Non-Commutative Rational Functions in the Full Fock Space
Non-commutative rational functions in the full Fock space Michael T. Jury∗1, Robert T.W. Martin†2, and Eli Shamovich3 1University of Florida 2University of Manitoba 3 Ben-Gurion University of the Negev Abstract A rational function belongs to the Hardy space, H2, of square-summable power series if and only if it is bounded in the complex unit disk. Any such rational function is necessarily analytic in a disk of radius greater than one. The inner-outer factorization of a rational function, r H2 is particularly simple: The inner factor of r is a (finite) Blaschke product and (hence) both∈ the inner and outer factors are again rational. We extend these and other basic facts on rational functions in H2 to the full Fock space over Cd, identified as the non-commutative (NC) Hardy space of square-summable power series in several NC variables. In particular, we characterize when an NC rational function belongs to the Fock space, we prove analogues of classical results for inner-outer factorizations of NC rational functions and NC polynomials, and we obtain spectral results for NC rational multipliers. 1 Introduction A rational function, r, in the complex plane, is bounded in the unit disk, D, if and only if it is analytic in a disk rD of radius r > 1. Moreover, a rational function belongs to the Hardy space H2 of square-summable Taylor series in the unit disk, if and only if is uniformly bounded in D, i.e. if and only if it belongs to H∞, the algebra of uniformly bounded analytic functions in the disk.
[Show full text]