RESEARCH ARTICLE Occurrence of Isopenicillin-N-Synthase Homologs in Bioluminescent Ctenophores and Implications for Coelenterazine Biosynthesis Warren R. Francis1,2‡, Nathan C. Shaner3‡, Lynne M. Christianson1, Meghan L. Powers1¤, Steven H. D. Haddock1* 1 Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA 95039, United States of America, 2 Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United a11111 States of America, 3 The Scintillon Institute, 6404 Nancy Ridge Dr., San Diego, CA 92121, United States of America ‡ These authors are joint senior authors on this work. ¤ Current Address: State Water Resources Control Board, Division of Water Quality, Ocean Unit, 1001 I Street, 15th Floor, Sacramento, CA 95814, USA *
[email protected] OPEN ACCESS Citation: Francis WR, Shaner NC, Christianson LM, Abstract Powers ML, Haddock SHD (2015) Occurrence of Isopenicillin-N-Synthase Homologs in Bioluminescent The biosynthesis of the luciferin coelenterazine has remained a mystery for decades. While Ctenophores and Implications for Coelenterazine not all organisms that use coelenterazine appear to make it themselves, it is thought that Biosynthesis. PLoS ONE 10(6): e0128742. doi:10.1371/journal.pone.0128742 ctenophores are a likely producer. Here we analyze the transcriptome data of 24 species of ctenophores, two of which have published genomes. The natural precursors of coelentera- Academic Editor: Brett Neilan, University of New South Wales, AUSTRALIA zine have been shown to be the amino acids L-tyrosine and L-phenylalanine, with the most likely biosynthetic pathway involving cyclization and further modification of the tripeptide Received: August 6, 2014 Phe-Tyr-Tyr (“FYY”). Therefore, we searched the ctenophore transcriptome data for genes Accepted: May 1, 2015 with the short peptide “FYY” as part of their coding sequence.