Myofibrillar Instability Exacerbated by Acute Exercise in Filaminopathy

Total Page:16

File Type:pdf, Size:1020Kb

Myofibrillar Instability Exacerbated by Acute Exercise in Filaminopathy Human Molecular Genetics, 2015, Vol. 24, No. 25 7207–7220 doi: 10.1093/hmg/ddv421 Advance Access Publication Date: 15 October 2015 Original Article ORIGINAL ARTICLE Myofibrillar instability exacerbated by acute exercise in filaminopathy Downloaded from Frédéric Chevessier1,†, Julia Schuld4,†, Zacharias Orfanos4,†, Anne-C. Plank2, Lucie Wolf1, Alexandra Maerkens5,6, Andreas Unger7, Ursula Schlötzer- 3 5 2 6 Schrehardt , Rudolf A. Kley , Stephan Von Hörsten , Katrin Marcus , http://hmg.oxfordjournals.org/ Wolfgang A. Linke7, Matthias Vorgerd5, Peter F. M. van der Ven4, Dieter O. Fürst4,* and Rolf Schröder1,* 1Institute of Neuropathology, 2Department for Experimental Therapy, Preclinical Experimental Animal Center and, 3Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany, 4Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany, 5Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, 6Department of Functional Proteomics, at Erlangen Nuernberg University on August 15, 2016 Medizinisches Proteom-Center and 7Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany *To whom correspondence should be addressed at: Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany. Tel: +49-228-735301; Fax: +49-228-735302; Email: [email protected] (D.O.F.)/Institute of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, D-91054 Erlangen, Germany. Tel: +49-9131-8534782; Fax: +49-9131-8526033; Email: [email protected] (R.S.) Abstract Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C- and Xin-positive lesions streaming between Z-discs. These lesions, which are distinct from the classical MFM protein aggregates by their morphology and filamentous appearance, were greatly increased in number upon acute physical exercise in the mice. This pathology suggests that mutant filamin influences the mechanical stability of myofibrillar Z-discs, explaining the muscle weakness in mice and humans. Re-evaluation of biopsies from MFM- filaminopathy patients with different FLNC mutations revealed a similar, previously unreported lesion pathology, in addition to the classical protein aggregates, and suggested that structures previously interpreted as aggregates may be in part sarcomeric lesions. We postulate that these lesions define preclinical disease stages, preceding the formation of protein aggregates. Introduction with marked clinical and genetic heterogeneity due to mutations Filamin C-related protein aggregate myopathies belong to the in desmin, αB-crystallin, BAG-3, FHL1, myotilin, plectin and ZASP myofibrillar myopathies (MFMs), a numerically significant sub- (1,2). Filamins are large actin cross-linking proteins interacting group of hereditary and sporadic protein aggregate myopathies with a plethora of ligands of great functional diversity, indicating † These authors contributed equally. Received: August 31, 2015. Revised and Accepted: October 2, 2015 © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected] 7207 7208 | Human Molecular Genetics, 2015, Vol. 24, No. 25 both structural and signalling roles (3–6). Mutations in the ubiqui- the heterozygous genotype mirrors that of filaminopathy pa- tously expressed variants FLNA and FLNB cause a wide variety of tients, and direct comparison of the human and mouse filamino- congenital malformations, affecting brain, bone and other organs pathy pathology was a primary goal, we here focus on these mice (7–9). Heterozygous mutations of the human FLNC gene (located and refer to them as ‘mutant’ mice, and compare them with WT on chromosome 7q32; OMIM 102565) encoding the isoform main- littermates. ly expressed in striated muscles cause late-onset, autosomal- dominant and sporadic myopathies, and cardiomyopathies (10– 16). Filamin C-associated myopathies comprise three classical Expression levels of wild-type versus mutant filamin C disease manifestations: (i) protein aggregation myopathy affect- mRNA and protein ing skeletal and cardiac muscles with initial proximal weakness, To determine expression levels of WT and W2711X mutant Flnc (ii) distal myopathies due to haploinsufficiency or altered actin- mRNAs in our mice, we performed real-time reverse transcriptase- binding capacity without protein aggregation pathology and (iii) polymerase chain reaction (RT-PCR) (Fig. 2A) and semi-quantitative isolated hypertrophic cardiomyopathy without symptoms of multiplex RT-PCR (Supplementary Material, Fig. S1C) using RNA skeletal myopathy (11,16). We described the first pathological purified from different muscles and primer pairs amplifying mutation in filamin C (p.W2710X) in families from ethnically both WT and mutant Flnc cDNAs. Both indicated no significant diverse populations with a protein aggregation myopathy pheno- Downloaded from differences in total Flnc mRNA levels in mutant animals. Further- type, implying that codon 2710 is a mutational hotspot (10,13,17). more, experiments with a primer pair that enables discrimin- This mutation causes a deletion of the carboxy-terminal 16 ation of both genotypes due to the presence of the loxP site in amino acids, which abolishes the intrinsic dimer formation of exon48inmutantanimalsindicatedthatbothallelesareex- filamin C, making the mutant protein more prone to proteolysis pressed at similar levels in mutant animals (Fig. 2B). To exclude and aggregation in striated muscles (10,18). The aggregation that the lack of intact filamin C was compensated by increased pathology is characterized by sarcoplasmic and subsarcolemmal http://hmg.oxfordjournals.org/ expression of filamin A and/or B, mRNA expression levels of filamin C- and desmin-positive protein aggregates in conjunction Flna and Flnb were analysed. However, no significant differences with degenerative myofibrillar changes (1,2). between the two genotypes were detected (Supplementary Ma- Muscle biopsies from affected patients reflect only late stages terial, Fig. S1A and B). Concomitantly, Flnc was confirmed as the of the disease process and are only available in small amounts. main isoform in skeletal muscle (Supplementary Material, Moreover, biopsy material from preclinical, early and intermedi- Fig. S1D). ate disease stages is usually not accessible. With the purpose of Subsequently, we analysed filamin C protein expression in being able to perform pathophysiological and therapeutic inter- our mice with two different anti-filamin C antisera. One pan-fila- vention studies, we generated the first knock-in mouse model fi min C antiserum recognizing both WT and mutant variants for human MFM- laminopathy. In our mice, the expression of at Erlangen Nuernberg University on August 15, 2016 showed a highly similar protein level in both genotypes (further mutant W2710X filamin C (W2711X in mice) is controlled by confirmed by proteomic analysis, Supplementary Material, endogenous gene regulation sites, thus providing a patient- Table S1). A second antiserum raised against a peptide represent- mimicking genetic disease model. The subsequent analysis un- ing the carboxy-terminal 16 amino acids of filamin C that are ravelled a novel principle of pathogenesis, in which the mutant lacking in the mutant variant (that does not recognize filamins filamin C interferes with the mechanical stability and stress re- A and B and mutant filamin C, Supplementary Material, Fig. S7) sistance of myofibrillar Z-discs, subsequently leading to progres- showed that the WT filamin C level in the mutant animals was sive muscle damage. approximately half of that of the WT mice (Fig. 2C). This indicates that approximately half of the total filamin C in mutant animals Results represents mutant filamin C. Comparison of protein expression levels of the MFM aggregate markers BAG3, desmin, Hsp70 and fi Heterozygous W2711X lamin C knock-in mice: a XinB in WT and mutant animals by quantitative western blotting patient-mimicking pathogenetic model for human did not reveal significant differences (Fig. 2D). W2710X filaminopathy Heterozygous W2711X filamin C knock-in mice were generated Progressive muscle weakness in mutant mice using a gene-targeting strategy, which replaced the triplet ‘TGG’ by ‘TGA’, encoding a stop codon in exon 48, mimicking the most Analysis of the body weight of mutant and WT mice revealed no common MFM-filaminopathy mutation in man (10). Since mouse significant differences at any age between 2 and 12 months FLNc has an extra amino acid in the amino-terminal actin-bind- (Fig. 3A). No dysmorphology such as kyphosis or focal muscle at- ing domain, the codon 2711 in mice corresponds to codon 2710 in rophy was observed in mutant mice at any age (data not shown). the human ortholog. After homologous recombination and re- Animals were monitored repeatedly for motor function every 2 moval of the neomycin selection cassette by Flp-mediated exci- months up to 12 months by hanging-wire test to monitor sus- sion, the original gene structure is preserved and only one FRT tained limb strength (maximal time: 5 min; Fig. 3B) and direct site in intron 46
Recommended publications
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Β-Catenin Knockdown Affects Mitochondrial Biogenesis and Lipid Metabolism in Breast Cancer Cells
    ORIGINAL RESEARCH published: 27 July 2017 doi: 10.3389/fphys.2017.00544 β-Catenin Knockdown Affects Mitochondrial Biogenesis and Lipid Metabolism in Breast Cancer Cells Daniele Vergara 1, 2 †, Eleonora Stanca 1, 2 †, Flora Guerra 1, Paola Priore 3, Antonio Gaballo 3, Julien Franck 4, Pasquale Simeone 5, Marco Trerotola 6, Stefania De Domenico 7, Isabelle Fournier 4, Cecilia Bucci 1, Michel Salzet 4, Anna M. Giudetti 1* and Michele Maffia 1, 2* 1 Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy, 2 Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, Lecce, Italy, 3 CNR NANOTEC - Institute of Nanotechnology, Lecce, Italy, 4 University of Lille, Institut national de la santé et de la recherche médicale, U-1192 - Laboratoire Protéomique, Réponse Edited by: Inflammatoire et Spectrométrie de Masse-PRISM, Lille, France, 5 Unit of Cytomorphology, CeSI-MeT and Department of Andrei Surguchov, Medicine and Aging Sciences, School of Medicine and Health Sciences, University “G. d’Annunzio,” Chieti, Italy, 6 Unit of Kansas University of Medical Center Cancer Pathology, CeSI-MeT and Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio,” Research Institute, United States Chieti, Italy, 7 C.N.R. Unit of Lecce, Institute of Food Production Sciences, Lecce, Italy Reviewed by: Kamal Datta, β-catenin plays an important role as regulatory hub in several cellular processes including Georgetown University, United States Silvana Gaetani, cell adhesion, metabolism, and epithelial mesenchymal transition. This is mainly achieved Sapienza Università di Roma, Italy by its dual role as structural component of cadherin-based adherens junctions, and as Clizia Chinello, University of Milano-Bicocca, Italy a key nuclear effector of the Wnt pathway.
    [Show full text]
  • Regulation of Canonical Wnt Signalling by the Ciliopathy Protein MKS1 and the E2
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.897959; this version posted March 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Regulation of canonical Wnt signalling by the ciliopathy protein MKS1 and the E2 ubiquitin-conjugating enzyme UBE2E1. Katarzyna Szymanska1, Karsten Boldt2, Clare V. Logan1, Matthew Adams1, Philip A. Robinson1+, Marius Ueffing2, Elton Zeqiraj3, Gabrielle Wheway1,4#, Colin A. Johnson1#* *corresponding author: [email protected] ORCID: 0000-0002-2979-8234 # joint last authors + deceased 1 Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK 2 Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany 3 Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK 4 Faculty of Medicine, University of Southampton, Human Development and Health, UK; University Hospital Southampton NHS Foundation Trust, UK 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.897959; this version posted March 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract A functional primary cilium is essential for normal and regulated signalling. Primary ciliary defects cause a group of developmental conditions known as ciliopathies, but the precise mechanisms of signal regulation by the cilium remain unclear.
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • A Cell Junctional Protein Network Associated with Connexin-26
    International Journal of Molecular Sciences Communication A Cell Junctional Protein Network Associated with Connexin-26 Ana C. Batissoco 1,2,* ID , Rodrigo Salazar-Silva 1, Jeanne Oiticica 2, Ricardo F. Bento 2 ID , Regina C. Mingroni-Netto 1 and Luciana A. Haddad 1 1 Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil; [email protected] (R.S.-S.); [email protected] (R.C.M.-N.); [email protected] (L.A.H.) 2 Laboratório de Otorrinolaringologia/LIM32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil; [email protected] (J.O.); [email protected] (R.F.B.) * Correspondence: [email protected]; Tel.: +55-11-30617166 Received: 17 July 2018; Accepted: 21 August 2018; Published: 27 August 2018 Abstract: GJB2 mutations are the leading cause of non-syndromic inherited hearing loss. GJB2 encodes connexin-26 (CX26), which is a connexin (CX) family protein expressed in cochlea, skin, liver, and brain, displaying short cytoplasmic N-termini and C-termini. We searched for CX26 C-terminus binding partners by affinity capture and identified 12 unique proteins associated with cell junctions or cytoskeleton (CGN, DAAM1, FLNB, GAPDH, HOMER2, MAP7, MAPRE2 (EB2), JUP, PTK2B, RAI14, TJP1, and VCL) by using mass spectrometry. We show that, similar to other CX family members, CX26 co-fractionates with TJP1, VCL, and EB2 (EB1 paralogue) as well as the membrane-associated protein ASS1. The adaptor protein CGN (cingulin) co-immuno-precipitates with CX26, ASS1, and TJP1.
    [Show full text]
  • Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy
    Journal of Clinical Medicine Review Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy Matthias Eden 1,2 and Norbert Frey 1,2,* 1 Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; [email protected] 2 German Centre for Cardiovascular Research, Partner Site Heidelberg, 69120 Heidelberg, Germany * Correspondence: [email protected] Abstract: Over the past decades, there has been tremendous progress in understanding genetic alterations that can result in different phenotypes of human cardiomyopathies. More than a thousand mutations in various genes have been identified, indicating that distinct genetic alterations, or combi- nations of genetic alterations, can cause either hypertrophic (HCM), dilated (DCM), restrictive (RCM), or arrhythmogenic cardiomyopathies (ARVC). Translation of these results from “bench to bedside” can potentially group affected patients according to their molecular etiology and identify subclinical individuals at high risk for developing cardiomyopathy or patients with overt phenotypes at high risk for cardiac deterioration or sudden cardiac death. These advances provide not only mechanistic insights into the earliest manifestations of cardiomyopathy, but such efforts also hold the promise that mutation-specific pathophysiology might result in novel “personalized” therapeutic possibilities. Recently, the FLNC gene encoding the sarcomeric protein filamin C has gained special interest since FLNC mutations were found in several distinct and possibly overlapping cardiomyopathy phenotypes. Specifically, mutations in FLNC were initially only linked to myofibrillar myopathy (MFM), but are now increasingly found in various forms of human cardiomyopathy. FLNC thereby Citation: Eden, M.; Frey, N. Cardiac represents another example for the complex genetic and phenotypic continuum of these diseases.
    [Show full text]
  • Targeting Mechanoresponsive Proteins in Pancreatic Cancer: 4-Hydroxyacetophenone Blocks Dissemination and Invasion by Activating MYH14 Authors
    Author Manuscript Published OnlineFirst on July 29, 2019; DOI: 10.1158/0008-5472.CAN-18-3131 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Targeting mechanoresponsive proteins in pancreatic cancer: 4-hydroxyacetophenone blocks dissemination and invasion by activating MYH14 Authors: Alexandra Surcel1,*, Eric S. Schiffhauer1, Dustin G. Thomas1, Qingfeng Zhu2, Kathleen T. DiNapoli1,3, Maik Herbig4, Oliver Otto4,†, Hoku West-Foyle1, Angela Jacobi4, Martin Kräter4, Katarzyna Plak4, Jochen Guck4, Elizabeth M. Jaffee5, Pablo A. Iglesias1,3, Robert A. Anders2, Douglas N. Robinson1,6,7,* Affiliations: 1 Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 2 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 3 Department of Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA 4 Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany 5 Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins, The Skip Viragh Pancreatic Cancer Center, and the Bloomberg Kimmel Institute, Johns Hopkins University, Baltimore, MD 21205, USA 6 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 7 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA † Current address: Centre for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases Biomechanics, University of Greifswald, 17489 Greifswald, Germany Running title: Targeting mechanoresponsive MYH14 in pancreatic cancer *To whom correspondence should be addressed: Alexandra Surcel Department of Cell Biology 725 N. Wolfe St. Baltimore, MD 21205 [email protected] Douglas N.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Cytoskeletal Remodeling in Cancer
    biology Review Cytoskeletal Remodeling in Cancer Jaya Aseervatham Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected]; Tel.: +146-9767-0166 Received: 15 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Simple Summary: Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract: Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site.
    [Show full text]
  • AQP3 Increases Intercellular Cohesion in NSCLC A549 Cell Spheroids Through Exploratory Cell Protrusions
    International Journal of Molecular Sciences Article AQP3 Increases Intercellular Cohesion in NSCLC A549 Cell Spheroids through Exploratory Cell Protrusions Sol Min 1,† , Chungyoul Choe 1,2,*,† and Sangho Roh 1,* 1 Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; [email protected] 2 Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea * Correspondence: [email protected] (C.C.); [email protected] (S.R.); Tel.: +82-221487353 (C.C.); Tel.: +82-28802333 (S.R.) † These authors contributed equally to this study. Abstract: Tumor cell aggregation is critical for cell survival following the loss of extracellular matrix attachment and dissemination. However, the underlying mechanotransduction of clustering solitary tumor cells is poorly understood, especially in non-small cell lung cancers (NSCLC). Here, we exam- ined whether cell surface protrusions played an important role in facilitating the physical contact between floating cells detached from a substrate. We employed poly-2-hydroxyethyl methacrylate- based 3D culture methods to mimic in vivo tumor cell cluster formation. The suprastructural analysis of human NSCLC A549 cell spheroids showed that finger-like protrusions clung together via the actin cytoskeleton. Time-lapse holotomography demonstrated that the finger-like protrusions of free-floating cells in 3D culture displayed exploratory coalescence. Global gene expression analysis demonstrated that the genes in the organic hydroxyl transport were particularly enriched in the A549 cell spheroids. Particularly, the knockdown of the water channel aquaporin 3 gene (AQP3) impaired Citation: Min, S.; Choe, C.; Roh, S. AQP3 Increases Intercellular multicellular aggregate formation in 3D culture through the rearrangement of the actomyosin cy- Cohesion in NSCLC A549 Cell toskeleton.
    [Show full text]
  • Filamin B Deficiency in Mice Results in Skeletal Malformations and Impaired Microvascular Development
    Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development Xianghua Zhou*†, Fei Tian*, Johan Sandze´ n*, Renhai Cao‡, Emilie Flaberg‡, Laszlo Szekely‡, Yihai Cao‡, Claes Ohlsson§, Martin O. Bergo*, Jan Bore´ n*, and Levent M. Akyu¨ rek*†¶ *Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, †Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, and §Center for Bone Research, Institute of Medicine, Go¨teborg University, SE 413 45 Go¨teborg, Sweden; and ‡Microbiology and Tumor Biology Center, Karolinska Institute, SE 177 77 Stockholm, Sweden Edited by Thomas P. Stossel, Harvard Medical School, Boston, MA, and approved January 10, 2007 (received for review September 23, 2006) Mutations in filamin B (FLNB), a gene encoding a cytoplasmic within chondrocytes (7) and physically interact with each other in actin-binding protein, have been found in human skeletal disor- neurons (10), suggesting that FLNA and FLNB may form both ders, including boomerang dysplasia, spondylocarpotarsal syn- homodimers and heterodimers. drome, Larsen syndrome, and atelosteogenesis phenotypes I and Future research on FLNB disorders would benefit from the III. To examine the role of FLNB in vivo, we generated mice with a availability of relevant animal models. To address this issue and to targeted disruption of Flnb. Fewer than 3% of homozygous em- define the physiologic importance of FLNB, we produced Flnb- bryos reached term, indicating that Flnb is important in embryonic deficient mice and cell lines and analyzed the consequences of Flnb development. Heterozygous mutant mice were indistinguishable deficiency on cell migration, the actin cytoskeleton, and embryonic from their wild-type siblings.
    [Show full text]
  • Schwann Cell O-Glcnac Glycosylation Is Required for Myelin Maintenance and Axon Integrity
    The Journal of Neuroscience, September 14, 2016 • 36(37):9633–9646 • 9633 Neurobiology of Disease Schwann Cell O-GlcNAc Glycosylation Is Required for Myelin Maintenance and Axon Integrity X Sungsu Kim,1 X Jason C. Maynard,3 Yo Sasaki,1 Amy Strickland,1 Diane L. Sherman,4 XPeter J. Brophy,4 Alma L. Burlingame,3 and Jeffrey Milbrandt1,2 1Department of Genetics and 2Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, 3Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, and 4Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom Schwann cells (SCs), ensheathing glia of the peripheral nervous system, support axonal survival and function. Abnormalities in SC metabolism affect their ability to provide this support and maintain axon integrity. To further interrogate this metabolic influence on axon–glial interactions, we generated OGT-SCKO mice with SC-specific deletion of the metabolic/nutrient sensing protein O-GlcNAc transferase that mediates the O-linked addition of N-acetylglucosamine (GlcNAc) moieties to Ser and Thr residues. The OGT-SCKO mice develop tomaculous demyelinating neuropathy characterized by focal thickenings of the myelin sheath (tomacula), progressive demy- elination, axonal loss, and motor and sensory nerve dysfunction. Proteomic analysis identified more than 100 O-GlcNAcylated proteins in rat sciatic nerve, including Periaxin (PRX), a myelin protein whose mutation causes inherited neuropathy in humans. PRX lacking O-GlcNAcylation is mislocalized within the myelin sheath of these mutant animals. Furthermore, phenotypes of OGT-SCKO and Prx- deficient mice are very similar, suggesting that metabolic control of PRX O-GlcNAcylation is crucial for myelin maintenance and axonal integrity.
    [Show full text]