Quantum Connect Is Packaged Into Permanent Configurations Supports a Wide Variety of Input, Output, and Windowing Capabilities When Shipped from the Factory

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Connect Is Packaged Into Permanent Configurations Supports a Wide Variety of Input, Output, and Windowing Capabilities When Shipped from the Factory VIDEOWALL PROCESSORS Quantum A Videowall processing for mid-sized videowalls with up to 14 displays Connect A Card frame videowall processing system available with eight slots HDCP-COMPLIANT VIDEOWALL A Supports 3G-SDI, HDMI, DVI, RGB analog, HD component, and PROCESSING SYSTEM standard video input signals A HDMI, DVI, and RGB analog output options support any display types High Performance Multi-Graphic A HDCP-compliant Processing for Videowall Systems input/output options Introduction The Extron Quantum® Connect is a videowall processor that The Quantum Connect is packaged into permanent configurations supports a wide variety of input, output, and windowing capabilities when shipped from the factory. Applications requiring greater in a small form factor. It features high performance video scaling scalability and the flexibility to expand over time should use the technology capable of producing very high quality images. The Quantum Elite processor. Quantum Connect is a card-cage design that can be populated at Quantum Connect is ideal for lobby displays, digital signage, or the factory with various combinations of input and output cards for other small to medium-sized videowalls. 3G-SDI, HDMI, DVI, RGB, HDTV, or video sources. The unit is not field-expandable. Each HDMI or DVI-I dual output card supports up Quantum Elite for Larger Systems to 128 video/graphic source windows. The Quantum Connect maintains optimal full frame rate performance with a high-speed, 10 Gbps RAPT - Real-Time Asymmetric Packetized Transfer video/graphic bus that allows large numbers of inputs to be processed simultaneously, while preserving real-time control response and image performance. Quantum Elite 615 When used with HDCP-compatible displays, the HDMI input and The Quantum Connect is part of the Extron Quantum family of output cards allow the display of HDCP-encrypted content on the videowall processing systems, which includes the Quantum Elite. videowall. A green window with an alert message will be displayed if The Quantum Elite is designed for medium to large videowalls and HDCP-encrypted content is sent to a non-HDCP compliant display. adds the flexibility to accommodate future expansion for additional inputs or larger videowalls. The Quantum Elite also supports A variety of display scenarios can be pre-programmed or created hundreds of additional DVI or RGB sources streamed over an on-the-fly using Quantum Connect Control Software, an intuitive IP network using Extron QGE 100 Quantum Graphics Encoders. control interface for setup and system operation. Many sources It is available in 4U and 6U card frames that can be configured can be shown at small sizes, a few at large sizes, or many other with input and output cards at the factory and in the field. For very combinations. All of this is complemented by high performance large videowall systems, card frames can be cascaded together. image scaling technology, which accurately preserves the original image quality at all window sizes. Quantum Quantum Feature Connect Elite 10 Gbps RAPT video/graphic bus ✓ ✓ High performance video scaling and windowing ✓ ✓ SDI, HD-SDI, and 3G-SDI input support ✓ ✓ HDCP-compliant input/output options ✓ ✓ Bezel compensation for flat-panel displays ✓ ✓ 4U, eight-slot card frame ✓ ✓ 6U, 15-slot card frame ✓ Output overlap for edge-blended applications ✓ Incorporate streamed RGB graphic sources ✓ Upgradeable for future system expansion ✓ Cascade card frames for large videowalls ✓ output card for DVI or analog RGB. Each Independent, on-board Flexible Input/Output Configuration output card supports two displays in the image processing Card frame videowall videowall. Each input or output card provides processing system independent, on-board image The Quantum Connect is a 4U card frame HDCP-compliant system processing for high quality upscaling with eight slots. It is populated with various HDCP-encrypted content can be displayed and downscaling. This parallel image combinations of input and output cards at on HDCP-compatible displays when using processing architecture eliminates use the factory to match specific source and Quantum Connect HDMI input and output of shared control resources such as a videowall configurations. cards. dedicated bus or central processor, and HDCP Visual Confirmation enables rapid control for the user. 3G-SDI Inputs The 3G-SDI input card accepts two serial A green window with an alert message will High quality image upscaling digital video inputs with data rates from be displayed if HDCP-encrypted content is and downscaling standard definition 480i and 576i to HDTV sent to a non-HDCP compliant display. The Quantum Connect includes high 1080p/60 Hz. It complies with SMPTE Up to 128 video/graphic performance image scaling technology 259M, 292M, and 424M digital video windows per dual output card offering both high quality upscaling standards, accommodating SDI, HD-SDI, The Quantum Connect offers extensive and downscaling of video and high and 3G-SDI signals. windowing capabilities, with the ability to resolution RGB or HD video signals. display up to 128 windows of video and Flexibility to support Supports digital and analog graphics for each pair of displays in the a variety of input and input signals up to 1920x1200 output configurations videowall. A wide range of standard definition, The Quantum Connect can be configured computer-video, and HD video High Performance & Image Quality at the factory with various combinations sources can be accommodated of inputs and outputs within the available by the Quantum Connect, up to High speed, dedicated 1920x1200 and HDTV 1080p/60 Hz. card slots. Input cards include a 12-input video/graphic bus enables card for composite or S-video sources, real-time performance Designed for Continuous a two-input card for RGB graphics or The Quantum Connect features a 10 Gbps Operation HD component video, a two-input card Real-Time Asymmetric Packetized Transfer The Quantum Connect delivers for DVI-D sources, an HDCP-compliant - RAPT video/graphic bus that allows for continuous, 24/7 operation for applications two-input card for HDMI or DVI-D sources, simultaneous processing of numerous, high requiring high reliability. In the unlikely and a two-input card for SDI, HD-SDI, or resolution input signals while maintaining event of an operating system failure, 3G-SDI sources. real-time operational performance as well the system will continue to display live Output cards include an HDCP-compliant as optimal image quality at full frame rates. content from connected video sources. HDMI/DVI two-output card and a DVI-I two- The system returns to its previous operational state when rebooted. System Frame The Quantum Connect features a space-efficient 4U card frame that houses all image processing and high density input / output connectivity for supporting videowall systems ranging from two to 14 displays. Inputs and outputs are configured at the factory to meet the needs of the customer. Features • Rack-mountable 4U, eight-slot card frame • Maintains presentation of connected video sources in the unlikely • Unmatched input bandwidth capability event of an operating system failure • Dedicated 10 Gbps Real-Time Asymmetric Packetized Transfer • Optimal cooling and thermal management system - no additional - RAPT video/graphic bus provides optimized real-time image rack space required for ventilation performance 1 Based on I/O card configuration with one slot occupied by the output card. • Accommodates input and output cards in any combination 2 Based on I/O card configuration with one slot occupied by an input card. • High density I/O connectivity • Maximum input capacity1: - 3G-SDI, HDMI, DVI-D, or analog RGB or HD - up to 14 sources - Composite or S-video - up to 84 sources • Maximum output capacity2: - HDMI or DVI-I - up to 14 outputs • Integrates with external control systems from a PC with Quantum Control Software • Fast boot time, less than 90 seconds Quatum Connect 408 Quantum Connect Options INPUT OPTIONS SDI, HD-SDI, and 3G-SDI Inputs HDMI Inputs • Accepts two SDI, HD-SDI, or 3G-SDI • Accepts two HDMI or DVI-D signals signals on two HD-BNC connectors - • Compatible with resolutions up to standard BNC adapters included 1920x1200 and HDTV 1080p/60 Hz • Compatible with SDI, HD-SDI, and 3G-SDI • HDCP-compliant when used with Quantum signals from 480i and 576i to HDTV Connect HDMI Output Option and HDCP- 1080p/60 Hz compliant displays • Auto input source detection • Auto input source detection simplifies • Motion adaptive deinterlacing delivers system programming to streamline optimized image quality through advanced integration of new sources motion compensation • Native 4:4:4 color quantization • Film Mode Cadence Detection Processing • High performance scaling technology ensures optimum image quality is retained optimizes real-time image processing for sources originating from film capacity for the dedicated video/graphic • Automatic input cable equalization bus RGB / HD Component DVI Inputs Video Inputs • Accepts two DVI-D input signals • Accepts two RGBHV, RGsB, and YPbPr • Compatible with resolutions up to input signals 1920x1200 and HDTV 1080p/60 Hz • Compatible with resolutions up to • Auto input source detection simplifies 1920x1200 and HDTV 1080p/60 Hz, and system programming to streamline supports custom resolutions integration of new sources • Auto input source detection • Native 4:4:4 color quantization • Native 4:4:4 RGB and 4:2:2 HD color • High performance scaling technology quantization optimizes real-time
Recommended publications
  • A Novel Edge-Preserving Mesh-Based Method for Image Scaling
    A Novel Edge-Preserving Mesh-Based Method for Image Scaling Seyedali Mostafavian and Michael D. Adams Dept. of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada alimst@uvic.ca and mdadams@ece.uvic.ca Abstract—In this paper, we present a novel image scaling no loss of image quality. One main problem in vector-based method that employs a mesh model that explicitly represents interpolation methods, however, is how to create a vector discontinuities in the image. Our method effectively addresses model which faithfully represents the raster image data and its the problem of preserving the sharpness of edges, which has always been a challenge, during image enlargement. We use important features such as edges. Among the many techniques a constrained Delaunay triangulation to generate the model to generate a vector image from a raster image, triangle and an approximating function that is continuous everywhere mesh models have become quite popular. With a triangle-mesh except across the image edges (i.e., discontinuities). The model model, the image domain is partitioned into a set of non- is then rasterized using a subdivision-based technique. Visual overlapping triangles called a triangulation. Then, the image comparisons and quantitative measures show that our method can greatly reduce the blurring artifacts that can arise during intensity function is approximated over each of the triangles. image enlargement and produce images that look more pleasant A mesh-generation method is required to choose a good subset to human observers, compared to the well-known bilinear and of sample points and to collect any critical data from the input bicubic methods.
    [Show full text]
  • Color Page Effects Chapter 116 Davinci Resolve Control Panels
    PART 9 Color Page Effects Chapter 116 DaVinci Resolve Control Panels The DaVinci Resolve control panels make it easier to make more adjustments in the same amount of time than using a mouse, pen, or trackpad with the on-screen interface. Additionally, using a DaVinci Resolve control panel to control the Color page provides vastly superior ergonomic comfort to clutching a mouse or pen all day, which is important when you’re potentially grading a thousand shots per day. This chapter covers details about the three DaVinci Resolve control panels that are available, and how they work with DaVinci Resolve. Chapter – 116 DaVinci Resolve Control Panels 2258 Contents About The DaVinci Resolve Control Panels 2260 DaVinci Resolve Micro Panel 2261 Trackballs 2261 Control Knobs 2262 Control Buttons 2263 DaVinci Resolve Mini Panel 2265 Palette Selection Buttons 2265 Quick Selection Buttons 2266 DaVinci Resolve Advanced Control Panel 2268 Menus, Soft Keys, and Soft Knob Controls 2268 Trackball Panel 2269 T-bar Panel 2270 Transport Panel 2276 Copying Grades Using the Advanced Control Panel 2280 Copy Forward Keys 2280 Scroll 2280 Rippling Changes Using the Advanced Control Panel 2281 Chapter – 116 DaVinci Resolve Control Panels 2259 About The DaVinci Resolve Control Panels There are three DaVinci Resolve control panel options available and each are designed to meet modern workflow ergonomics and ease of use so colorists can quickly and accurately construct both simple and complex creative grades with minimal fatigue. This chapter provides details of the each of the panel functions and should be read in conjunction with the previous grading chapters to get the best from your panel.
    [Show full text]
  • Apparent Display Resolution Enhancement for Moving Images
    Apparent Display Resolution Enhancement for Moving Images Piotr Didyk1 Elmar Eisemann1;2 Tobias Ritschel1 Karol Myszkowski1 Hans-Peter Seidel1 1 MPI Informatik 2 Telecom ParisTech / CNRS-LTCI / Saarland University Frame 1 Frame 2 Frame 3 Retina Lanczos Frame 1 Frame 2 Frame 3 Retina Lanczos Frame 1 Frame 2 Frame 3 Retina Lanczos Figure 1: Depicting fine details such as hair (left), sparkling car paint (middle) or small text (right) on a typical display is challenging and often fails if the display resolution is insufficient. In this work, we show that smooth and continuous subpixel image motion can be used to increase the perceived resolution. By sequentially displaying varying intermediate images at the display resolution (as depicted in the bottom insets), subpixel details can be resolved at the retina in the region of interest due to fixational eye tracking of this region. Abstract and images are skillfully tone and gamut mapped to adapt them to the display’s capabilities, these limitations persist. In order to Limited spatial resolution of current displays makes the depiction of surmount the physical limitations of display devices, modern algo- very fine spatial details difficult. This work proposes a novel method rithms started to exploit characteristics of the human visual system applied to moving images that takes into account the human visual (HVS) such as apparent image contrast [Purves et al. 1999] based on system and leads to an improved perception of such details. To this the Cornsweet Illusion or apparent brightness [Zavagno and Caputo end, we display images rapidly varying over time along a given tra- 2001] due to glare.
    [Show full text]
  • Rk3026 Brief
    BRIEF RK3026 RK3026 BRIEF Revision 1.1 Public Version August 2013 High Performance and Low-power Processor for Digital Media Application - 1 - BRIEF RK3026 Revision History This document is now Production Data. Date Revision Description 2013-08-28 1.0 Initial Release 2013-10-17 1.1 Update “512MB” to “1GB” High Performance and Low-power Processor for Digital Media Application - 2 - BRIEF RK3026 Content Content................................................................................................................................................................- 3 - chapter 1 Introduction......................................................................................................................- 5 - 1.1 Overview.....................................................................................................................................- 5 - 1.2 Features......................................................................................................................................- 5 - 1.3 Block Diagram..........................................................................................................................- 15 - High Performance and Low-power Processor for Digital Media Application - 3 - BRIEF RK3026 Warranty Disclaimer Rockchip Electronics Co.,Ltd makes no warranty, representation or guarantee (expressed, implied, statutory, or otherwise) by or with respect to anything in this document, and shall not be liable for any implied warranties of non-infringement, merchantability or fitness for a particular
    [Show full text]
  • RK3066 Datasheet Brief
    RK3066 Datasheet brief RK3066 Datasheet brief Rev1.0 RK3066 Datasheet brief Revision 1.0 Feb. 2012 Rockchips Confidential 1 Date Revision Description Revision History RK3066 Datasheet brief Rev1.0 Revision History Date Revision Description 2011-10-30 0.0 Initial Release 2012-02-15 1.0 Add package information Rockchips Confidential 2 TABLE OF CONTENT RK3066 Datasheet brief Rev1.0 TABLE OF CONTENT Revision History....................................................................................2 TABLE OF CONTENT.............................................................................. 3 Chapter 1 Introduction...............................................................4 1.1 Overview.......................................................................4 1.2 Features........................................................................4 1.3 Block Diagram..............................................................15 Chapter 2 Package information..................................................16 2.1 Dimension................................................................... 16 2.2 Ball Map...................................................................... 18 2.3 Pin Number Order.........................................................21 2.4 RK3066 power/ground IO descriptions.............................26 2.5 RK3066 function IO descriptions..................................... 28 Chapter 3 Electrical Specification............................................... 40 3.1 Absolute Maximum Ratings...........................................
    [Show full text]
  • Mesh Models of Images, Their Generation, and Their Application in Image Scaling
    Mesh Models of Images, Their Generation, and Their Application in Image Scaling by Ali Mostafavian B.Sc., Iran University of Science and Technology, 2007 M.Sc., Sharif University of Technology, 2009 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Electrical and Computer Engineering c Ali Mostafavian, 2019 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Mesh Models of Images, Their Generation, and Their Application in Image Scaling by Ali Mostafavian B.Sc., Iran University of Science and Technology, 2007 M.Sc., Sharif University of Technology, 2009 Supervisory Committee Dr. Michael D. Adams, Supervisor (Department of Electrical and Computer Engineering) Dr. Pan Agathoklis, Departmental Member (Department of Electrical and Computer Engineering) Dr. Venkatesh Srinivasan, Outside Member (Department of Computer Science) iii ABSTRACT Triangle-mesh modeling, as one of the approaches for representing images based on nonuniform sampling, has become quite popular and beneficial in many applications. In this thesis, image representation using triangle-mesh models and its application in image scaling are studied. Consequently, two new methods, namely, the SEMMG and MIS methods are proposed, where each solves a different problem. In particular, the SEMMG method is proposed to address the problem of image representation by producing effective mesh models that are used for representing grayscale images, by minimizing squared error. The MIS method is proposed to address the image- scaling problem for grayscale images that are approximately piecewise-smooth, using triangle-mesh models.
    [Show full text]
  • Extensible Implementation of Reliable Pixel Art Interpolation
    F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S Vol. 44 (2019) No. 2 ISSN 0867-6356 DOI: 10.2478/fcds-2019-0011 e-ISSN 2300-3405 Extensible Implementation of Reliable Pixel Art Interpolation Paweł M. Stasik, Julian Balcerek ∗ y Abstract. Pixel art is aesthetics that emulates the graphical style of old computer systems. Graphics created with this style needs to be scaled up for presentation on modern displays. The authors proposed two new modifications of image scaling for this purpose: a proximity-based coefficient correction and a transition area restriction. Moreover a new interpolation kernel has been introduced. The presented approaches are aimed at reliable and flexible bitmap scaling while overcoming limitations of exist- ing methods. The new techniques were introduced in an extensible .NET application that serves as both an executable program and a library. The project is designed for prototyping and testing interpolation operations and can be easily expanded with new functionality by adding it to the code or by using the provided interface. Keywords: image processing, pixel art, image upscaling, bitmap interpolation, proximity measure, proximity-based coefficient correction (PBCC), p-lin interpola- tion, transition area restriction (TAR) 1. Introduction Old computer systems, in comparison to modern systems, were heavily restricted in their graphical capabilities (in the sense of the amount of available colors and the possible resolutions). Pixel art is an artistic form that was aimed at handling these limitations, but them should not prevent it from being presented with graphical possibilities of the modern systems.
    [Show full text]
  • Use Style: Paper Title
    I.J. Image, Graphics and Signal Processing, 2013, 5, 55-62 Published Online April 2013 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijigsp.2013.05.07 A Comparative Analysis of Image Scaling Algorithms Chetan Suresh Department of Electrical and Electronics Engineering, BITS Pilani Pilani - 333031, Rajasthan, India E-mail: shivchetan@gmail.com Sanjay Singh, Ravi Saini, Anil K Saini Scientist, IC Design Group, CSIR – Central Electronics Engineering Research Institute (CSIR-CEERI) Pilani – 333031, Rajasthan, India Abstract— Image scaling, fundamental task of to the same input image. Some of the common numerous image processing and computer vision interpolation algorithms are the nearest neighbour, applications, is the process of resizing an image by pixel bilinear [7], and bicubic [8]-[9]. Lanczos algorithm interpolation. Image scaling leads to a number of utilizes the 3-lobed Lanczos window function to undesirable image artifacts such as aliasing, blurring and implement interpolation [10]. moiré. However, with an increase in the number of There are many other higher order interpolators which pixels considered for interpolation, the image quality take more surrounding pixels into consideration, and improves. This poses a quality-time trade off in which thus also require more computations. These algorithms high quality output must often be compromised in the include spline [11] and sinc interpolation [12], and retain interest of computation complexity. This paper presents the most of image details after an interpolation. They are a comprehensive study and comparison of different extremely useful when the image requires multiple image scaling algorithms. The performance of the rotations/distortions in separate steps. However, for scaling algorithms has been reviewed on the basis of single-step enlargements or rotations, these higher-order number of computations involved and image quality.
    [Show full text]
  • Image Interpolation Techniques for Image Scaling
    ISSN(Online): 2320-9801 ISSN (Print): 2320-9798 International Journal of Innovative Research in Computer and Communication Engineering (An ISO 3297: 2007 Certified Organization) Vol. 2, Issue 12, December 2014 A Review: Image Interpolation Techniques for Image Scaling Prof. PankajS. Parsania1, Dr. Paresh V.Virparia2 Assistant Professor, College of FPTBE, Anand Agricultural University, Anand, Gujarat, India1 Director, Department of Computer Science, Sardar Patel University, VallabhVidyanagar, Gujarat, India2 ABSTRACT: The growing interest in image scaling is mainly due to the availability of digital imaging devices such as, digital cameras, digital camcorders, 3G mobile handsets, high definition monitors etc. Scaling a digital image is a demanding and very important area of research. Image scaling is an important image processing operation applied in diverse areas in computer graphics. Image scaling can be especially useful when one needs to reduce image file size for email and web documents or increase image size for printing, GIS observation, medical diagnostic etc. With the recent advances in imaging technology, digital images have become an important component of media distribution. In addition, a variety of displays can be used for image viewing, ranging fromhigh-resolution computer monitors to TV screens and low-resolution mobile devices.This paper is focused on different image scaling techniqueswith intent that review to be useful to researchers and practitioners interested in image Scaling. KEYWORDS: Image Scaling, interpolation, Non-adaptive techniques, adaptive techniques, Context aware image resizing, Segmentation-Based, Seam Carving, Warping-Based Methods. I. INTRODUCTION Technology for display devices are growing very fast, an image often needs to be displayed across various size with different aspect ratios.
    [Show full text]
  • Super-Resolution Imaging.Pdf
    SUPER-RESOLUTION IMAGING THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE SUPER-RESOLUTION IMAGING Edited by SUBHASIS CHAUDHURI Department of Electrical Engineering Indian Institute of Technology - Bombay Mumbai, India 400 076. KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW !"##$%&'"() *+,*-+47004+7 ./012%&'"() *+792+37471+1 34**4%5678!/%9:;<!=0:%.7>60?@!/? (!8%A#/$B%"#?2#1B%C#/</!:@2B%D#1<#1B%E#?:#8 ./012%%34***%5678!/%9:;<!=0:%F%.6!17=%.7>60?@!/? (!8%A#/$ 966%/0G@2?%/!?!/H!< (#%I;/2%#J%2@0?%!"##$%=;K%>!%/!I/#<7:!<%#/%2/;1?=022!<%01%;1K%J#/=%#/%>K%;1K%=!;1?B%!6!:2/#10:B =!:@;10:;6B%/!:#/<01GB%#/%#2@!/80?!B%802@#72%8/022!1%:#1?!12%J/#=%2@!%.7>60?@!/ L/!;2!<%01%2@!%M102!<%'2;2!?%#J%9=!/0:; N0?02%5678!/%O1601!%;2)%% @22I)FF$678!/#1601!P:#= ;1<%5678!/Q?%!"##$?2#/!%;2) @22I)FF!>##$?P$678!/#1601!P:#= Contents Preface ix Contributing Authors xi 1 Introduction 1 Subhasis Chaudhuri 1.1 The Word Resolution 2 1.2 Illustration of Resolution 3 1.3 Image Zooming 5 1.4 Super-Resolution Restoration 6 1.5 Earlier Work 8 1.6 Organization of the Book 14 2 Image Zooming: Use of Wavelets 21 Narasimha Kaulgud and Uday B. Desai 2.1 Introduction 21 2.2 Background 22 2.3 Some Existing Methods 24 2.4 Proposed Method 28 2.5 Color Images 33 2.6 Results and Discussion 38 2.7 Conclusion 41 3 Generalized Interpolation for Super-Resolution 45 Deepu Rajan and Subhasis Chaudhuri 3.1 Introduction 46 3.2 Theory of Generalized Interpolation 48 3.3 Some applications of Generalized Interpolation 54 3.4 Experimental Results 59 3.5 Conclusions 68 4 High Resolution Image from Low Resolution Images 73 Brian C.
    [Show full text]
  • An Introduction to Ffmpeg, Davinci Resolve, Timelapse and Fulldome Video Production, Special Effects, Color Grading, Streaming
    An Introduction to FFmpeg, DaVinci Resolve, Timelapse and Fulldome Video Production, Special Effects, Color Grading, Streaming, Audio Processing, Canon 5D-MK4, Panasonic LUMIX GH5S, Kodak PIXPRO SP360 4K, Ricoh Theta V, Synthesizers, Image Processing and Astronomy Software by Michael Koch, astroelectronic@t-online.de Version from October 7, 2021 1 Contents 1 Introduction to FFmpeg .............................................................................. 9 2.27 Sharpen or blur images .................................................................. 57 1.1 What can be done with FFmpeg? .................................................... 11 2.28 Extract a time segment from a video ............................................. 58 1.2 If FFmpeg has no graphical user interface, how do we use it? .... 12 2.29 Trim filter ......................................................................................... 59 1.3 The first example .............................................................................. 14 2.30 Tpad filter, add a few seconds black at the beginning or end .... 60 1.4 Using variables ................................................................................. 15 2.31 Extract the last 30 seconds of a video .......................................... 61 2 FFmpeg in detail ....................................................................................... 16 2.32 Fade-in and fade-out ....................................................................... 62 2.1 Convert from one video format to another video
    [Show full text]
  • Deep Learning for Image Super-Resolution: a Survey
    1 Deep Learning for Image Super-resolution: A Survey Zhihao Wang, Jian Chen, Steven C.H. Hoi, Fellow, IEEE Abstract—Image Super-Resolution (SR) is an important class of image processing techniques to enhance the resolution of images and videos in computer vision. Recent years have witnessed remarkable progress of image super-resolution using deep learning techniques. This article aims to provide a comprehensive survey on recent advances of image super-resolution using deep learning approaches. In general, we can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR. In addition, we also cover some other important issues, such as publicly available benchmark datasets and performance evaluation metrics. Finally, we conclude this survey by highlighting several future directions and open issues which should be further addressed by the community in the future. Index Terms—Image Super-resolution, Deep Learning, Convolutional Neural Networks (CNN), Generative Adversarial Nets (GAN) F 1 INTRODUCTION MAGE super-resolution (SR), which refers to the process and strategies [8], [31], [32], etc. I of recovering high-resolution (HR) images from low- In this paper, we give a comprehensive overview of re- resolution (LR) images, is an important class of image cent advances in image super-resolution with deep learning. processing techniques in computer vision and image pro- Although there are some existing SR surveys in literature, cessing. It enjoys a wide range of real-world applications, our work differs in that we are focused in deep learning such as medical imaging [1], [2], [3], surveillance and secu- based SR techniques, while most of the earlier works [33], rity [4], [5]), amongst others.
    [Show full text]