The Method of Partial Fractions to Integrate Rational Functions Math 121 Calculus II D Joyce, Spring 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Partial Fractions Decompositions (Includes the Coverup Method)
Partial Fractions and the Coverup Method 18.031 Haynes Miller and Jeremy Orloff *Much of this note is freely borrowed from an MIT 18.01 note written by Arthur Mattuck. 1 Heaviside Cover-up Method 1.1 Introduction The cover-up method was introduced by Oliver Heaviside as a fast way to do a decomposition into partial fractions. This is an essential step in using the Laplace transform to solve differential equations, and this was more or less Heaviside's original motivation. The cover-up method can be used to make a partial fractions decomposition of a proper p(s) rational function whenever the denominator can be factored into distinct linear factors. q(s) Note: We put this section first, because the coverup method is so useful and many people have not seen it. Some of the later examples rely on the full algebraic method of undeter- mined coefficients presented in the next section. If you have never seen partial fractions you should read that section first. 1.2 Linear Factors We first show how the method works on a simple example, and then show why it works. s − 7 Example 1. Decompose into partial fractions. (s − 1)(s + 2) answer: We know the answer will have the form s − 7 A B = + : (1) (s − 1)(s + 2) s − 1 s + 2 To determine A by the cover-up method, on the left-hand side we mentally remove (or cover up with a finger) the factor s − 1 associated with A, and substitute s = 1 into what's left; this gives A: s − 7 1 − 7 = = −2 = A: (2) (s + 2) s=1 1 + 2 Similarly, B is found by covering up the factor s + 2 on the left, and substituting s = −2 into what's left. -
Z-Transform Part 2 February 23, 2017 1 / 38 the Z-Transform and Its Application to the Analysis of LTI Systems
ELC 4351: Digital Signal Processing Liang Dong Electrical and Computer Engineering Baylor University liang [email protected] February 23, 2017 Liang Dong (Baylor University) z-Transform Part 2 February 23, 2017 1 / 38 The z-Transform and Its Application to the Analysis of LTI Systems 1 Rational z-Transform 2 Inversion of the z-Transform 3 Analysis of LTI Systems in the z-Domain 4 Causality and Stability Liang Dong (Baylor University) z-Transform Part 2 February 23, 2017 2 / 38 Rational z-Transforms X (z) is a rational function, that is, a ratio of two polynomials in z−1 (or z). B(z) X (z) = A(z) −1 −M b0 + b1z + ··· + bM z = −1 −N a0 + a1z + ··· aN z PM b z−k = k=0 k PN −k k=0 ak z Liang Dong (Baylor University) z-Transform Part 2 February 23, 2017 3 / 38 Rational z-Transforms X (z) is a rational function, that is, a ratio of two polynomials B(z) and A(z). The polynomials can be expressed in factored forms. B(z) X (z) = A(z) b (z − z )(z − z ) ··· (z − z ) = 0 z−M+N 1 2 M a0 (z − p1)(z − p2) ··· (z − pN ) b QM (z − z ) = 0 zN−M k=1 k a QN 0 k=1(z − pk ) Liang Dong (Baylor University) z-Transform Part 2 February 23, 2017 4 / 38 Poles and Zeros The zeros of a z-transform X (z) are the values of z for which X (z) = 0. The poles of a z-transform X (z) are the values of z for which X (z) = 1. -
Solving Cubic Polynomials
Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac. -
Elements of Chapter 9: Nonlinear Systems Examples
Elements of Chapter 9: Nonlinear Systems To solve x0 = Ax, we use the ansatz that x(t) = eλtv. We found that λ is an eigenvalue of A, and v an associated eigenvector. We can also summarize the geometric behavior of the solutions by looking at a plot- However, there is an easier way to classify the stability of the origin (as an equilibrium), To find the eigenvalues, we compute the characteristic equation: p Tr(A) ± ∆ λ2 − Tr(A)λ + det(A) = 0 λ = 2 which depends on the discriminant ∆: • ∆ > 0: Real λ1; λ2. • ∆ < 0: Complex λ = a + ib • ∆ = 0: One eigenvalue. The type of solution depends on ∆, and in particular, where ∆ = 0: ∆ = 0 ) 0 = (Tr(A))2 − 4det(A) This is a parabola in the (Tr(A); det(A)) coordinate system, inside the parabola is where ∆ < 0 (complex roots), and outside the parabola is where ∆ > 0. We can then locate the position of our particular trace and determinant using the Poincar´eDiagram and it will tell us what the stability will be. Examples Given the system where x0 = Ax for each matrix A below, classify the origin using the Poincar´eDiagram: 1 −4 1. 4 −7 SOLUTION: Compute the trace, determinant and discriminant: Tr(A) = −6 Det(A) = −7 + 16 = 9 ∆ = 36 − 4 · 9 = 0 Therefore, we have a \degenerate sink" at the origin. 1 2 2. −5 −1 SOLUTION: Compute the trace, determinant and discriminant: Tr(A) = 0 Det(A) = −1 + 10 = 9 ∆ = 02 − 4 · 9 = −36 The origin is a center. 1 3. Given the system x0 = Ax where the matrix A depends on α, describe how the equilibrium solution changes depending on α (use the Poincar´e Diagram): 2 −5 (a) α −2 SOLUTION: The trace is 0, so that puts us on the \det(A)" axis. -
Introduction to Finite Fields, I
Spring 2010 Chris Christensen MAT/CSC 483 Introduction to finite fields, I Fields and rings To understand IDEA, AES, and some other modern cryptosystems, it is necessary to understand a bit about finite fields. A field is an algebraic object. The elements of a field can be added and subtracted and multiplied and divided (except by 0). Often in undergraduate mathematics courses (e.g., calculus and linear algebra) the numbers that are used come from a field. The rational a numbers = :ab , are integers and b≠ 0 form a field; rational numbers (i.e., fractions) b can be added (and subtracted) and multiplied (and divided). The real numbers form a field. The complex numbers also form a field. Number theory studies the integers . The integers do not form a field. Integers can be added and subtracted and multiplied, but integers cannot always be divided. Sure, 6 5 divided by 3 is 2; but 5 divided by 2 is not an integer; is a rational number. The 2 integers form a ring, but the rational numbers form a field. Similarly the polynomials with integer coefficients form a ring. We can add and subtract polynomials with integer coefficients, and the result will be a polynomial with integer coefficients. We can multiply polynomials with integer coefficients, and the result will be a polynomial with integer coefficients. But, we cannot always divide polynomials X 2 − 4 XX3 +−2 with integer coefficients: =X + 2 , but is not a polynomial – it is a X − 2 X 2 + 7 rational function. The polynomials with integer coefficients do not form a field, they form a ring. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Arxiv:1712.01752V2 [Cs.SC] 25 Oct 2018 Figure 1
Symbolic-Numeric Integration of Rational Functions Robert M Corless1, Robert HC Moir1, Marc Moreno Maza1, Ning Xie2 1Ontario Research Center for Computer Algebra, University of Western Ontario, Canada 2Huawei Technologies Corporation, Markham, ON Abstract. We consider the problem of symbolic-numeric integration of symbolic functions, focusing on rational functions. Using a hybrid method allows the stable yet efficient computation of symbolic antideriva- tives while avoiding issues of ill-conditioning to which numerical methods are susceptible. We propose two alternative methods for exact input that compute the rational part of the integral using Hermite reduction and then compute the transcendental part two different ways using a combi- nation of exact integration and efficient numerical computation of roots. The symbolic computation is done within bpas, or Basic Polynomial Al- gebra Subprograms, which is a highly optimized environment for poly- nomial computation on parallel architectures, while the numerical com- putation is done using the highly optimized multiprecision rootfinding package MPSolve. We show that both methods are forward and back- ward stable in a structured sense and away from singularities tolerance proportionality is achieved by adjusting the precision of the rootfinding tasks. 1 Introduction Hybrid symbolic-numeric integration of rational functions is interesting for sev- eral reasons. First, a formula, not a number or a computer program or subroutine, may be desired, perhaps for further analysis such as by taking asymptotics. In this case one typically wants an exact symbolic answer, and for rational func- tions this is in principle always possible. However, an exact symbolic answer may be too cluttered with algebraic numbers or lengthy rational numbers to be intelligible or easily analyzed by further symbolic manipulation. -
Polynomials and Quadratics
Higher hsn .uk.net Mathematics UNIT 2 OUTCOME 1 Polynomials and Quadratics Contents Polynomials and Quadratics 64 1 Quadratics 64 2 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining the Equation of a Parabola 72 6 Solving Quadratic Inequalities 74 7 Intersections of Lines and Parabolas 76 8 Polynomials 77 9 Synthetic Division 78 10 Finding Unknown Coefficients 82 11 Finding Intersections of Curves 84 12 Determining the Equation of a Curve 86 13 Approximating Roots 88 HSN22100 This document was produced specially for the HSN.uk.net website, and we require that any copies or derivative works attribute the work to Higher Still Notes. For more details about the copyright on these notes, please see http://creativecommons.org/licenses/by-nc-sa/2.5/scotland/ Higher Mathematics Unit 2 – Polynomials and Quadratics OUTCOME 1 Polynomials and Quadratics 1 Quadratics A quadratic has the form ax2 + bx + c where a, b, and c are any real numbers, provided a ≠ 0 . You should already be familiar with the following. The graph of a quadratic is called a parabola . There are two possible shapes: concave up (if a > 0 ) concave down (if a < 0 ) This has a minimum This has a maximum turning point turning point To find the roots (i.e. solutions) of the quadratic equation ax2 + bx + c = 0, we can use: factorisation; completing the square (see Section 3); −b ± b2 − 4 ac the quadratic formula: x = (this is not given in the exam). 2a EXAMPLES 1. Find the roots of x2 −2 x − 3 = 0 . -
Quadratic Polynomials
Quadratic Polynomials If a>0thenthegraphofax2 is obtained by starting with the graph of x2, and then stretching or shrinking vertically by a. If a<0thenthegraphofax2 is obtained by starting with the graph of x2, then flipping it over the x-axis, and then stretching or shrinking vertically by the positive number a. When a>0wesaythatthegraphof− ax2 “opens up”. When a<0wesay that the graph of ax2 “opens down”. I Cit i-a x-ax~S ~12 *************‘s-aXiS —10.? 148 2 If a, c, d and a = 0, then the graph of a(x + c) 2 + d is obtained by If a, c, d R and a = 0, then the graph of a(x + c)2 + d is obtained by 2 R 6 2 shiftingIf a, c, the d ⇥ graphR and ofaax=⇤ 2 0,horizontally then the graph by c, and of a vertically(x + c) + byd dis. obtained (Remember by shiftingshifting the the⇥ graph graph of of axax⇤ 2 horizontallyhorizontally by by cc,, and and vertically vertically by by dd.. (Remember (Remember thatthatd>d>0meansmovingup,0meansmovingup,d<d<0meansmovingdown,0meansmovingdown,c>c>0meansmoving0meansmoving thatleft,andd>c<0meansmovingup,0meansmovingd<right0meansmovingdown,.) c>0meansmoving leftleft,and,andc<c<0meansmoving0meansmovingrightright.).) 2 If a =0,thegraphofafunctionf(x)=a(x + c) 2+ d is called a parabola. If a =0,thegraphofafunctionf(x)=a(x + c)2 + d is called a parabola. 6 2 TheIf a point=0,thegraphofafunction⇤ ( c, d) 2 is called thefvertex(x)=aof(x the+ c parabola.) + d is called a parabola. The point⇤ ( c, d) R2 is called the vertex of the parabola. -
The Determinant and the Discriminant
CHAPTER 2 The determinant and the discriminant In this chapter we discuss two indefinite quadratic forms: the determi- nant quadratic form det(a, b, c, d)=ad bc, − and the discriminant disc(a, b, c)=b2 4ac. − We will be interested in the integral representations of a given integer n by either of these, that is the set of solutions of the equations 4 ad bc = n, (a, b, c, d) Z − 2 and 2 3 b ac = n, (a, b, c) Z . − 2 For q either of these forms, we denote by Rq(n) the set of all such represen- tations. Consider the three basic questions of the previous chapter: (1) When is Rq(n) non-empty ? (2) If non-empty, how large Rq(n)is? (3) How is the set Rq(n) distributed as n varies ? In a suitable sense, a good portion of the answers to these question will be similar to the four and three square quadratic forms; but there will be major di↵erences coming from the fact that – det and disc are indefinite quadratic forms (have signature (2, 2) and (2, 1) over the reals), – det and disc admit isotropic vectors: there exist x Q4 (resp. Q3) such that det(x)=0(resp.disc(x) = 0). 2 1. Existence and number of representations by the determinant As the name suggest, determining Rdet(n) is equivalent to determining the integral 2 2 matrices of determinant n: ⇥ (n) ab Rdet(n) M (Z)= g = M2(Z), det(g)=n . ' 2 { cd 2 } ✓ ◆ n 0 Observe that the diagonal matrix a = has determinant n, and any 01 ✓ ◆ other matrix in the orbit SL2(Z).a is integral and has the same determinant. -
Lecture 8 - the Extended Complex Plane Cˆ, Rational Functions, M¨Obius Transformations
Math 207 - Spring '17 - Fran¸coisMonard 1 Lecture 8 - The extended complex plane C^, rational functions, M¨obius transformations Material: [G]. [SS, Ch.3 Sec. 3] 1 The purpose of this lecture is to \compactify" C by adjoining to it a point at infinity , and to extend to concept of analyticity there. Let us first define: a neighborhood of infinity U is the complement of a closed, bounded set. A \basis of neighborhoods" is given by complements of closed disks of the form Uz0,ρ = C − Dρ(z0) = fjz − z0j > ρg; z0 2 C; ρ > 0: Definition 1. For U a nbhd of 1, the function f : U ! C has a limit at infinity iff there exists L 2 C such that for every " > 0, there exists R > 0 such that for any jzj > R, we have jf(z)−Lj < ". 1 We write limz!1 f(z) = L. Equivalently, limz!1 f(z) = L if and only if limz!0 f z = L. With this concept, the algebraic limit rules hold in the same way that they hold at finite points when limits are finite. 1 Example 1. • limz!1 z = 0. z2+1 1 • limz!1 (z−1)(3z+7) = 3 . z 1 • limz!1 e does not exist (this is because e z has an essential singularity at z = 0). A way 1 0 1 to prove this is that both sequences zn = 2nπi and zn = 2πi(n+1=2) converge to zero, while the 1 1 0 sequences e zn and e zn converge to different limits, 1 and 0 respectively. -
Chapter 2 Complex Analysis
Chapter 2 Complex Analysis In this part of the course we will study some basic complex analysis. This is an extremely useful and beautiful part of mathematics and forms the basis of many techniques employed in many branches of mathematics and physics. We will extend the notions of derivatives and integrals, familiar from calculus, to the case of complex functions of a complex variable. In so doing we will come across analytic functions, which form the centerpiece of this part of the course. In fact, to a large extent complex analysis is the study of analytic functions. After a brief review of complex numbers as points in the complex plane, we will ¯rst discuss analyticity and give plenty of examples of analytic functions. We will then discuss complex integration, culminating with the generalised Cauchy Integral Formula, and some of its applications. We then go on to discuss the power series representations of analytic functions and the residue calculus, which will allow us to compute many real integrals and in¯nite sums very easily via complex integration. 2.1 Analytic functions In this section we will study complex functions of a complex variable. We will see that di®erentiability of such a function is a non-trivial property, giving rise to the concept of an analytic function. We will then study many examples of analytic functions. In fact, the construction of analytic functions will form a basic leitmotif for this part of the course. 2.1.1 The complex plane We already discussed complex numbers briefly in Section 1.3.5.