
    Program for Small Scale Anisotropy Measurements and the Ability to set Limits on Inflation. A. Lee, L.Page and J. Ruhl 1 l>1000 CMB/SZ Experiments ACBAR (Bolometric feed array) ACT SPT AMiBA (Taiwan, Interferometer) SuZie Upgrade AMI (UK, Interferometer) SZA (Interferometer) APEX VSA (Interferometer) Bolocam (Bolometric Camera, CSO) CBI (Interferometer) 2 Selected Bolometer-Array and SZ Roadmap APEX SCUBA2 (~400 bolometers) (12000 bolometers) SZA Chile (Interferometer) Owens Valley ACT (3000 bolometers) Chile CMBPOL 2003 2005 2007 2004 2006 2008 SPT ALMA Polarbear-I (1000 bolometers) (Interferometer) (300 bolometers) South Pole Chile California Planck (50 bolometers) L2 3 ACT Collaboration Cardiff NASA/GSFC Princeton Peter Ade Domonic Benford Joe Fowler Cindy Hunt Jay Chervenak Norm Jarosik Phil Mauskopf Harvey Moseley Robert Lupton Carl Stahle Bob Margolis Columbia Ed Wollack Lyman Page Uros Seljak Amber Miller Penn David Spergel CUNY Angelica de Oliveira Costa Suzanne Staggs Martin Spergel Mark Devlin Simon Dicker Rutgers Haverford Bhuvnesh Jain Laura Ferrarese Steve Boughn Raul Jimenez Arthur Kosowsky Bruce Partridge Jeff Klein Jack Hughes Max Tegmark Ted Williams INOAE Licia Verde David Hughes Univ. de Catolica UMass Hernan Quintana NIST/Boulder Grant Wilson Univ. of Toronto Randy Doriese Univ. of British Columbia Kent Irwin Barth Netterfield Mark Halpern 4 Science: Observations: AtacamaACT Cosmology Telescope Growth of structure CMB: l>1000 Eqn. of state Cluster (SZ, KSZ X-rays, & optical) Neutrino mass Diffuse SZ Ionization history
    [Show full text]
  • Design and Performance of the Spider Instrument
    Design and performance of the Spider instrument M. C. Runyana, P.A.R. Adeb, M. Amiric,S.Bentond, R. Biharye,J.J.Bocka,f,J.R.Bondg, J.A. Bonettif, S.A. Bryane, H.C. Chiangh, C.R. Contaldii, B.P. Crilla,f,O.Dorea,f,D.O’Deai, M. Farhangd, J.P. Filippinia, L. Fisseld, N. Gandilod, S.R. Golwalaa, J.E. Gudmundssonh, M. Hasselfieldc,M.Halpernc, G. Hiltonj, W. Holmesf,V.V.Hristova, K.D. Irwinj,W.C.Jonesh , C.L. Kuok,C.J.MacTavishl,P.V.Masona,T.A.Morforda, T.E. Montroye, C.B. Netterfieldd, A.S. Rahlinh, C.D. Reintsemaj, J.E. Ruhle, M.C. Runyana,M.A.Schenkera, J. Shariffd, J.D. Solerd, A. Trangsruda, R.S. Tuckera,C.Tuckerb,andA.Turnerf aDivision of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA, USA; bSchool of Physics and Astronomy, Cardiff University, Cardiff, UK; cDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; dDepartment of Physics, University of Toronto, Toronto, ON, Canada; eDepartment of Physics, Case Western Reserve University, Cleveland, OH, USA; fJet Propulsion Laboratory, Pasadena, CA, USA; gCanadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, Canada; hDepartment of Physics, Princeton University, Princeton, NJ, USA; iDepartment of Physics, Imperial College, University of London, London, UK; jNational Institute of Standards and Technology, Boulder, CO, USA; kDepartment of Physics, Stanford University, Stanford, CA, USA; lKavli Institute for Cosmology, University of Cambridge, Cambridge, UK ABSTRACT Here we describe the design and performance of the Spider instrument. Spider is a balloon-borne cosmic microwave background polarization imager that will map part of the sky at 90, 145, and 280 GHz with sub- degree resolution and high sensitivity.
    [Show full text]
  • Pos(CMB2006)071 Ce
    SPIDER: A Balloon-Borne Polarimeter for Measuring Large Angular Scale CMB B-modes PoS(CMB2006)071 Carrie MacTavish∗, Dick Bond, Olivier Doré CITA, University of Toronto, Canada E-mail: [email protected] Rick Bihary, Tom Montroy, John Ruhl Department of Physics, Case Western Reserve University, USA Peter Ade, Carole Tucker Cardiff University, U.K. James Bock, Warren Holmes, Jerry Mulder, Anthony Turner NASA, Jet Propulsion Laboratory, USA Justus Brevik, Abigail Crites, Sunil Golwala, Viktor Hristov, Bill Jones, Chao-Lin Kuo, Andrew Lange, Peter Mason, Amy Trangsrud Division of Physics, Math and Astronomy, California Institute of Technology, USA Carlo Contaldi Theoretical Physics Group, Imperial College, UK Brendan Crill IPAC, California Institute of Technology, USA Lionel Duband Commissariat A L'energie Atomique, France Mark Halpern Deptarment of Physics and Astronomy, University of British Columbia, Canada c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Gene Hilton, Kent Irwin National Institute of Standards and Technology, USA Barth Netterfield, Enzo Pascale, Marco Viero Department of Physics/Astronomy and Astrophysics, University of Toronto, Canada PoS(CMB2006)071 SPIDER is a balloon-borne polarimeter that is designed to measure CMB B-mode polarization. The experiment is scheduled to launch from Alice Springs, Australia in December of 2009 and will target large angular scales where the B-mode signal from primordial gravity waves domi- nates. In a mid-latitude, around the world, 25 day flight SPIDER will map out roughly 50% of the sky. The instrument will observe in five freqencies ranging from 80 GHz up to 275 GHz enabling accurate characterization of the interstellar dust foreground.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • A Bit of History Satellites Balloons Ground-Based
    Experimental Landscape ● A Bit of History ● Satellites ● Balloons ● Ground-Based Ground-Based Experiments There have been many: ABS, ACBAR, ACME, ACT, AMI, AMiBA, APEX, ATCA, BEAST, BICEP[2|3]/Keck, BIMA, CAPMAP, CAT, CBI, CLASS, COBRA, COSMOSOMAS, DASI, MAT, MUSTANG, OVRO, Penzias & Wilson, etc., PIQUE, Polatron, Polarbear, Python, QUaD, QUBIC, QUIET, QUIJOTE, Saskatoon, SP94, SPT, SuZIE, SZA, Tenerife, VSA, White Dish & more! QUAD 2017-11-17 Ganga/Experimental Landscape 2/33 Balloons There have been a number: 19 GHz Survey, Archeops, ARGO, ARCADE, BOOMERanG, EBEX, FIRS, MAX, MAXIMA, MSAM, PIPER, QMAP, Spider, TopHat, & more! BOOMERANG 2017-11-17 Ganga/Experimental Landscape 3/33 Satellites There have been 4 (or 5?): Relikt, COBE, WMAP, Planck (+IRTS!) Planck 2017-11-17 Ganga/Experimental Landscape 4/33 Rockets & Airplanes For example, COBRA, Berkeley-Nagoya Excess, U2 Anisotropy Measurements & others... It’s difficult to get integration time on these platforms, so while they are still used in the infrared, they are no longer often used for the http://aether.lbl.gov/www/projects/U2/ CMB. 2017-11-17 Ganga/Experimental Landscape 5/33 (from R. Stompor) Radek Stompor http://litebird.jp/eng/ 2017-11-17 Ganga/Experimental Landscape 6/33 Other Satellite Possibilities ● US “CMB Probe” ● CORE-like – Studying two possibilities – Discussions ongoing ● Imager with India/ISRO & others ● Spectrophotometer – Could include imager – Inputs being prepared for AND low-angular- the Decadal Process resolution spectrophotometer? https://zzz.physics.umn.edu/ipsig/
    [Show full text]