Global Diversity of Gastropods (Gastropoda; Mouusca) in Freshwater

Total Page:16

File Type:pdf, Size:1020Kb

Global Diversity of Gastropods (Gastropoda; Mouusca) in Freshwater Hydrobiologia (2008) 595:149-166 DOI 10.1007/S10750-007-9012-6 'RESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of gastropods (Gastropoda; MoUusca) in freshwater Ellen E. Strong • Olivier Gargominy • Winston F. Ponder • Philippe Bouchet ' Springer Science+Business Media B.V. 2007 Abstract The world's gastropod fauna from conti- gastropods. Despite their ecological importance in nental waters comprises ~ 4,000 valid described many aquatic ecosystems, understanding of even their species and a minimum of 33-38 independent lineages systematics is discouragingly incomplete. The world's of Recent Neritimorpha, Caenogastropoda and Het- freshwater gastropod fauna faces unprecedented erobranchia (including the Pulmonata). The caeno- threats from habitat loss and degradation and intro- gastropod component dominates in terms of species duced fishes and other pests. Unsustainable use of richness and diversity of morphology, physiology, life ground water, landscape modification and stock dam- and reproductive modes and has produced several age are destroying many streams and springs in rural/ highly speciose endemic radiations. Ancient oligo- pastoral areas, and pose the most significant threats to trophic lakes (e.g., Baikal, Ohrid, Tanganyika) are key the large diversity of narrow range endemics in springs hotspots of gastropod diversity; also noteworthy are a and ground water. Despite comprising only ~5% of number of lower river basins (e.g., Congo, Mekong, the world's gastropod fauna, freshwater gastropods Mobile Bay). But unlike many other invertebrates, account for ~ 20% of recorded mollusc extinctions. small streams, springs and groundwater systems have However, the status of the great majority of taxa is produced the most speciose associations of freshwater unknown, a situation that is exacerbated by a lack of experts and critical baseline data relating to distribu- tion, abundance, basic life history, physiology, mor- Guest editors: E. V. Balian, C. Leveque, H. Segers and phology and diet. Thus, the already considerable K. Martens magnitude of extinction and high levels of threat Frestiwater Animal Diversity Assessment indicated by the lUCN Red List of Threatened Species is certainly a significant underestimate. E. E. Strong (El) Department of Invertebrate Zoology, Smitlisonian Institution, National Museum of Natural History, MRC Keywords Phylogeny • Taxonomy • Biogeography • 163, P.O. Box 37012, Washington, DC 20013-7012, USA Endemicity • Radiations • Life history • Fossil record • e-mail: [email protected] Biomonitoring • Disease transmission • Conservation O. Gargominy • P. Bouchet Museum National d'Histoire Naturelle, 55 Rue Buff on, 75005 Paris, France Introduction W. F. Ponder Malacology Section, Aquatic Zoology, Australian The Mollusca is an extraordinarily varied phylum— Museum, 6 College Street, Sydney, NSW 2010, Australia with estimates of 80,000-100,000 described species •^ Springer 150 Hydrobiologia (2008) 595:149-166 and total diversity possibly as high as 200,000, they and Neritimorpha (previously a subgroup of "archae- are second only to arthropods in species richness. The ogastropods"). largest molluscan classes—Gastropoda and Bival- The world's freshwater gastropod fauna is domi- via—have repeatedly and successfully colonized nated by two main components: the Caenogastropoda continental ("fresh") waters. Freshwater gastropods and pulmonate heterobranchs. Several additional are found on every continent except Antarctica and in basal lineages of heterobranchs have also invaded nearly all aquatic habitats including rivers, lakes, freshwater (Valvatidae, Glacidorbidae, Acochlidiida) streams, swamps, underground aquifers and springs, as well as some Neritimorpha (Neritiliidae, Neriti- as well as temporary ponds, drainage ditches and dae). Only the Viviparoidea, Glacidorboidea and other ephemeral and seasonal waters. Most live nearly all Hygrophila comprise superfamilial (or submerged, and many are specialized for particular above) groupings with members represented exclu- habitats—aquatic vegetation, stones, rocks, wood and sively in freshwater. Of the 409 families of Recent other solid surfaces, or soft sediment. Some are gastropods currently recognized (Bouchet & Rocroi, amphibious and a few are able to tolerate periods of 2005), 26 are composed of taxa that are wholly or time out of water (e.g., some Ampullariidae); others mostly restricted to freshwater, four have significant are capable of prolonged periods of aestivation in soil taxonomic representation in freshwater biotopes during dry periods. Few groups (notably some of the (Neritidae, Assimineidae, Hydrobiidae, Stenothyri- rissooidean families) are found in highly saline inland dae), and three are marine groups with isolated habitats such as the Caspian Sea or salt lakes in genera that have invaded freshwater [Cremnoconchus Central Asia, Africa and Australia. (Littorinidae), Clea (Buccinidae), Rivomarginella Most freshwater gastropods are micro-herbivorous (Marginellidae)] (Table 1). and/or micro-omnivorous grazers feeding on bacterial The caenogastropod component of the freshwater films, algae and diatoms, but there are a number of fauna represents numerous independent lineages and exceptions: the predominantly marine Buccinidae, many separate colonization events. Several clades Marginellidae and Acochlidiida and the entirely fresh- have produced spectacular endemic radiations, water Glacidorbidae are predators; Viviparidae and namely Rissooidea (Hydrobiidae s.L, Pomatiopsidae) Bithyniidae are ctenidial suspension feeders at least in and Cerithioidea (Pachychilidae, Paludomidae and part; Ampullariidae are primarily macroherbivorous Pleuroceridae). With the exception of a few parthe- and are also known to feed on bryozoans and planorbid nogenetic taxa [Campeloma (Viviparidae), Melano- eggs. There are no pelagic/nektonic or parasitic ides (Thiaridae), Potamopyrgus antipodarum species, with the great majority being benthic crawlers. (Hydrobiidae)], they are exclusively dioecious and A rare exception is the Helicostoidae—a monotypic reproduction is sexual. Of all the freshwater groups, caenogastropod family of uncertain affinity from China only the cerithioids are aphallate and transfer sperm that lives cemented to limestone blocks (Lamy, 1926). using spermatophores; all others use a penis. Most lay egg capsules, and development is intracapsular with Taxonomic composition embryos emerging as crawling juveniles. A free- swimming dispersal stage is present in some species, New suites of anatomical, ultrastructural and molec- particularly those that inhabit the lower reaches of ular characters developed in the past 30 years have coastal streams, with a free-swimming veliger larva fuelled a revolution in our understanding of gastropod that may develop in the sea (Neritidae, some phylogenetics (Haszprunar, 1988; Ponder & Lind- Thiaridae). However, many species are brooders [all berg, 1997; Colgan et al., 2003; Strong, 2003). Viviparidae, some Cerithioidea, Rissooidea and Het- Several well supported clades are currently recog- erobranchia (see below)] and retain their young in nized: Caenogastropoda (containing most of the brood pouches that represent modifications of the former Mesogastropoda and all the Neogastropoda); oviduct, mantle cavity or cephalic haemocoel. While its sister group, Heterobranchia (containing the it has been suggested that there is a significant former Opisthobranchia and Pulmonata, as well as a selective advantage for parental care and hence few "mesogastropod" groups); Vetigastropoda brooding among freshwater molluscs (e.g., Kohler (including many of the former Archaeogastropoda) et al., 2004), the great majority of freshwater ^ Springer Hydrobiologia (2008) 595:149-166 151 Table 1 Taxonomic representation and distribution of fresliwater gastropods Taxon Representation Habitat In Freshwater Neritimorpha Superfamily Helicinoidea Family Neritiliidae Anchialine and coastal running waters Superfamily Neritoidea Family Neritidae Primarily lower reaches of coastal rivers and streams, estuaries Caenogastropoda Architaenioglossa Superfamily AmpuUarioidea Family AmpuUariidae Quiet, muddy rivers, lakes, ponds, canals, rice paddies, swamps Superfamily Viviparoidea Family Viviparidae Rivers, lakes, ponds, swamps, canals Sorbeoconcha Superfamily Cerithioidea Family Melanopsidae Springs, streams Family Paludomidae Lakes, rivers, streams (including radiation in Lake Tanganyika) Family Pachychilidae Lakes, rivers, streams (including radiation in Sulawesi lakes) Family Pleuroceridae Rivers, streams Family Thiaridae Rivers, streams Hypsogastropoda Superfamily Littorinoidea Family Littorinidae (Cremnoconchus) Waterfalls Superfamily Rissooidea Family Amnicolidae Rivers and streams Family Assimineidae Estuaries, freshwater rivers and streams, springs Family Bithyniidae Quiet muddy rivers, lakes, ponds, canals, swamps Family Cochliopidae Rivers and streams, swamps, lakes Family Helicostoidae (Helicostoa) Cemented on limestone rocks Family Hydrobiidae Greatest diversity springs; also streams and rivers, lakes, groundwater systems, caves, estuarine marshes and mudflats Family Lithoglyphidae Streams, rivers Family Moitessieriidae Groundwater systems, caves Family Pomatiopsidae */< Rivers, permanent wetlands, stream edges, some saline springs/ lakes. Family Stenothyridae Rivers, streams, estuarine Neogastropoda Superfamily Buccinoidea Family Buccinidae (Clea) Lower reaches of rivers Superfamily Muricoidea Family Margme\[idae(Rivomarginella) Rivers, lakes
Recommended publications
  • North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
    THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline.
    [Show full text]
  • Suterilla Fluviatilis Fukuda, Ponder & Marshall, 2006
    Suterilla fluviatilis Fukuda, Ponder & Marshall, 2006 Diagnostic features Shell globose to ovate-conic, up to 1.9 mm in length, thick, opaque, uniformly yellow-brown (white in some specimens); with narrow, open umbilicus. Teleoconch whorls convex, suture distinctly Distribution of Suterilla fluviatilis. Suterilla fluviatilis (adult size 1.6-1.9 mm) impressed; spire about equal to aperture in length; whorls smooth except for fine growth lines, fine spiral striae present or absent; aperture with thin outer lip and thick, wide columellar lip, inner lip thin across parietal area; aperture not extending across umbilicus; no varix. Operculum simple, pyriform , paucispiral, horny, translucent, yellowish. Head with short, narrow, cephalic tentacles approximately equal to half width of head with the eyes situated near central part of bases of these tentacles. A distinct transverse crease at posterior end of snout and confluent with anterior edges of tentacle bases. Omniphoric grooves distinct. Anterior pedal mucous gland along entire edge of foot, as many small, slender cells opening beneath inconspicuous propodial flap. Foot short and broad, sole slender, flat, smooth when foot extended. Mantle cavity with only two rudimentary gill filaments. The main differences between S. fluviatilis and other species of Suterilla (all of which are marine) are anatomical. They include the S-shaped rectum, lack of a flange on the penis, the albumen gland being markedly shorter than the capsule gland, a large bursa copulatrix (also in S. neozelanica) and a wide, folded bursal duct that enters the bursa mid anteriorly. Classification Suterilla fluviatilis Fukuda, Ponder & Marshall, 2006 Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Assimineidae Subfamily: Omphalotropidinae Genus Suterilla Thiele, 1927 (Type species Cirsonella neozelanica Murdoch, 1899).
    [Show full text]
  • Cleto Sánchez Falcón” Y “M
    34 NOVITATES CARIBAEA 4: 34-44, 2011 MATERIAL TIPO DEPOSITADO EN LAS COLECCIONES MALACOLÓGICAS HISTÓRICAS “CLETO SÁNCHEZ FALCÓN” Y “M. L. JAUME” EN SANTIAGO DE CUBA, CUBA Beatriz Lauranzón Meléndez1, David Maceira Filgueira1 y Margarita Moran Zambrano2. 1Centro Oriental de Ecosistemas y Biodiversidad. BIOECO. Santiago de Cuba, Cuba [email protected] 2Museo “Jorge Ramón Cuevas”, Reserva de Biosfera Baconao. Santiago de Cuba, Cuba RESUMEN Fueron revisadas las colecciones malacológicas históricas “Cleto Sánchez Falcón” y “M. L. Jaume”, depositadas en el Museo de Historia Natural “Tomás Romay” y el Museo “Jorge Ramón Cuevas”. De ambas colecciones se copiaron los datos de etiqueta del material tipo. La validez de la información de etiqueta para cada lote fue revisada con las descripciones originales correspondientes a cada especie, revisiones taxonómicas de familias y catálogos actualizados. Se registraron 434 ejemplares, incluidos en 56 subespecies, 34 especies y seis (6) familias; estos se corresponden con 85 localidades y 16 colectores. La colección “Cleto Sánchez Falcón” posee 368 ejemplares de las familias Annulariidae, Cerionidae, Megalomastomidae, Helicinidae, Orthalicidae y Urocoptidae, siendo esta última la más representada. La colección “M. L. Jaume” tiene 66 ejemplares de 36 subespecies de Liguus fasciatus (Müller), Orthalicidae. Palabras clave: moluscos terrestres, material tipo, colección histórica, Cuba. ABSTRACT The historic malacological collections “Cleto Sánchez Falcón” and “M. L. Jaume” housed in the Museo de Historia Natural “Tomás Romay” and Museo “Jorge Ramón Cuevas” were revised, and the label data of type material was copied. The validity of the information on labels for each lot was revised with the original descriptions for all species, taxonomic revisions of families and updated catalogues.
    [Show full text]
  • The Assimineidae of the Atlantic-Mediterranean Seashores
    B72(4-6)_totaal-backup_corr:Basteria-basis.qxd 15-9-2008 10:35 Pagina 165 BASTERIA, 72: 165-181, 2008 The Assimineidae of the Atlantic-Mediterranean seashores J.J. VAN AARTSEN National Museum of Natural History, P.O.Box 9517, 2300 RA Leiden, The Netherlands. A study of the Atlantic – and Mediterranean marine species of the genera Assiminea and Paludinella revealed several new species. The species Assiminea gittenbergeri spec. nov. is estab- lished in the Mediterranean. Assiminea avilai spec. nov. and Assiminea rolani spec. nov. have been found in Terceira, Azores and in Madeira respectively. A species from the Atlantic coast of France, cited as Assiminea eliae Paladilhe, 1875 by Thiele, is described as Paludinella glaubrechti spec. nov. A. eliae cannot be identified today as no type material is known. The name , howev- er, is used for several different species as documented herein. Assiminea ostiorum (Bavay, 1920) is here considered a species in its own right. Paludinella sicana ( Brugnone, 1876), until now con- sidered an exclusively Mediterranean species, has been detected along the Atlantic coast at Laredo ( Spain) in the north as well as at Agadir ( Morocco) in the south. Keywords: Gastropoda, Caenogastropoda, Assimineidae, Assiminea, Paludinella, systematics, Atlantic Ocean east coast, Mediterranean. INTRODUCTION The Assimineidae H. & A. Adams, 1856 are a group of mollusks living worldwide in brackish water, in freshwater as well as terrestrial habitats. In Europe there are only a few species known. They live in usually more or less brackish conditions high in the tidal zone, frequently along tidal mudflats. The two genera recognized to date are Paludinella Pfeiffer, 1841 with Paludinella littorina (Delle Chiaje, 1828) and Paludinella sicana (Brugnone, 1876) and the type-genus Assiminea Leach in Fleming, 1828, with the type- species Assiminea grayana (Fleming, 1828) as well as Assiminea eliae Paladilhe, 1875.
    [Show full text]
  • Girindra Kalita Ecology of Camptoceras 1558 REVISED
    CASE REPORT ZOOS PRINT JOURNAL 22(12): 2916-2919 ECOLOGY OF CAMPTOCERAS LINEATUM BLANFORD (PULMONATA: BASOMMATOPHORA) STUDIED IN DEEPAR WETLAND OF ASSAM, INDIA AND A NOTE ON ITS EMBRYONIC DEVELOPMENT Girindra Kalita 1 and M.M. Goswami 2 1 Lecturer, Department of Zoology, Guwahati College, Guwahati, Assam 781021, India 2 Professor, Department of Zoology, Gauhati University, Guwahati, Assam 781014, India Email: 1 [email protected]; 2 [email protected] plus web supplement of 1 page ABSTRACT of the Zoology Department of Gauhati University where its Camptoceras lineatum Blanford is a small freshwater gastropod ex situ development was observed. mollusc in the family Planorbidae. During a limnological investigation in Deepar wetland of Assam, India, the species was recorded for the first time from this region. Some of the STUDY AREA ecological aspects of the species studied during June to Deepar wetland is a perennial water body and a Ramsar November, 2005 are presented here. The animal was cultured site (91038'-91040'E & 2606'-2608'N) near Guwahati, Assam, ex situ and some notes on its embryonic development is India (Fig. 1). The main wetland has three major parts, the presented. Barbeel, Kharbari and the Chanabeel. Barbeel has the regular recharge of water received from a perennial stream known as KEYWORDS Camptoceras lineatum, Deepar wetland, embryonic development, Basistha through an offshoot of river Mora Bharalu (Source: mollusc ARSAC, Guwahati). However, the Kharbari and Chanabeel have more or less stagnant water in winter season. But, during monsoon, recurrent flushing in these two sites is observed due The available fauna reports on freshwater mollusca in India to a connection with River Bramhaputra through the Khanajan reveal a total of 200 species of gastropods and bivalves of inlet/outlet canal.
    [Show full text]
  • The Malacological Society of London
    ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Species Status Assessment Report for Beaverpond Marstonia
    Species Status Assessment Report For Beaverpond Marstonia (Marstonia castor) Marstonia castor. Photo by Fred Thompson Version 1.0 September 2017 U.S. Fish and Wildlife Service Region 4 Atlanta, Georgia 1 2 This document was prepared by Tamara Johnson (U.S. Fish and Wildlife Service – Georgia Ecological Services Field Office) with assistance from Andreas Moshogianis, Marshall Williams and Erin Rivenbark with the U.S. Fish and Wildlife Service – Southeast Regional Office, and Don Imm (U.S. Fish and Wildlife Service – Georgia Ecological Services Field Office). Maps and GIS expertise were provided by Jose Barrios with U.S. Fish and Wildlife Service – Southeast Regional Office. We appreciate Gerald Dinkins (Dinkins Biological Consulting), Paul Johnson (Alabama Department of Conservation and Natural Resources), and Jason Wisniewski (Georgia Department of Natural Resources) for providing peer review of a prior draft of this report. 3 Suggested reference: U.S. Fish and Wildlife Service. 2017. Species status assessment report for beaverpond marstonia. Version 1.0. September, 2017. Atlanta, GA. 24 pp. 4 Species Status Assessment Report for Beaverpond Marstonia (Marstonia castor) Prepared by the Georgia Ecological Services Field Office U.S. Fish and Wildlife Service EXECUTIVE SUMMARY This species status assessment is a comprehensive biological status review by the U.S. Fish and Wildlife Service (Service) for beaverpond marstonia (Marstonia castor), and provides a thorough account of the species’ overall viability and extinction risk. Beaverpond marstonia is a small spring snail found in tributaries located east of Lake Blackshear in Crisp, Worth, and Dougherty Counties, Georgia. It was last documented in 2000. Based on the results of repeated surveys by qualified species experts, there appears to be no extant populations of beaverpond marstonia.
    [Show full text]
  • Patil Land & Freshwater Mollusca 1149.Pmd
    NOTE ZOOS' PRINT JOURNAL 20(6): 1912-1913 History (3)12: 184-187+4pls. Blanford, W.T. (1870). Contributions to Indian Malacology, No.XI Descriptions of new species of Paludomus, Cremnoconchus, Cyclostoma A CHECKLIST OF LAND AND and of Helicidae from various parts of India. Journal of the Asiatic FRESHWATER MOLLUSCA OF Society of Bengal 39(2): 9-25+3pls. Blanford, W.T. (1880). Contributions to Indian Malacology No.XII, MAHARASHTRA STATE Descriptions of new land and freshwater shells from southern and western India, Burmah, the Andaman Islands. Journal of the Asiatic Society of S.G. Patil and S.S. Talmale Bengal 49(2): 181-222+I,IIpls. Blanford, W.T. and H.H.G. Austen (1908). The Fauna of British India, including Ceylon and Burma, Mollusca I: Testacellidae and Zoological Survey of India, Western Regional Station, Sector 29, Zonitidae. Taylor & Francis, London, 311pp. Vidyanagar, Rawet Road, P.C.N.T. Post, Pune, Maharashtra Gude, G.K. (1914). The Fauna of British India including Ceylon and 411044, India Burma, Mollusca II: Troknomorphidae and Jancllidae. Taylor and Francis, London, 520pp. Gude, G,K. (1921). The Fauna of British India including Ceylon and Molluscs occur in various habitats and are divided into Burma, Mollusca III: Land operculates. Taylor & Francis, London, freshwater, marine and terrestrial forms. The freshwater molluscs 336pp. play a significant role in aquatic ecosystems, and some of them Hora, S.L. (1926). On some interesting features of the Western Ghats, are edible. Species like Bellamya bengalensis, Pila globosa Journal of the Bombay Natural History Society 31: 447-449. and Lamellidens marginalis are proven food for many aquatic Patil S.G.
    [Show full text]
  • Biological and Biomechanical Principles of the Controlling
    Available online at www.worldscientificnews.com WSN 99 (2018) 71-83 EISSN 2392-2192 Biological and biomechanical principles of the controlling molluscs Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) in reservoirs of strategic importance Marenkov Oleh*, Batalov Kyrylo, Kriachek Olena Department of General Biology and Water Bioresources, Oles Honchar Dnipro National University, P.M.B. 49050, Dnipro, Ukraine *E-mail address: [email protected] ABSTRACT The article presents the results of complex laboratory investigations on the biological and biomechanical ways of control of Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) molluscs in simulated conditions close to the conditions of the cooling pond of the Zaporizhia Nuclear Power Plant. It was determined that molluscs have naturalized in the Zaporizhia Nuclear Power Plant cooling pond, quickly increased their number and created a threat to hydraulic structures. Taking into account biological features of Thiaridae mollusks and technical and ecological features of Zaporizhia NPP, we carried out a series of experiments using biological control measures (the use of predatory species of hydrobionts) and mechanical means for controlling mollusks. Representatives of different taxons of the Animalia Kingdom were selected as predatory species of hydrobionts, which potentially can consume gastropods: Mollusca, Crustaceans and Fish. It has been found experimentally that the use of marbled crayfish Procambarus virginalis (Lyko, 2017), pumpkinseed Lepomis gibbosus (Linnaeus, 1758) and Botia lohachata Chaudhuri, 1912 has not given positive results in the development of measures to control the number of molluscs. Positive results were obtained in a series of experiments with predatory mollusc assassin snail Clea helena (von dem Busch, 1847), but it was noted that in the presence of more accessible feeds, assassin snail Clea helena (von dem Busch, 1847) consumes smaller quantities of Thiaridae mollusks.
    [Show full text]
  • The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
    UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene.
    [Show full text]