The Cloud Chamber and CTR Wilson's Legacy to Atmospheric

Total Page:16

File Type:pdf, Size:1020Kb

The Cloud Chamber and CTR Wilson's Legacy to Atmospheric CORE Metadata, citation and similar papers at core.ac.uk Provided by Central Archive at the University of Reading any region of the world with just a few clicks casting large hail. Forecasting Research research/modelling-systems/unified- of a button. Technical Report 329. Met Office: Exeter. model/weather-forecasting [accessed Hand WH, Cappelluti G. 2010. A global 20 May 2011]. hail climatology using the UK Met Office Sheridan P, Smith S, Brown A, Vosper S. References convection diagnosis procedure (CDP) 2010. A simple height-based correction for Bell S, Milton S, Wilson C, Davies T. and model analyses. Meteorol. Appl. temperature downscaling in complex ter- 2002. A New Unified Model, NWP Gazette, doi:10.1002/met.236. rain. Meteorol. Appl. 17: 329–339. pp 3–7. Hohenegger C, Schär C. 2007. Fawbush EJ, Miller RC. 1953. A method Atmospheric predictability at synoptic for forecasting hailstone size at the versus cloud-resolving scales. Bull. Am. earth’s surface. Bull. Am. Meteorol. Soc. 34: Meteorol. Soc. 88: 1783–1793. Correspondence to: Stephen Moseley 235–244. Howard T, Clark P. 2003. Improvement [email protected] Golding BW. 1995. Formulation and to the nimrod wind nowcasting scheme Getting the most out of model data performance of an algorithm for deter- over high ground. Forecasting Research © British Crown copyright, the Met Office, mining precipitation type from a rain rate Technical Report 406. Met Office: Exeter. 2011, published with the permission of the forecast, using NWP model parameters. Howard T, Clark P. 2007. Correction and Controller of HMSO and the Queen’s Printer Forecasting Research Technical Report downscaling of NWP wind speed fore- for Scotland 157. Met Office: Exeter. casts. Meteorol. Appl. 14: 105–116. DOI: 10.1002/wea.844 Hand WH. 2000. An investigation into the Met Office. 2011. Met Office Unified potential of Miller’s technique for fore- Model. http://www.metoffice.gov.uk/ Weather – October 2011, Vol. 66, No. 10 66, No. – OctoberVol. 2011, Weather The cloud chamber and CTR Wilson’s legacy to atmospheric science Giles Harrison The cloud chamber has become the vital means for studying the ultimate particles Department of Meteorology, of matter, and is responsible for a major University of Reading part of modern physics. (Bragg, 1968)… It can tell us the history of a single one Introduction and early life of these minute particles, which leaves 2011 is the centenary year of the short a trail in the cloud chamber like that left paper (Wilson, 1911) first describing the in the upper air by an aeroplane un der cloud chamber, the device for visualising certain meteorological conditions. (Bragg, high-energy charged particles which earned 1969) the Scottish physicist Charles Thomas Rees Wilson was born at Crosshouse farm, (‘CTR’) Wilson the 1927 Nobel Prize for phys- Glencorse, on 14 February 1869. The family ics. His many achievements in atmospheric moved to Manchester where he enrolled, science, some of which have current rele- with his brother, to study medicine at vance, are briefly reviewed here. CTR Owens College; the brothers frequently Wilson’s lifetime of scientific research work returned to Scotland where they pursued was principally in atmospheric electricity at the then popular scientific hobby of pho- the Cavendish Laboratory, Cambridge; he tography, for example producing images of was Reader in Electrical Meteorology from clouds in the mountains. Following his Figure 1. CTR Wilson in 1889. (Plate 8 of Wilson 1918 and Jacksonian Professor from 1925 to Manchester degree Wilson obtained an (1960), reproduced with permission of the Royal 1935. However, he is immortalised in phys- entrance scholarship to Sidney Sussex Society.) ics for his invention of the cloud chamber, College, Cambridge University,2 in October because of its great significance as an early 1888 (Figure 1). He intended chiefly to and after his Cambridge scholarship he visualisation tool for particles such as cos- study physics, wary of limited employment acted as a volunteer at Ben Nevis mic rays1 (Galison, 1997). Sir Lawrence Bragg prospects from undertaking the Observatory for a fortnight in September summarised its importance: Mathematical Tripos alone. Natural land- 1894. The Observatory was frequently shrouded in cloud and mist and the optical 1Despite Wilson’s awareness of background scapes retained a powerful lure to him he phenomena of coronas and glories he wit- ionisation, cosmic rays themselves (i.e. described himself as…strongly impressed high-energy particles from space) were with the beauty of the world (Wilson, 1960), nessed provided strong motivation for his discovered by Victor Hess (1883–1964) in experiments in imitating cloud processes in balloon flights during 1911–1912; he was 2 The Sidney Sussex student club for Natural the laboratory (Wilson, 1927). He died in 276 rewarded by the 1936 Nobel Prize for Physics. Science is called the Wilson Society. Edinburgh on 15 November 1959. (a) (b) The cloud chamber and CTRWilson Weather – October 2011, Vol. 66, No. 10 66, No. – OctoberVol. 2011, Weather Figure 2. Cloud chamber images of (a) ionisation generated by a cylindrical X-ray beam about 2mm in diameter, passing right to left and (b) magnified tracks of ions formed by X-rays. (From Plates 8 and 9 of Wilson (1912), reproduced with permission of the Royal Society.) Development of the cloud call Aitken nuclei, had been removed, one ern era is dominated by digital image pro- chamber still was able to produce condensation in duction, the photographic effort once the form of drops provided a certain quite required to obtain such iconic scientific Wilson’s Nobel Lecture acknowledged the definite degree of supersaturation was images may not be widely appreciated. For influence on his experiments of the particle exceeded. (Dee and Wormell, 1963) the strikingly beautiful pictures in Figure 2, visualisation technology of the time, the condensation particle counter invented by Wilson had discovered that air always con- John Aitken.3 The operating principle of the tained nuclei on which droplets could form Aitken counter was to moisten a sample of if the water supersaturation was sufficient. atmospheric air and then cool it by rapid His interpretation of these nuclei as charged expansion. The resulting substantial super- particles (ions) was influenced by the then saturation of the air sample yielded droplet developing understanding of charged parti- condensation on whatever particles (nuclei) cles. Initially, he tried applying ultraviolet were present, and these could be counted light to generate ions but, further inspired optically. Aitken made dust measurements by an early demonstration of X-ray appara- 4 at Ben Nevis Observatory (Aitken, 1889) tus made for J. J. Thomson at the Cavendish between 1891 and 1894 on this basis, Laboratory, Cambridge, in 1896, he was immediately prior to Wilson’s visit. Wilson delighted to find that X-rays greatly increased developed Aitken’s expansion chamber the number of droplets formed under the technique to use filtered air. In a lecture necessary high supersaturation. The fact that broadcast two days after his 90th birthday the droplets formed responded to an electric Wilson described this approach: field demonstrated that the condensation nuclei were charged, i.e. that they were ions I found that when all the dust particles, as (Wilson, 1899). Figure 2 shows images of Aitken called them, or what we should now high energy particles made visible within a cloud chamber (Wilson, 1912). As the mod- 3 John Aitken (1839–1919) was a Scottish atmospheric physicist. He made detailed investigations into the properties of the 4 Sir Joseph John (J.J) Thomson was Cavendish Stevenson screen and, using his condensation Professor of Physics and a president of the instrument to detect atmospheric aerosol, he Royal Society. He received the 1906 Nobel Prize was the first to observe the formation of new in Physics for discovering the electron and Figure 3. Cloud chamber images on the glass atmospheric particles by nucleation. research on the electrical conductivity of gases. photographic plates employed. 277 a stable photographic emulsion, the correct relative changes in the electric field,10 but ions with his atmospheric electricity instru- exposure, accurate focus and successful Wilson was to improve these techniques, mentation, and visualise them by his expan- chemical processing yielding good contrast largely through work undertaken during sion technique. He continued improving the would all have been needed, quite apart University vacation at the family home in expansion technique and in 1911 he pub- from the opportune visualisation of a high- Peebles, where his brother had a medical lished the short but pivotal paper summaris- energy event. Figure 3 shows the glass nega- practice. Wilson’s notebooks (Dee and ing the application of the cloud chamber. tive plates which formed the basic Wormell, 1963) show his interest in atmos- Wilson’s notebooks (Dee and Wormell, photographic technology employed; the pheric electricity from 1898, and his appre- 1963) show continued refinements of the exposure dates are unfortunately unknown. ciation of new findings about air ionisation cloud chamber beyond 1911 with improved Furthermore, experimental scientists of generated by radioactivity and X-rays no photographs of ion condensation tracks, Wilson’s time almost always had to make doubt further underpinned his atmospheric interleaved with atmospheric electricity their own apparatus, and Wilson was
Recommended publications
  • Predicted Northern-Hemisphere Temperature Rise Due to the Doubling of CO 2
    NEWSLETTER October 2009 Predicted Northern-Hemisphere temperature rise due to the doubling of CO 2 A simulation of climate change on a regional scale by Sarah Keeley, Department of Meteorology, University of Reading. http://www.iop.org/activity/groups/subject/env/ Environmental Physics Group newsletter October 2009 Contents Contents 2 Welcome note 3 News 4 The 5th Environmental Physics Group Essay Competition. 4 Reports from previous events 5 Environmental Electrostatics III, “Measurement and 5 modelling of charges in the environment” Computer Simulation and the Environment 7 Forthcoming Environmental Physics Group Events 9 Extreme Weather Events. 9 Low NOx Combustion 9 Optical Environmental Sensing VII – First Announcement 10 Forthcoming IOP Events 10 Early Career Research in Electrostatics and Dielectrics 10 Novel Aspects of Surfaces and Materials (NASM3) 11 Other Forthcoming Events 11 Water Catchments: New Instrumentation Technologies for 11 Research and Regulation Needs The Transition to Low Carbon 12 Other Activities & News 13 Environmental matters in Physics World 13 Research Student Conference Fund 14 EPG Committee 15 2 Environmental Physics Group newsletter October 2009 Hello and welcome to the October 2009 newsletter! We hope you had a great summer and for many of you, a fulfilling start to the new University year. Firstly we have said goodbye to Karen Aplin as editor of this newsletter (although she remains a keen member of the committee). The committee would like to say a big thank you to Karen for her hard work in compiling the newsletter over the past six years. Thanks also to Paul Williams who also stepped down as web editor when he became Secretary of the Group in the Spring.
    [Show full text]
  • Download (45Kb)
    Editorial Welcome to the autumn Environmental Physics Group Newsletter, containing the usual mixture of “what’s on” information, reports on recently held meetings and a book review. Group meetings are usually planned and arranged by members of the Committee, and the newsletter often reflects these activities. However, we are keen to make sure that both the activities and the newsletter reflect the wide interests of Group members. To do this we need your suggestions! We are planning a questionnaire on members’ interests, which will be circulated with the next Newsletter in spring 2004. However, ideas for meetings or topics you would like to see covered by the Group are welcomed at any time: please contact any member of the Committee with your comments. Newsletter articles or suggestions for improvements are also invited and should be sent to me. Radio 4’s Document programme recently featured an environmental physicist testing for radioactive contamination at a suburban housing estate. Perhaps an “Environmental Physics in the News” page in the newsletter, covering interesting media stories would be of interest: if so, send me your contributions now… Karen Aplin STOP PRESS NEWS The Newsletter goes to press at a time of unprecedented solar activity. Although the Sun is between a maximum and minimum in its 11 year cycle, two giant sunspots have recently appeared which have produced several massive solar flares, and on 4th November, the largest solar flare ever. Solar flares can cause communications problems on Earth and also increase the dose of radiation received by aircraft personnel. Fortunately the 4th November solar flare was not ejected directly at Earth and so we have not seen its full force.
    [Show full text]
  • Behind the Curve: a Comparison of Historical Sources for the Carnegie Curve of the Global Atmospheric Electric Circuit
    Hist. Geo Space Sci., 11, 207–213, 2020 https://doi.org/10.5194/hgss-11-207-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Behind the curve: a comparison of historical sources for the Carnegie curve of the global atmospheric electric circuit R. Giles Harrison Department of Meteorology, University of Reading, RG6 6BB Reading, UK Correspondence: R. Giles Harrison ([email protected]) Received: 17 June 2020 – Accepted: 23 July 2020 – Published: 11 September 2020 Abstract. The “Carnegie curve” describes the diurnal variation of the global atmospheric electric circuit. It was originally found from atmospheric electric potential gradient (PG) measurements made on the Carnegie, ef- fectively a floating atmospheric electrical observatory, which undertook global cruises between 1915 and 1929. These measurements confirmed that the single diurnal cycle PG variation, previously obtained in both polar re- gions, was global in extent. The averaged diurnal PG variation, represented by derived harmonic fits, provides a characteristic variation known as the “Carnegie curve”, against which modern measurements are still compared. The ocean air PG measurements were extensively described in reports of the Carnegie Institution of Washing- ton (CIW) but widely used secondary sources of the Carnegie curve contain small differences, arising through approximations and transcription errors. Investigations using the historical CIW data show that the original har- monic fit coefficients are reproducible. Despite the inconsistencies, the secondary sources nevertheless mostly yield diurnal variations which fall within the variability of the original historical data. 1 Introduction ningfield, 2020), and historical aspects of it are explored further here.
    [Show full text]
  • 1 Full List of Publications
    Full list of publications - Prof Giles Harrison Number Year Citation 311 2021 R.G. Harrison, Measuring electrical properties of the lower troposphere using enhanced meteorological radiosondes, Geosci. Instrum. Method. Data Syst. Discuss. https://doi.org/10.5194/gi-2021-26 , 2021 310 Airey, M.W., Nicoll, K.A., Harrison, R.G., Marlton, G.J., Characteristics of desert precipitation derived from a ceilometer dataset, Atmosphere 12, 1245, 10.3390//atmos12101245 309 Harrison G., Bennett, A. (2021) Electricity measurements. In: Foken T., (ed.), Handbook of Atmospheric Measurements. Springer Nature, Switzerland, 431-456. 308 R.G. Harrison and S.D. Burt, Quantifying uncertainties in climate data: measurement limitations of naturally ventilated thermometer screens Environ Res Commun 3, 061005 (2021) 307 R. Giles Harrison, Keri A. Nicoll, Douglas Tilley, Pejman Iravani, Charge emission from a remotely piloted aircraft into fog Proceedings of the 2021 meeting of the Electrostatics Society of America, University of Oklahoma, June 2021 306 Saunders C.P.R, R.G. Harrison, Obituary: John Latham (1937-2021) Weather http://doi.org/10.1002/wea.4025 305 Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht, Using a global network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses Atmos Chem Phys 21, 6079–6092, https://doi.org/10.5194/acp-2020-959 304 Maarten Ambaum and Giles Harrison, Consider a spherical bird Reading physics blog 303 R. Giles Harrison, Keri A. Nicoll, Douglas J. Tilley, Graeme J. Marlton, Stefan Chindea, Gavin P. Dingley, Pejman Iravani, David J.
    [Show full text]
  • Recent Advances in Global Electric Circuit Coupling Between the Space Environment and the Troposphere
    Recent advances in global electric circuit coupling between the space environment and the troposphere Article Accepted Version Rycroft, M. J., Nicoll, K. A., Aplin, K. L. and Harrison, R. G. (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. Journal of Atmospheric and Solar-Terrestrial Physics, 90-91. pp. 198- 211. ISSN 1364-6826 doi: https://doi.org/10.1016/j.jastp.2012.03.015 Available at http://centaur.reading.ac.uk/31502/ It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1016/j.jastp.2012.03.015 Publisher: Elsevier All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading's research outputs online Recent advances in global electric circuit coupling between the space environment and the troposphere Michael J. Rycroft CAESAR Consultancy, 35 Millington Road, Cambridge CB3 9HW, U.K., and Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath BA2 7AY, U.K. Keri A. Nicoll Department of Meteorology, University of Reading, Reading RG6 6BB, U.K. Karen L. Aplin Department of Physics, University of Oxford, OX1 3RH, U.K. R. Giles Harrison Department of Meteorology, University of Reading, Reading RG6 6BB, U.K.
    [Show full text]
  • The Global Atmospheric Electrical Circuit and Climate
    GEOP220 The global atmospheric electrical circuit and climate R.G. Harrison Department of Meteorology, The University of Reading P.O. Box 243, Earley Gate, Reading, Berkshire, RG6 6BB, UK Email : [email protected] Abstract Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion- assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescales.
    [Show full text]
  • Extra-Tropical Cyclones, Tropical Cyclones and Convective Storms
    3.7 Meteorological risk: extra-tropical cyclones, tropical cyclones and convective storms Thomas Frame, Giles Harrison, Tim Hewson, Nigel Roberts 3.7.1 scale and their typical lifetime. Other extra-tropical cyclone is closely relat- types of storm system do exist, but ed to the strength of this jet stream. Storm types these can be considered subtypes of The strongest extra-tropical cyclones and associated the three systems listed above. occur in winter months when the jet hazardous stream is at its strongest. 3.7.1.2 phenomena Extra-tropical cyclones Storm systems can be 3.7.1.1 Extra-tropical cyclones are large ro- distinguished from each Storms tating weather systems that occur in other by their mechanism the extra-tropics (more than 30° lat- Conceptually, there are two types of itude away from the equator). They of development (growth), storm in meteorology: (1) the hazard- consist of an approximately circular structure, geographic ous weather phenomena themselves region of low surface pressure, of a location, spatial scale and (such as windstorms, rainstorms, radius of 100-2 000 km, accompa- typical lifetime. snowstorms, hailstorms, thunder- nied by cold and warm fronts. They storms and ice storms (freezing rain)), typically develop in regions of strong and (2) the meteorological features in horizontal temperature gradients, the atmosphere — the ‘storm sys- which are commonly denoted on a Periods when the jet stream is unusu- tems’ — that can be said to be re- weather chart as a cold or quasi-sta- ally strong can lead to two or more sponsible for this adverse weather tionary front.
    [Show full text]
  • Atmospheric Electricity Education Through Laboratory Demonstrations
    Geophysical Research Abstracts Vol. 20, EGU2018-10458, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. Atmospheric electricity education through laboratory demonstrations Karen Aplin (1), R Giles Harrison (2), Jeffrey Lidgard (1), and Graeme Marlton (2) (1) University of Oxford, Physics Department, Oxford, United Kingdom ([email protected]), (2) University of Reading, Department of Meteorology, Reading, United Kingdom Lightning is a widely-experienced atmospheric phenomenon, which is commonly recognised as electrical in origin. Studying atmospheric electrical effects in the classroom, however, generally requires high voltage sources and in some cases may not be possible because of safety considerations. Generating high voltages through electrostatics can provide good and controllable laboratory demonstrations, through which phenomena related to lightning dis- charges can be experienced and explained. The Kelvin water dropper generator, for example, can be constructed simply, and used to generate sufficiently high voltages to cause small sparks with just water and gravity. This pro- vides a basis for explaining inductive charging and the polarisation of water droplets, and a source of detectable radio frequency energy from the discharge. Another electrostatic generator is the classical Wimshurst machine, which readily generates large voltages in a few seconds. This has also been used in a classroom demonstration context with a group of students. With the addition of an optically-isolated voltmeter, the breakdown strength of air can be estimated. Taken together, these two educational approaches provide illustrations of charge transfer on water drops, and the electrical breakdown of air. This adds an experiential element to education about atmospheric electricity that can be explained at a variety of technical levels, from school children to the general public to final year undergraduate students..
    [Show full text]
  • Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity R
    Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity R. Giles Harrison, Erika Barth, Francesca Esposito, Jonathan Merrison, Franck Montmessin, Karen L. Aplin, Cause Borlina, Jean-Jacques Berthelier, Grégoire Déprez, William M. Farrell, et al. To cite this version: R. Giles Harrison, Erika Barth, Francesca Esposito, Jonathan Merrison, Franck Montmessin, et al.. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity. Space Science Reviews, Springer Verlag, 2016, 203 (1), pp.299-345. 10.1007/s11214-016-0241-8. insu- 01301857 HAL Id: insu-01301857 https://hal-insu.archives-ouvertes.fr/insu-01301857 Submitted on 13 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Space Sci Rev DOI 10.1007/s11214-016-0241-8 Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity R.G. Harrison1 · E. Barth2 · F. Esposito 3 · J. Merrison4 · F. Montmessin5 · K.L. Aplin6 · C. Borlina7 · J.J. Berthelier5 · G. Déprez5 · W.M. Farrell8 · I.M.P. Houghton6 · N.O. Renno7 · K.A. Nicoll1 · S.N. Tripathi9 · M. Zimmerman10 Received: 28 August 2015 / Accepted: 15 February 2016 © The Author(s) 2016.
    [Show full text]
  • Downloaded 09/29/21 06:23 PM UTC 64 JOURNAL of ATMOSPHERIC and OCEANIC TECHNOLOGY VOLUME 38
    JANUARY 2021 H A R R I S O N E T A L . 63 Demonstration of a Remotely Piloted Atmospheric Measurement and Charge Release Platform for Geoengineering a a,b b a b R. GILES HARRISON, KERI A. NICOLL, DOUGLAS J. TILLEY, GRAEME J. MARLTON, STEFAN CHINDEA, b c c c d GAVIN P. DINGLEY, PEJMAN IRAVANI, DAVID J. CLEAVER, JONATHAN L. DU BOIS, AND DAVID BRUS a Department of Meteorology, University of Reading, Reading, United Kingdom b Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom c Department of Mechanical Engineering, University of Bath, Bath, United Kingdom d Finnish Meteorological Institute, Helsinki, Finland (Manuscript received 26 June 2020, in final form 14 October 2020) ABSTRACT: Electric charge is always present in the lower atmosphere. If droplets or aerosols become charged, their behavior changes, influencing collision, evaporation, and deposition. Artificial charge release is an unexplored potential geoengineering technique for modifying fogs, clouds, and rainfall. Central to evaluating these processes experimentally in the atmosphere is establishing an effective method for charge delivery. A small charge-delivering remotely piloted aircraft has been specially developed for this, which is electrically propelled. It carries controllable bipolar charge emitters (nominal emission current 65 mA) beneath each wing, with optical cloud and meteorological sensors integrated into the airframe. Meteorological and droplet measurements are demonstrated to 2 km altitude by comparison with a radiosonde, including within cloud, and successful charge emission aloft verified by using programmed flight paths above an upward-facing surface electric field mill. This technological approach is readily scalable to provide nonpolluting fleets of charge-releasing aircraft, identifying and targeting droplet regions with their own sensors.
    [Show full text]
  • The Environmental Physics Group Summer 2013 Newsletter…
    NEWSLETTER September 2013 The Effect of Charged Aerosols on Earth’s Climate. Image Credit: Augustine Volcano in Alaska: US Geological Survey An IOP meeting in November will bring together researchers to discuss the effect of charged aerosols on out climate. http://www.iop.org/activity/groups/subject/env/ Environmental Physics Group Newsletter September 2013 Contents EPG News 4 A message from Hugh Mortimer, chair of the EPG 4 Congratulations to our Essay Winners 5 Secretary’s report 2012-2013 5 Reports from previous EPG events 7 Environmental Electrostatics 4 7 Weather and climate modelling 9 Environmental Physics Group Members’ Day 10 Environmental Physics Group Members’ Day Evening Lecture (Prof Michael Rycroft) 11 Forthcoming Environmental Physics Group Events 13 The science behind cultural heritage 13 Remote Sensing Applications in Environment, Climate Change and Human Impact Assessment 13 Charged Aerosols 14 Photonex13 14 Higher Education and Environmental Physics 15 At home – The Earth’s Climate, Past, Present and Future 15 Aviation and turbulence in the free atmosphere 16 Ideas for forthcoming events 16 Forthcoming IOP Events 17 Advances in Photovoltaics 17 Photon14 17 Other Activities 17 Research Student Conference Fund 17 Environmental Research Letters and Publishing News 18 Careers and Jobs in Physics 21 IoP Careers Website 21 Members News 21 2 Environmental Physics Group Newsletter September 2013 Welcome to the Environmental Physics Group Summer 2013 newsletter… Welcome to the late summer edition of the Environmental Physics Groups newsletter. I am writing this as the new chairman of the group and as such, I would like to thank Pat Goodman on behalf of all of us in the Environment Physics Group, for all of his hard work and leadership over the past 9 years.
    [Show full text]
  • Scientific Career Launched at the Start of the Space Age: Michael Rycroft at 80
    Aplin, K. L. , Harrison, R. G., fuellekrug, M., Lanchester, B., & Becker, F. (2020). A scientific career launched at the start of the space age: Michael Rycroft at 80. History of Geo- and Space Sciences, 11. https://www.hist-geo-space-sci.net/11/105/2020/hgss-11-105- 2020.html Publisher's PDF, also known as Version of record License (if available): CC BY Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Hist. Geo Space Sci., 11, 105–121, 2020 https://doi.org/10.5194/hgss-11-105-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. A scientific career launched at the start of the space age: Michael Rycroft at 80 Karen L. Aplin1, R. Giles Harrison2, Martin Füllekrug3, Betty Lanchester4, and François Becker5 1Department of Aerospace Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK 2Department of Meteorology, University of Reading, P.O. Box 243 Reading RG6 6BB, UK 3Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK 4Department of Physics and Astronomy, University of Southampton, University Road, Southampton, SO17 1BJ, UK 5International Space University, 1 rue Jean-Dominique Cassini, Parc d’Innovation, 67400 Ilkirch-Graffenstaden, France Correspondence: Karen L. Aplin ([email protected]) Received: 9 February 2020 – Accepted: 29 April 2020 – Published: 29 May 2020 Abstract.
    [Show full text]