B-Cell Responses to Vaccination at the Extremes of Age

Total Page:16

File Type:pdf, Size:1020Kb

B-Cell Responses to Vaccination at the Extremes of Age REVIEWS B-cell responses to vaccination at the extremes of age Claire-Anne Siegrist* and Richard Aspinall‡ Abstract | Infants and the elderly share a high vulnerability to infections and therefore have specific immunization requirements. Inducing potent and sustained B‑cell responses is as challenging in infants as it is in older subjects. Several mechanisms to explain the decreased B‑cell responses at the extremes of age apply to both infants and the elderly. These include intrinsic B‑cell limitations as well as numerous microenvironmental factors in lymphoid organs and the bone marrow. This Review describes the mechanisms that shape B‑cell responses at the extremes of age and how they could be taken into account to design more effective immunization strategies for these high‑risk age groups. Infant Respiratory and diarrhoeal diseases caused by some have previously overcome, from which they can suffer A ≤ 12-month-old human pathogens — respiratory syncytial virus (RSV), mea- increasingly severe symptoms. Numerous infections baby or a ≤ 3-week-old mouse sles virus, Bordetella pertussis, Streptococcus pneumo- have a higher incidence in the elderly and have a higher (experimental definition). niae, Haemophilus influenzae type b (Hib), rotavirus mortality rate than in younger adults4,5. For example, in or Salmonella spp. —claim the lives of more than 1.6 the United States, the yearly return of influenza and RSV Neonate 1 A ≤ 28-day-old human infant million young children each year , and the global infant infections between 1990 and 1999 was responsible for 6 or a ≤7-day-old mouse. mortality rate still amounts to 49 deaths per 1,000 live 51,203 and 17,358 deaths, respectively . In an average year, births (see the World Health Organization (WHO) influenza, invasive pneumococcal disease and hepatitis B health statistics website). The abrupt transition at birth account for more than 50,000 deaths in the United States, from a sterile intra-uterine environment to a foreign with older individuals being 1,000 times more likely to environment places neonates in a challenging situation. die of these vaccine-preventable diseases than children Innate immune responses can be readily elicited at birth, living in developed countries7. although with specific characteristics (reviewed in REF. 2), Current vaccines mediate their protective efficacy but they are transient and insufficient for immune pro- through the generation of neutralizing antibodies. tection. Furthermore, early immune protection initially Decades of studies have shown that antigen exposure relies on IgG antibodies of maternal origin3, the levels of in early life results in blunted, delayed or undetectable which decline after birth with a half-life of 21–30 days. antibody responses to infections and immunizations. Therefore, infants would become vulnerable to infec- Historically, the neonatal immune system has been con- tions within a short time frame without the development sidered to be poorly competent in generating immune *WHO Collaborative Center of adaptive immunity to confer sustained protection. responses and instead to be polarized towards the for Neonatal Vaccinology, As adaptive immunity in infants is readily amenable induction of immune tolerance8. A conceptual switch Departments of Pathology– Immunology and Pediatrics, to enhancement through vaccination, great efforts and occurred in the late 1990s through numerous demon- Medical Faculty of the resources have been dedicated to infant immunization, strations that adult-like B- and T-cell responses could be University of Geneva, which has had a notable impact on morbidity and mor- achieved in early life under specific conditions of stim- Centre Medical Universitaire, tality. However, early-life immune responses are weaker ulation (reviewed in REFS 9,10). However, as early-life 1 rue Michel Servet, 1211 Geneva 4, Switzerland. and of shorter duration than those that are elicited in antibody responses markedly differ from those elicited ‡Translational Medicine, immunologically mature hosts. Consequently, vaccine in mature hosts, great challenges remain to be encoun- Cranfield Health, Vincent efficacy in this vulnerable population is limited. tered during vaccine development. At the other extreme Building, Cranfield University, This susceptibility to infection at the start of life is of age, the capacity to induce protective antibody at a Bedfordshire MK43 0AL, UK. mirrored in those who approach the end of the nor- sufficient titre to prevent infection declines significantly Correspondence to C.-A.S. 11 e-mail: mal life expectancy curve. Indeed, the elderly not only with age: in individuals of 65 years or older, influenza 12 [email protected] have problems in dealing with new pathogens but and hepatitis B vaccines induce protective antibody doi:10.1038/nri2508 also have difficulties in responding to pathogens that they titres in less than half of their recipients. NATURE REVIEWS | IMMUNOLOGY VOLUME 9 | MARCH 2009 | 185 © 2009 Macmillan Publishers Limited. All rights reserved REVIEWS Table 1 | Human B-cell responses at the extremes of age Cell type or site Characteristics in infants Characteristics in the elderly Naive B cells Decreased expression of cell‑surface receptors Limited generation of naive B cells (CD21, CD40, CD80 and CD86) Plasma cells Limited IgG responses to protein antigen under Poor IgG responses to protein antigen 12 months of age Limited IgG responses to most polysaccharide Poor IgG responses to most polysaccharide antigens under 18–24 months of age antigens Limited persistence of IgG antibodies under Decreased persistence of IgG antibodies 12 months of age Memory B cells Effective priming of memory B cells at and Accumulation of memory B cells of restricted before birth diversity Progressive diversified IgG repertoire Limited diversified IgG repertoire Limited affinity maturation under 4–6 months Affinity maturation is not affected by age of age Germinal centres Impaired germinal centre responses* Impaired germinal centre responses* Limited functional FDC network* Limited functional FDC network* Bone marrow Limited access to plasma cell niches* Limited access to plasma cell niches* Responses are compared with healthy adults. *Shown in mice. FDC, follicular dendritic cell. In this Review, we discuss the mechanisms that Induction of a primary response. The mechanisms could account for the limitations of B-cell responses at that shape B-cell responses in early life were identified the extremes of age, which are both interesting biologi- using neonatal mouse immunization models that were cal phenomena and key considerations for the design of developed to reproduce the main limitations of immune more effective immunization strategies. responses to vaccines that are administered at an early age (reviewed in REFS 9,26) (FIG. 1). There are numerous B-cell responses in early life differences (TABLE 1) between neonatal and adult mouse Postnatal maturation of antibody responses. The vulner- splenic B cells (reviewed in REF. 10), although fewer ability of children younger than 18–24 months of age to differences have been identified by comparing human encapsulated bacteria such as pneumococcus, Hib and peripheral B cells. Specifically, human neonatal B cells meningococcus has long been thought to reflect a gen- express lower levels of the co-stimulatory molecules eral failure to generate T-cell-independent B-cell responses CD40, CD80 and CD86, which decreases their responses to most bacterial polysaccharides (reviewed in REF. 13). to CD40 ligand (CD40L) and interleukin-10 (IL-10)27 However, age also has a direct effect on the magnitude expressed by T cells. Splenic marginal zone infant B cells of antibody responses to T-cell-dependent protein anti- express lower levels of CD21 (REF. 28), which limits their gens (TABLE 1). As an example, RSV infection only triggers capacity to respond to polysaccharide–complement limited T-cell-dependent B-cell responses in young infants, complexes29. The expression of TACI (transmembrane which has implications for the development of live- activator and calcium-modulating cyclophilin-ligand attenuated intranasal RSV vaccines14. Infant vaccine stud- interactor; also known as TNFRSF13B), an important ies worldwide have shown that there is an age-dependent co-stimulatory receptor, is also decreased on both neo- T-cell-independent B-cell stepwise increase in the rates of seroconversion and the natal mouse30 and neonatal human B cells, particularly response 27 A B-cell response that is magnitude of antibody responses, regardless of whether those born prematurely . 15,16 elicited without the repeat immunization is administered . In fact, the In addition, B-cell responses in early life are influenced requirement for CD4+ T-cell use of accelerated schedules in which immunizations by numerous extrinsic factors (TABLE 1). Antibodies of co-stimulation, which is a are initiated at 6–8 weeks of age and repeated at 4-week maternal origin bind to vaccine antigens in an epitope- characteristic of responses to intervals increases the proportion of infants who fail to specific manner and therefore prevent infant B cells most polysaccharide antigens. respond to certain immunogens17,18 and might decrease from accessing immunodominant vaccine epitopes31. 32 33 T-cell-dependent B-cell protective efficacy against many important infant patho- Furthermore, human and mouse neonates have low response gens, such as pertussis1,19. Direct evidence of the post- levels of serum complement component
Recommended publications
  • SAHLGRENSKA AKADEMIN Thymic Studies
    Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Akademisk avhandling Som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet kommer att offentligen försvaras i föreläsningssalen våning 3, Guldhedsgatan 10A, Göteborg Tisdagen den 14e maj, klockan 13.00 av Christina Lundqvist Fakultetsopponent: Professor Ludger Klein Ludwig-Maximilians-Universität, Tyskland Avhandlingen baseras på följande delarbeten I. Gudmundsdottir J*, Lundqvist C*, Ijspeert H, van der Slik E, Óskarsdóttir S, Lindgren S, Lundberg V, Berglund M, Lingman-Framme J, Telemo E, van der Burg M, Ekwall O. T-cell receptor sequencing reveals decreased diversity 18 years after early thymectomy. J Allergy Clin Immunol. 2017 Dec;140(6):1743- 1746.e7. doi: 10.1016/j.jaci.2017.08.002. Epub 2017 Sep 1. * These authors contributed equally to this work. II. Lundqvist C*, Camponeschi A*, Visentini M, Telemo E, Ekwall O‡, Mårtensson IL‡. Switched CD21-/low B cells with an antigen-presenting phenotype in the infant thymus. J Allergy Clin Immunol. 2018 Nov 30. pii: S0091-6749(18)31721- 4. doi: 10.1016/j.jaci.2018.11.019. * These authors contributed equally to this work. ‡ These authors contributed equally to this work. III. Lundqvist C, Lindgren S, Cheuk S, Lundberg V, Berglund M, Thörn K, Telemo E, Ekwall O. Characterization of Hassall's corpuscles in the human thymus. Manuscript SAHLGRENSKA AKADEMIN INSTITUTIONEN FÖR MEDICIN Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Christina Lundqvist Avdelningen för reumatologi och inflammationsforskning, Institutionen för medicin, Sahlgrenska akademin, Göteborgs universitet Abstract This thesis focuses on the human thymus, a primary lymphoid organ responsible for the maturation of T cells.
    [Show full text]
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • Overview of B-Cell Maturation, Activation, Differentiation
    Overview of B-Cell Maturation, Activation, Differentiation B-Cell Development Begins in the Bone Marrow and Is Completed in the Periphery Antigen-Independent (Maturation) 1) Pro-B stages B-cell markers 2) Pre B-stages H- an L- chain loci rearrangements surrogate light chain 3) Naïve B-cell functional BCR . B cells are generated in the bone marrow. Takes 1-2 weeks to develop from hematopoietic stem (HSC) cells to mature B cells. Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment. HSC passes through progressively more delimited progenitor-cell stages until it reaches the pro-B cell stage. Pre-B cell is irreversibly committed to the B-cell lineage and the recombination of the immunoglobulin genes expressed on the cell surface Immature B cell (transitional B cell) leaves the bone marrow to complete its maturation in the spleen through further differentiation. Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the Source: Internet same time eliminating self-reactive B cells. B-Cell Activation and Differentiation • Exposure to antigen or various polyclonal mitogens activates resting B cells and stimulates their proliferation. • Activated B cells lose expression of sIgD and CD21 and acquire expression of activation antigens. Growth factor receptors, structures involved in cell-cell interaction, molecules that play a role in the localization and binding of activated B cells Two major types: T cell dependent (TD) T cell independent (TI) B-Cell Activation by Thymus-Independent and Dependent Antigens Source: Kuby T cell dependent: Involves protein antigens and CD4+ helper T cells.
    [Show full text]
  • Antimicrobial Glycoconjugate Vaccines: an Overview of Classic and Modern Approaches Cite This: Chem
    Chem Soc Rev View Article Online TUTORIAL REVIEW View Journal | View Issue Antimicrobial glycoconjugate vaccines: an overview of classic and modern approaches Cite this: Chem. Soc. Rev., 2018, 47, 9015 for protein modification Francesco Berti * and Roberto Adamo * Glycoconjugate vaccines obtained by chemical linkage of a carbohydrate antigen to a protein are part of routine vaccinations in many countries. Licensed antimicrobial glycan–protein conjugate vaccines are obtained by random conjugation of native or sized polysaccharides to lysine, aspartic or glutamic amino acid residues that are generally abundantly exposed on the protein surface. In the last few years, the structural approaches for the definition of the polysaccharide portion (epitope) responsible for the immunological activity has shown potential to aid a deeper understanding of the mode of action of glycoconjugates and to lead to the rational design of more efficacious and safer vaccines. The combination of technologies to obtain more defined carbohydrate antigens of higher purity and novel approaches for Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Received 12th June 2018 protein modification has a fundamental role. In particular, methods for site selective glycoconjugation like DOI: 10.1039/c8cs00495a chemical or enzymatic modification of specific amino acid residues, incorporation of unnatural amino acids and glycoengineering, are rapidly evolving. Here we discuss the state of the art of protein engineering with rsc.li/chem-soc-rev carbohydrates to obtain glycococonjugates vaccines and future perspectives. Key learning points (a) The covalent linkage with proteins is fundamental to transform carbohydrates, which are per se T-cell independent antigens, in immunogens capable of This article is licensed under a evoking a long-lasting T-cell memory response.
    [Show full text]
  • Systematic Booster After Rabies Pre-Exposure Prophylaxis to Alleviate Rabies Antibody Monitoring in Individuals at Risk of Occupational Exposure
    Article Systematic Booster after Rabies Pre-Exposure Prophylaxis to Alleviate Rabies Antibody Monitoring in Individuals at Risk of Occupational Exposure Perrine Parize 1,*, Jérémie Sommé 2 , Laura Schaeffer 3, Florence Ribadeau-Dumas 1, Sheherazade Benabdelkader 1, Agnès Durand 4, Arnaud Tarantola 1, Johann Cailhol 5, Julia Goesch 5, Lauriane Kergoat 1 , Anne-Sophie Le Guern 6, Marie-Laurence Mousel 2, Laurent Dacheux 1 , Paul-Henri Consigny 5, Arnaud Fontanet 3,7, Beata Francuz 2 and Hervé Bourhy 1 1 Institut Pasteur, Unit Lyssavirus Epidemiology and Neuropathology, National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies, 75015 Paris, France; fl[email protected] (F.R.-D.); [email protected] (S.B.); [email protected] (A.T.); [email protected] (L.K.); [email protected] (L.D.); [email protected] (H.B.) 2 Institut Pasteur, Occupational Health Department, 75015 Paris, France; [email protected] (J.S.); [email protected] (M.-L.M.); [email protected] (B.F.) 3 Institut Pasteur, Emerging Diseases Epidemiology Unit, Centre for Global Health Research and Education, 75015 Paris, France; [email protected] (L.S.); [email protected] (A.F.) 4 Laboratoire Cerballiance, 75017 Paris, France; [email protected] 5 Citation: Parize, P.; Sommé, J.; Institut Pasteur, Centre Médical, Centre d’Infectiologie Necker-Pasteur, 75015 Paris, France; Schaeffer, L.; Ribadeau-Dumas, F.; [email protected] (J.C.); [email protected] (J.G.); [email protected] (P.-H.C.) 6 Benabdelkader, S.; Durand, A.; Institut Pasteur, Laboratory of the Medical Center, 75015 Paris, France; [email protected] 7 Conservatoire National des Arts et Métiers, 75003 Paris, France Tarantola, A.; Cailhol, J.; Goesch, J.; * Correspondence: [email protected]; Tel.: +33-140-613-436 Kergoat, L.; et al.
    [Show full text]
  • B-Cell Reconstitution Recapitulates B-Cell Lymphopoiesis Following Haploidentical BM Transplantation and Post-Transplant CY
    Bone Marrow Transplantation (2015) 50, 317–319 © 2015 Macmillan Publishers Limited All rights reserved 0268-3369/15 www.nature.com/bmt LETTER TO THE EDITOR B-cell reconstitution recapitulates B-cell lymphopoiesis following haploidentical BM transplantation and post-transplant CY Bone Marrow Transplantation (2015) 50, 317–319; doi:10.1038/ From week 9, the proportion of transitional B cells progressively bmt.2014.266; published online 24 November 2014 decreased (not shown), whereas that of mature B cells increased (Figure 1d). To further evaluate the differentiation of mature cells, we included markers of naivety (IgM and IgD) and memory (IgG) in The treatment of many hematological diseases benefits from our polychromatic panel. At week 9, when a sufficient proportion myeloablative or non-myeloablative conditioning regimens of cells were available for the analysis, B cells were mostly naive followed by SCT or BMT. HLA-matched donors are preferred but and remained so for 26 weeks after haploBMT (Figure 1d). Despite not always available. Instead, haploidentical donors can be rapidly low, the proportion of memory B cells reached levels similar to identified. Unmanipulated haploidentical BMT (haploBMT) with that of marrow donors (Supplementary Figure 1D). non-myeloablative conditioning and post-transplant Cy has been To further investigate the steps of B-cell maturation, we developed to provide a universal source of BM donors.1 Cy, analyzed CD5, a regulator of B-cell activation, and CD21, a which depletes proliferating/allogeneic cells, prevents GVHD.1 component of the B-cell coreceptor complex, on transitional B Importantly, the infection-related mortality was remarkably low, cells. These surface markers characterize different stages of 5,6 5,6 suggesting effective immune reconstitution.1,2 However, a transitional B-cell development.
    [Show full text]
  • Human B Cell Isolation Product Selection Diagram
    Human B Cell Isolation Product Selection Explore the infographic below to find the correct human B cell isolation product for your application. 1. Your Starting Sample Whole Peripheral Blood/Buffy Coat PBMCs/Leukapheresis Pack 2. Cell Separation Platform Immunodensity Cell Separation Immunomagnetic Cell Separation Immunomagnetic Cell Separation 3. Product Line RosetteSep™ EasySep™ EasySep™ Sequential Selection Negative Selection Negative Selection Positive Selection Negative Selection Positive Selection 4. Selection Method (Positive + Negative) iRosetteSep™ HLA iEasySep™ Direct HLA i, iiEasySep™ HLA iEasySep™ HLA B Cell viEasySep™ Human CD19 EasySep™ Human IgG+ B Cell Enrichment Cocktail B Cell Isolation Kit Chimerism Whole Blood Enrichment Kit Positive Selection Kit II Memory B Cell Isolation (15064HLA)1, 2, 3 (89684) / EasySep™ Direct B Cell Positive Selection (19054HLA)1, 2 (17854)1, 2 Kit (17868)1 (optional), 2' HLA Crossmatch B Cell Kit (17886)1, 2 Isolation Kit (19684 - 1, 2 RosetteSep™ Human available in the US only) iiiEasySep™ Human B Cell viEasySep™ Release EasySep™ Human Memory 5. Cell Isolation Kits B Cell Enrichment Cocktail i, iiEasySep™ HLA Enrichment Kit Human CD19 Positive B Cell Isolation Kit 1, 2, 3 1, 2 1, 2 1 (optional), 2 Catalog #s shown in ( ) (15024) Chimerism Whole Blood (19054) Selection Kit (17754) (17864) EasySep™ Direct Human CD19 Positive Selection B-CLL Cell Isolation Kit Kit (17874)1, 2 1, 2, 3, 4 *RosetteSep™ Human (19664) iiiEasySep™ Human B Cell EasySep™ Human CD138 Multiple Myeloma Cell Isolation Kit
    [Show full text]
  • COVID-19 Vaccination Programme: Information for Healthcare Practitioners
    COVID-19 vaccination programme Information for healthcare practitioners Republished 6 August 2021 Version 3.10 1 COVID-19 vaccination programme: Information for healthcare practitioners Document information This document was originally published provisionally, ahead of authorisation of any COVID-19 vaccine in the UK, to provide information to those involved in the COVID-19 national vaccination programme before it began in December 2020. Following authorisation for temporary supply by the UK Department of Health and Social Care and the Medicines and Healthcare products Regulatory Agency being given to the COVID-19 Vaccine Pfizer BioNTech on 2 December 2020, the COVID-19 Vaccine AstraZeneca on 30 December 2020 and the COVID-19 Vaccine Moderna on 8 January 2021, this document has been updated to provide specific information about the storage and preparation of these vaccines. Information about any other COVID-19 vaccines which are given regulatory approval will be added when this occurs. The information in this document was correct at time of publication. As COVID-19 is an evolving disease, much is still being learned about both the disease and the vaccines which have been developed to prevent it. For this reason, some information may change. Updates will be made to this document as new information becomes available. Please use the online version to ensure you are accessing the latest version. 2 COVID-19 vaccination programme: Information for healthcare practitioners Document revision information Version Details Date number 1.0 Document created 27 November 2020 2.0 Vaccine specific information about the COVID-19 mRNA 4 Vaccine BNT162b2 (Pfizer BioNTech) added December 2020 2.1 1.
    [Show full text]
  • A Genome-Wide Shrna Screen Identifies GAS1 As a Novel Melanoma Metastasis Suppressor Gene
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene Stephane Gobeil,1 Xiaochun Zhu,1 Charles J. Doillon,2 and Michael R. Green1,3 1Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 2Oncology and Molecular Endocrinology Research Center, CHUL’s Research Center, CHUQ, Laval University, Quebec City, Québec G1V 4G2, Canada Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples.
    [Show full text]
  • 1 the Immune System
    1 The immune system The immune response Innate immunity Adaptive immunity The immune system comprises two arms (rapid response) (slow response) functioning cooperatively to provide a Dendritic cell Mast cell comprehensive protective response: the B cell innate and the adaptive immune system. Macrophage γδ T cell T cell The innate immune system is primitive, does not require the presentation of an antigen, Natural and does not lead to immunological memory. killer cell Basophil Its effector cells are neutrophils, Complement protein macrophages, and mast cells, reacting Antibodies Natural Eosinophil killer T cell CD4+ CD8+ within minutes to hours with the help of T cell T cell complement activation and cytokines (CK). Granulocytes Neutrophil B-lymphocytes B-cell receptor The adaptive immune response is provided by the lymphocytes, which precisely recognise unique antigens (Ag) through cell-surface receptors. epitope Receptors are obtained in billions of variations through antigen cut and splicing of genes and subsequent negative T-lymphocytes selection: self-recognising lymphocytes are eradicated. T-cell receptor Immunological memory after an Ag encounter permits a faster and heightened state of response on a subsequent exposure. epitope MHC Lymphocytes develop in primary lymphoid tissue (bone marrow [BM], thymus) and circulate towards secondary Tonsils and adenoids Lymph lymphoid tissue (lymph nodes [LN], spleen, MALT). nodes Lymphatic vessels The Ag reach the LN carried by lymphocytes or by Thymus dendritic cells. Lymphocytes enter the LN from blood Lymph transiting through specialised endothelial cells. nodes The Ag is processed within the LN by lymphocytes, Spleen macrophages, and other immune cells in order to mount a specific immune response.
    [Show full text]
  • Glypican (Heparan Sulfate Proteoglycan) Is Palmitoylated, Deglycanated and Reglycanated During Recycling in Skin Fibroblasts
    Glycobiology vol. 7 no. 1 pp. 103-112, 1997 Glypican (heparan sulfate proteoglycan) is palmitoylated, deglycanated and reglycanated during recycling in skin fibroblasts Gudrun Edgren1, Birgitta Havsmark, Mats Jonsson and granules (for reviews, see Kjell6n and Lindahl, 1991; Bernfield Lars-Ake Fransson et al., 1992; David, 1993; Heinegard and Oldberg, 1993). Pro- teoglycans are classified according to the characteristic fea- Department of Cell and Molecular Biology, Faculty of Medicine, Lund University, Lund, Sweden tures or properties of the core protein and can appear in many 'To whom correspondence should be addressed at: Department of Cell and glycoforms giving rise to considerable structural variation and Downloaded from https://academic.oup.com/glycob/article/7/1/103/725516 by guest on 30 September 2021 Molecular Biology 1, POB 94, S-221 00, Lund, Sweden functional diversity. In general, the protein part determines the destination of the proteoglycan and interacts with other mol- Skin fibroblasts treated with brefeldin A produce a recy- ecules at the final location. The glycan part provides the overall cling variant of glypican (a glycosylphosphatidylinositol- bulk properties as well as binding sites for other gly- anchored heparan-sulfate proteoglycan) that is resistant to cosaminoglycans and many types of proteins, including matrix inositol-specific phospholipase C and incorporates sulfate proteins, plasma proteins, enzymes, anti-proteinases, growth and glucosamine into heparan sulfate chains (Fransson, factors, and cytokines. L.-A. et aL, Glycobiology, 5, 407-415, 1995). We have now Cultured human fibroblasts synthesize, deposit, and secrete investigated structural modifications of recycling glypican, 3 a variety of proteoglycans and have been used extensively to such as fatty acylation from [ H]palmitate, and degrada- investigate both their biosynthesis and functional properties tion and assembly of heparan sulfate side chains.
    [Show full text]
  • B Cells + Interaction
    Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5 + B Cells This information is current as of October 2, 2021. Isaac R. Blanca, Earl W. Bere, Howard A. Young and John R. Ortaldo J Immunol 2001; 167:6132-6139; ; doi: 10.4049/jimmunol.167.11.6132 http://www.jimmunol.org/content/167/11/6132 Downloaded from References This article cites 45 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/167/11/6132.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5؉ B Cells Isaac R. Blanca,*† Earl W. Bere,* Howard A.
    [Show full text]