Galaxies in the Hubble Deep Field Or Determining the Ultimate Fate of the Universe

Total Page:16

File Type:pdf, Size:1020Kb

Galaxies in the Hubble Deep Field Or Determining the Ultimate Fate of the Universe name Galaxies in the Hubble Deep Field or Determining the Ultimate Fate of the Universe This is a Picture of the Hubble Deep Field (HDF). It was taken with the Hubble Space Telescope for 15 consecutive days. It is the deepest image taken of the sky (apart from the Hubble Deep Field South). You virtually see galaxies at the edge of the universe (and everything else in between). From this picture we will “guestimate” (aka, guess & estimate) the total number of galaxies in the universe and how much matter there is in the universe. This may tell us what type of universe we live in and whether it will expand forever, or re-collapse with a “Big Crunch,” then start up again with another “Big Bang.” All images in this labs are taken from http://oposite.stsci.edu/pubinfo/jpeg/HDFWF3.jpg Hubble Deep Field Lab 14 1 Part I – The Size of the HDF First we need to know some details about the picture itself — where it was taken and how big it is. The image of the HDF has an L-shape. This is because it is a picture taken simultaneously with four cameras — three “Wide Field” (WF) cameras, and one “Planetary” camera (PC). The combined image (the three Wide Field and the one Planetary Camera, WFPC) is 2.4” x 2.4”. This is a very small area, much smaller than the moon. Let’s visualize this, but first we will need to change “degrees into arc- seconds” (there are 60 arc-minutes in one degree, and 60 arc-seconds in one arc-minute). The area of the moon is: 0.5o x 0.5o Determine the area of the moon in arc-minutes: ____________________ Determine the area of the moon in arc-seconds: ____________________ Now compare this to the HDF. The area of the HDF is: 2.4” x 2.4” How much larger is the Moon’s diameter? ____________________ How many HDF’s can you fit into the moons area? ____________________ (Hint: Recall that a circle whose diameter is twice as big has an area that is four times as much; similarly a circle that is 3 times the diameter has an area that is 9 times as big) Let’s imagine the size of that. Take a sharpened pencil, and hold it at arms length. Then look at the tip of the pencil — the size of that tip of the pencil is roughly as big as the HDF. Do you see all the galaxies in the HDF? They are all within this very small area in the sky. Let’s do a though experiment. If there are that many galaxies in that small area, how many galaxies would there be in the total universe? Look at the picture of the Hubble Deep Field and GUESS the number of galaxies in the universe. Your Guess is: ____________________ How well did you guess? Let’s determine that number a little more accurately. First we need to know how many HDF’s we would need to cover the total sky. Then we need to count the galaxies in the HDF and multiply that by the number of HDF’s in the sky. There are 360o in a circle; so the area of the sky in degrees is: ____________________ Convert this to arc-minutes: ____________________ Convert this to arc-seconds: ____________________ How many HDF’s you would need to map out the entire sky? numberof HDF's = That’s a huge number indeed!! Next you will multiply that by the number of galaxies in the HDF. 2 Lab 14 Hubble Deep Field Part II – The Total Number of Galaxies in the Universe Your next mission is to determine the total number of galaxies in the HDF. Well, they are many galaxies, and if you like, go ahead and count them all! But there is an easier way — remember this is supposed to be a “quick” lab, so let’s figure out how you could “guestimate” the total number of galaxies. Use the picture on the last page; it is a 1.0” x 1.0” fraction of the picture of the front page. (If the quality of that photocopy is bad, download the original image from the web at http://oposite.stsci.edu/pubinfo/hrtemp/96-01a.jpg. The image also looks much nicer in color!) Discuss some options with your partner; then DESCRIBE your method below. Check your method with the instructor before you continue, otherwise you will go off in a tangent and spend hours on this lab. In the space below determine the number of galaxies in the universe. Show your calculation. The total number of galaxies in the universe is Wowwww, what a number!!! Hubble Deep Field Lab 14 3 Part III – The Mass and Density of the Universe a) The Mass of the Universe Estimate the average mass of one galaxy (in solar units) — you might like to assume that the Milky Way is an average (or slightly larger than average) galaxy. Write down your estimate. Mass of the Galaxy = Now multiply this with the total number of galaxies in the universe. Mass of all galaxies = Next transform this number to grams (i.e., transform “the mass in solar units” to grams) Mass of entire universe = Now we know how much mass there is in the universe. This number is meaningless unless we can say something about the fate of the universe. For example, is there enough matter in the universe for it to collapse? Let’s rephrase that: Is the gravitational force between all the galaxies large enough for collapse? Well, the gravitational force depends on the mass AND the distance between the masses. b) Size of the Universe We do not know the size of our current universe, but we can estimate it. We know that light travels at 3x108 m/sec (v = d/t). If we assume that the light from the most distant galaxies was emitted roughly ten billion light years ago, we can calculate the distance. How many meters are there in one light year? And in ten billion light years? 1 light year = 10 bill light years = Then calculate the distance in centimeters to the most distant galaxies. Distance = 4 Lab 14 Hubble Deep Field c) The Density of the Universe Look up the formula for a volume of a sphere in terms of its radius. Then calculate the Volume of the entire universe in units of centimeter-cubed. Volume = Finally determine density of the universe in grams per centimeter3. The density is the Mass per Volume. Density = Take your textbook and look up the critical density of the universe, i.e., the density needed for the universe to collapse again. Critical Density = Compare this value with your own density. Is it larger or smaller? Think about the implications of your result. Is your universe going to collapse or expand forever? Explain. Hubble Deep Field Lab 14 5 Part IV — How reliable is your answer? Well, we did some real calculations in this exercise, but we also made several assumptions and included a range of “educated guesses.” So let’s list the assumptions, and make further educated guesses on the “accuracy of our educated guesses.” a) List all (at least 5, if not more) assumptions. b) Comment on the uncertainty of each guestimate you made in this lab. c) Can you say with certainty whether the universe will expand forever or collapse again? Explain. 6 Lab 14 Hubble Deep Field Lab Report Objective of the Lab. Describe in a few sentences what you have done. In particular explain in words how you have determined the density of the universe. Hubble Deep Field Lab 14 7 Critically evaluate your results; in particular discuss the accuracy of your results. Then comment on whether or not this is a good method to determine the fate of the universe. 8 Lab 14 Hubble Deep Field . All images are taken from http://oposite.stsci.edu/ Hubble Deep Field Lab 14 9 10 Lab 14 Hubble Deep Field .
Recommended publications
  • HST Data Handbook for NICMOS
    Version 7.0 April, 2007 HST Data Handbook for NICMOS Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the Web site: • URL: http://www.stsci.edu. Revision History Version Date Editors 7.0 April 2007 Helene McLaughlin & Tommy Wiklind 6.0 July 2004 Bahram Mobasher & Erin Roye, Editors, NICMOS Data Handbook, Diane Karakla, Chief Editor and Susan Rose, Technical Editor, HST Data Handbook 5.0 January 2002 Mark Dickinson 4.0 December 1999 Mark Dickinson 3.0 October 1997 Daniela Calzetti Contributors STScI NICMOS Group (past & present members), including: Santiago Arribas, Eddie Bergeron, Torsten Boeker, Howard Bushouse, Daniela Calzetti, Luis Colina, Mark Dickinson, Sherie Holfeltz, Lisa Mazzuca, Bahram Mobasher, Keith Noll, Antonella Nota, Erin Roye, Chris Skinner, Al Schultz, Anand Sivaramakrishnan, Megan Sosey, Alex Storrs, Anatoly Suchkov, Chun Xu. ST-ECF: Wolfram Freudling. Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Preface .....................................................................................xi Part I: Introduction to Reducing the HST Data Chapter 1: Getting HST Data............................. 1-1 1.1 Archive Overview ....................................................... 1-2 1.1.1 Archive Registration................................................. 1-3 1.1.2 Archive Documentation and Help ............................ 1-4 1.2 Getting Data with StarView.....................................
    [Show full text]
  • MAST: Archive News November 1998
    MAST STScI Tools Mission Search Search Website Follow Us Register Forum About MAST Getting Started FAQ High-Level Science Products The Multimission Archive at STScI Software Newsletter FITS November 18, 1998 Space Telescope Science Institute Volume 5 Related Sites NASA Datacenters The Multimission Archive at STScI (MAST) Newsletter disseminates information to users of the HST, IUE, Copernicus, EUVE, HUT, UIT, WUPPE and VLA-FIRST data archives MAST Services supported by the MAST. Inquiries should be sent to [email protected]. MAST and the VO Newsletters & Reports Index of Contents: Marc Postman Hubble Deep Field South Data Available Nov. 23 Data Use Policy Harry Ferguson Paolo Padovani New Cross-Correlation Catalogs Dataset Identifiers Tim Kimball Karen Levay Acknowledgments MAST Support of the ASTRO Missions (HUT,UIT,WUPPE) Catherine Imhoff Digitized Sky Survey New Jukebox Tim Kimball Guest Account Terminated Tim Kimball New MAST page Karen Levay IUEDAC modifications for Y2000 Randy Thompson Tips for Using the HST Archive Herb Kennedy Hubble Deep Field South Data Available November 23 A second Hubble Deep Field campaign was carried out with HST in October 1998. The observations are similar to those obtained during the original HDF but with several important differences: 1. The field is located in the southern Continuous Viewing Zone (J2000 coordinates 22:32:56.2 -60:33:02.7) 2. A moderate redshift quasar of z(em) = 2.24, identified by Boyle, Hewett, Weymann and colleagues, was placed in the STIS field for both imaging and spectroscopy so that correlations between quasar absorption redshifts and the redshifts of galaxies in the fields could be determined.
    [Show full text]
  • NICMOS Data Handbook
    Version 5.0 January, 2002 NICMOS Data Handbook Hubble Division 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the Web site: • URL: http://hst.stsci.edu/nicmos. NICMOS Revision History Version Date Editors 3.0 October 1997 Daniela Calzetti 4.0 December 1999 Mark Dickinson 5.0 January 2002 Mark Dickinson, NICMOS Editor Bahram Mobasher, Chief Editor Contributors STScI NICMOS Group (past & present members), including: Santiago Arribas, Eddie Bergeron, Torsten Boeker, Howard Bushouse, Daniela Calzetti, Luis Colina, Mark Dickinson, Sherie Holfeltz, Lisa Mazzuca, Bahram Mobasher, Keith Noll, Antonella Nota, Erin Roye, Chris Skinner, Al Schultz, Anand Sivaramakrishnan, Megan Sosey, Alex Storrs, Anatoly Suchkov, Chun Xu ST-ECF: Wolfram Freudling. Citation In publications, refer to this document as: Dickinson, M. E. et al. 2002, in HST NICMOS Data Handbook v. 5.0, ed. B. Mobasher, Baltimore, STScI Send comments or corrections to: Hubble Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Preface .................................................................................... vii Chapter 1: Instrument Overview .................. 1-1 1.1 Instrument Overview ................................................. 1-1 1.2 Detector Readout Modes ......................................... 1-4 1.2.1 MULTIACCUM......................................................... 1-5 1.2.2 ACCUM.................................................................... 1-5 1.2.3 BRIGHTOBJ ............................................................ 1-6 1.2.4 RAMP .....................................................................
    [Show full text]
  • Near-UV Sources in the Hubble Ultra Deep Field: the Catalog
    Near-UV Sources in the Hubble Ultra Deep Field: The Catalog Elysse N. Voyer1,2, Duilia F. de Mello1,3 Catholic University of America Washington, DC 20064 Brian Siana California Institute of Technology, MS 105-24, Pasadena, CA 91125 Jonathan P. Gardner Observational Cosmology Laboratory, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 Cori Quirk Catholic University of America Washington, DC 20064 and Harry I. Teplitz Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 Received ; accepted 1Observational Cosmology Laboratory, Goddard Space Flight Center, Code 665, Green- belt, MD 20771 2NASA Graduate Student Research Program Fellow 3Visiting Scientist in the Department of Physics and Astronomy, Johns Hopkins Univer- sity, Baltimore, MD 21218 – 2 – ABSTRACT The catalog from the first high resolution U-band image of the Hubble Ul- tra Deep Field, taken with Hubble’s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 A)˚ data with Hubble’s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented. Subject headings: galaxies:evolution-galaxies:formation-galaxies:starburst – 3 – 1. Introduction The Hubble Ultra Deep Field (UDF) campaign (Beckwith et al.
    [Show full text]
  • Galaxy Classification and Evolution
    name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally must satisfy two criteria to be successful: It should act as a shorthand means of identification of the object, and it should provide some insight to understanding the object. We most generally used classification scheme of galaxies is one proposed by Edwin Hubble in 1926. His classification is based entirely on the visual appearance of a galaxy on a photographic plate. Hubble's system lists three basic categories: elliptical galaxies, spiral galaxies, and irregular galaxies. The spirals are divided into two groups, normal and barred. The elliptical galaxies, and both normal and barred spiral galaxies, are subdivided further, as illustrated in the figure, and discussed below. This figure is called the “Hubble Tuning Fork”. The Hubble tuning fork is a classification based on the visual appearance of the galaxies. Originally, when Hubble proposed this classification, he had hoped that it might yield deep insights, just as in the case for classifying stars a century ago. This classification scheme was thought to represent en evolutionary scheme, where galaxies start off as elliptical galaxies, then rotate, flatten and spread out as they age. Unfortunately galaxies turned out to be more complex than stars, and while this classification scheme is still used today, it does not provide us with deeper insights into the nature of galaxies. Image obtained from Wikipedia at http://en.wikipedia.org/wiki/Galaxy_morphological_classification Galaxy Classification & Evolution Laboratory Lab 12 1 Part I — Classification The photocopies of the galaxies are not good enough to be classified You will need to access the images on the computer and look at some of the fine detail.
    [Show full text]
  • A Guide to Hubble Space Telescope Objects
    James L. Chen A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance Graphics by Adam Chen The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance James L. Chen Graphics by Adam Chen Author Graphics Designer James L. Chen Adam Chen Gore , VA , USA Baltimore , MD , USA ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-18871-3 ISBN 978-3-319-18872-0 (eBook) DOI 10.1007/978-3-319-18872-0 Library of Congress Control Number: 2015940538 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Rino Giordano
    Chandra News Issue 26, Summer 2019 20 Years of Chandra The X-Rays Also Rise Raffaella Margutti, Wen-fai Fong, Daryl Haggard Article on Page 1 Celebrating 20 Years of Chandra The year 2019 marks 20 years of superb performance by the Chandra X-ray Observatory. The CXC is planning a number of events and products for the science community and the general public. We give you an overview of plans on page 12. Complete up-to-date calendar of events http://cxc.cfa.harvard.edu/cdo/chandra20/ 20 Years of Chandra Science Symposium, Dec. 3–6 http://cxc.harvard.edu/symposium_2019/ Table of Contents The X-rays Also Rise: Chandra Observations of GW170817 Mark the Dawn of X-ray Studies of Gravitational Wave Sources � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 Director’s Log, Chandra Date: 670723206 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8 Project Scientist’s Report� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 Project Manager’s Report � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 11 Twenty Years of Chandra Celebrations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 12 Remembering Riccardo Giacconi: The Father of X-ray Astronomy � � � � � � � � � � � � � � � � � 12 ACIS Update � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 17 HRC Update � � � � � � � � � � � � � � � � � � � � � � � � � �
    [Show full text]
  • Not Yet Imagined: a Study of Hubble Space Telescope Operations
    NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.
    [Show full text]
  • South Deep Field 22H 32M 56S, Credit: CJ Sven -90° -60° 33′ 02″ See Slide 11
    North Deep Field 12h 36m 49s , +62°12′58″ +90° Center of the Universe Located by X TriangulationEarth of NASAGreen Sphere – 0° source of CMB radiation 12 Data hr 0hr Cold spot 03h 15m 05s, -19° 35′ 02″ by Charles Sven 9/25/10 South Deep Field 22h 32m 56s, Credit: CJ Sven -90° -60° 33′ 02″ See Slide 11 NASA Data Used: Both Deep Fields, the Cold Spot, and the CMB NASA’s Deep Field Studies 1/15/96: “The [north deep field from the] Hubble telescope has provided mankind's deepest, most detailed visible view of the universe.” The second Hubble Deep Field South data was released on 11/ 23/98. The physics of light - restricts the parameters of one’s view. Recognizing such restrictions limits one’s inference. Prior to the Deep Field South Results, one had less restrictions then now. With both results in hand, the position of the viewer is limited to the line of sight. Preliminary depiction of the North and South Deep Fields - on next slide Galaxies in Gly = billion NASA’s Hubble Ultra deep North field light years field north HUDF09 & HUDF09 south HDF-S studies 13 Gly Very slow moving Earth 600 k/s Distance from HUDF09 HUDF09 to HDF-S is or 0.2% speed of light 12/8/09 approximately 25+ Gly This area within this CMB circle is Center of our Universe - EBB a representation of our visible The only possible explanation for our universe filled with unique view of Hubble’s deep fields galaxies and galaxy filled space requires that this is seen from a very slow moving earth located right next to the 12 Gly HDF-S 11/23/98 epicenter [EBB] of the Big Bang Explosion IN SPACE that was Green circle powered by Dark Energy.
    [Show full text]
  • 1 Radio Observations of the Hubble Deep Field South
    RADIO OBSERVATIONS OF THE HUBBLE DEEP FIELD SOUTH - A NEW CLASS OF RADIO-LUMINOUS GALAXIES? R. P. NORRIS, A. HOPKINS, R. J. SAULT, R. D. EKERS, J. EKERS, F. BADIA, J. HIGDON, M. H. WIERINGA, CSIRO Australia Telescope National Facility P. O. Box 76, Epping, NSW 1710, Australia E-mail: [email protected] B. J. BOYLE Anglo-Australian Observatory P.O. Box 296, Epping, NSW 1710, Australia R. E. WILLIAMS Space Telescope Science Institute 3700, San Martin Drive, Johns Hopkins University Homewood Campus, Baltimore, MD 21218 USA We present the first results from a series of radio observations of the Hubble Deep Field South and its flanking fields. Here we consider only those sources greater than 100 µJy at 20 cm, in an 8- arcmin square field that covers the WFPC field, the STIS and NICMOS field, and most of the HST flanking fields and complementary ground-based observations. We have detected 13 such radio sources, two of which are in the WFPC2 field itself. One of the sources in the WFPC field (source c) corresponds to a very faint galaxy, and several others outside the WFPC field can not be identified with sources in the other optical/IR. The radio and optical luminosities of these galaxies are inconsistent with either conventional starburst galaxies or with radio-loud galaxies. Instead, it appears that it belongs to a population of galaxies which are rare in the local Universe, possibly consisting of a radio-luminous active nucleus embedded in a very dusty starburst galaxy, and which are characterised by a very high radio/optical luminosity ratio.
    [Show full text]
  • The ESA–NASA Agreements on HST and NGST
    November 1998 Number 25 Page 1 Number 25 November 1998 Space Telescope European Coordinating Facility ST-ECF Newsletter Page 2 ST–ECF Newsletter Editorial rom the first issue in March 1985, the Editorial policy for ideally suited to this function and capable of transmitting Fthe ST-ECF Newsletter has been directed towards keeping information in formats not available on paper. Should the the community informed about the status of the HST project Web be our sole medium for informing our community? In and, in particular, about technical developments which spite of its convenience and flexibility, we think not. support the scientific use of the Observatory. Scientific results There is a clear need to inform about the HST in general were only reported when they illustrated the application of a and its evolution towards the Next Generation Space newly-developed technique or capability. The aim was to Telescope — a project which has gathered such enormous produce a publication which could be found open on the desk momentum during the last three of years. In particular, the of somebody writing an HST observing proposal or reducing European involvement in these Observatories has been under data. active negotiation, the results of which need to be We believe that this policy was correct and that the disseminated. Such topics are suited to a paper Newsletter Newsletter fulfilled this function. As an example, one could and that is one of our justifications for not succumbing point to the series of articles on image restoration — first entirely to the attractions of the WWW. triggered by the spherical aberration problem but later This new version of the ST-ECF Newsletter will appear developed into a broadly applicable suite of algorithms with twice a year, around May and November, and will be more application throughout astronomy and beyond.
    [Show full text]
  • The Hubble Deep Fields the Hubble Deep Fields
    The Hubble Deep Fields The Hubble Deep Fields The Hubble Space Telescope stared for two weeks into deep space - the objects seen are far, far away - and we see them as they were a long time ago Today we'll talk about - Edwin P. Hubble - the slow speed of light! - the Big Bang, the expansion of the Universe - the Hubble Space Telescope, the Hubble Deep Fields - the lives of galaxies Edwin P. Hubble (1889-1953) - was good at sports & studied law, and later astronomy - used the 100” Mt. Wilson telescope, the largest then available - showed existence of stars in other galaxies - in 1924 he measured the distance to Andromeda nebula (galaxy) - showed in 1929 that the universe is expanding! - Has a constant named after him, the Hubble Constant The speed of light First measured by Römer in 1676, Paris, France - Used Io – a moon of Jupiter - as a clock - eclipses were late when Earth was far from Jupiter - light takes 22 min. to cross Earth's orbit diameter! Now we have more accurate measurements: V=186,000 miles/sec - light takes 16 min. to cross Earth's orbit diameter (Newton) Time for light to travel from Sun to Earth: 8 minutes, Pluto: 5 ½ hours Proxima Centauri (nearest star): 4 years, 3 months center of our Galaxy: 33,000 years, Andromeda galaxy 2 million yr Farthest galaxy seen in Hubble Deep Fields: 10,000,000,000 years For us, light seems very fast. [Thunder vs. lightning] But it is slow in the universe. We look further back in time when we look farther away! The Big Bang Edwin Hubble measured how fast other galaxies moved.
    [Show full text]