Mediterranean Marine Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foul Play? on the Rapid Spread of the Brown Shrimp Penaeus
Mar Biodiv DOI 10.1007/s12526-016-0518-x SHORT COMMUNICATION Foul play? On the rapid spread of the brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Mediterranean, with new records from the Gulf of Lion and the southern Levant Bella S. Galil1 & Gianna Innocenti2 & Jacob Douek1 & Guy Paz1 & Baruch Rinkevich1 Received: 19 February 2016 /Revised: 22 May 2016 /Accepted: 25 May 2016 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016 Abstract Specimens of the penaeid shrimp Penaeus Keywords Penaeus aztecus . Gulf of Lion . Levant Basin . aztecus, a West Atlantic species, were collected off Le New records . Illegal introduction . Parasite Grau du Roi, Gulf of Lion, France, and off the Israeli coast, Levant Basin, Mediterranean Sea. This alien species has been previously recorded off Turkey, Greece, Montenegro and the Tyrrhenian coast of Italy. The species identity was Introduction confirmed based on morphological characters and by se- quencing 406 nucleotides of the 16S RNA gene and 607 Penaeus aztecus Ives, 1891, is native to the Western Atlantic, nucleotides of the COI. The 16S rRNA sequences of the from Massachusetts, USA, to Yucatan, Mexico (Cook and specimens collected in Israel, France and Italy were iden- Lindner 1970). Penaeid shrimps are a valuable fishing re- tical, and exhibited three different COI haplotypes. The source and P. aztecus is no exception. In the Gulf of Mexico, near-concurrent records from distant locations in the the species supports important fisheries both in the USA and Mediterranean put paid to the premise that P. aztecus was in México (Velazquez and Gracia 2000). -
Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................ -
Distribution and Behaviour of Deep-Sea Benthopelagic Fauna Observed Using Towed Cameras in the Santa Maria Di Leuca Cold-Water Coral Province
Vol. 443: 95–110, 2011 MARINE ECOLOGY PROGRESS SERIES Published December 20 doi: 10.3354/meps09432 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Distribution and behaviour of deep-sea benthopelagic fauna observed using towed cameras in the Santa Maria di Leuca cold-water coral province G. D’Onghia1, A. Indennidate1, A. Giove1, A. Savini2, F. Capezzuto1, L. Sion1, A. Vertino2, P. Maiorano1 1Department of Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy 2Department of Geological Science and Geotechnology, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy ABSTRACT: Using a towed camera system, a total of 422 individuals belonging to 62 taxa (includ- ing 33 identified species) were counted in the Santa Maria di Leuca (SML) coral province (Mediterranean Sea). Our findings update the knowledge of the biodiversity of this area and of the depth records of several species. The presence of coral mounds mostly in the north-eastern sector of the SML coral province seems to influence the large scale distribution of the deep-sea ben- thopelagic fauna, playing the role of attraction-refuge with respect to the barren muddy bottoms where fishing occurs in northern areas. Multiple Correspondence Analysis identified 3 main taxa groups: (1) rather strictly linked to the bottom, resting or moving on the seabed, often sheltering and feeding; (2) mostly swimming in the water column and mostly observed on rugged bottoms; and (3) actively swimming or hovering near the seabed. The behavioural patterns largely related to activity and position of the fauna seem to determine their small-scale distribution. The effects of different benthic macrohabitats appear to be less important and the depth within the bathymetric range examined even less so. -
Anthropogenic and Natural Perturbations on Lower Barataria
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2009 Anthropogenic and natural perturbations on lower Barataria Bay, Louisiana: detecting responses of marsh-edge fishes and decapod crustaceans Agatha-Marie Fuller Roth Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Roth, Agatha-Marie Fuller, "Anthropogenic and natural perturbations on lower Barataria Bay, Louisiana: detecting responses of marsh- edge fishes and decapod crustaceans" (2009). LSU Doctoral Dissertations. 1901. https://digitalcommons.lsu.edu/gradschool_dissertations/1901 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ANTHROPOGENIC AND NATURAL PERTURBATIONS ON LOWER BARATARIA BAY, LOUISIANA: DETECTING RESPONSES OF MARSH-EDGE FISHES AND DECAPOD CRUSTACEANS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Oceanography and Coastal Sciences by Agatha-Marie Fuller Roth B.S., University of Alabama, 1999 M.S., Southeastern Louisiana University, 2003 May 2009 DEDICATION This work is dedicated to Mr. Richard Joseph Roth, Jr. To My Father who excelled at his profession while maintaining his gentleman’s status in society and giving me a fairytale childhood and a royal adulthood. Thank you for life, love, faith, and drive. -
Deep-Water Shrimp Fisheries in Latin America: a Review
Lat. Am. J. Aquat. Res., 40(3): 497-535, 2012 Latin American Journal of Aquatic Research 497 International Conference: “Environment and Resources of the South Pacific” P.M. Arana (Guest Editor) DOI: 103856/vol40-issue3-fulltext-2 Review Deep-water shrimp fisheries in Latin America: a review Ingo S. Wehrtmann1, Patricio M. Arana2, Edward Barriga3, Adolfo Gracia4 & Paulo Ricardo Pezzuto5 1Unidad de Investigación Pesquera y Acuicultura (UNIP), Centro de Investigación en Ciencias Marinas y Limnología (CIMAR), Universidad de Costa Rica, San José, Costa Rica 2Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile 3Instituto del Mar del Perú, Callao, Perú 4Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, DF, México 5Universidade do Vale do Itajaí, Itajaí, SC, Brasil ABSTRACT. Commercial fisheries are expanding their activities into deeper water. The life history features of these deep-water resources make them more vulnerable to exploitation than most shallow-water resources. Moreover, the apparent lack of solid information about the ecology of most deep-water species represents a major limitation for the development and implementation of management strategies. This scenario has caused great concern regarding the sustainability of these resources and the possible environmental impacts on the deep-sea ecosystem. In Latin America, commercial fisheries are going deep as well, and considering the above-mentioned concerns, we felt the need to compile the available information about the deep-water shrimp resources and the current status of their fisheries in Latin America. Focusing on Mexico, Central America, Peru, Chile and Brazil, this review describes the exploited species, and, whenever available, the fishing fleet, fishery statistics, and management strategies. -
Akarnanisk Blankesten, Pagellus Acarne
Atlas over danske saltvandsfisk Akarnanisk blankesten Pagellus acarne (Risso, 1827) Af Henrik Carl Akarnanisk blankesten på 17,5 cm fra Sicilien, juli 2015. © Peter Rask Møller. Projektet er finansieret af Aage V. Jensen Naturfond Alle rettigheder forbeholdes. Det er tilladt at gengive korte stykker af teksten med tydelig kilde- henvisning. Teksten bedes citeret således: Carl, H. 2019. Akarnanisk blankesten. I: Carl, H. & Møller, P.R. (red.). Atlas over danske saltvandsfisk. Statens Naturhistoriske Museum. Online- udgivelse, december 2019. Systematik og navngivning Den akarnaniske blankesten blev oprindelig beskrevet som Pagrus acarne Risso, 1827. Senere blev den flyttet til slægten Pagellus Valenciennes, 1830. Gennem tiden er ca. 20 arter blevet regnet til slægten, men på nuværende tidspunkt medregnes kun seks arter (Froese & Pauly 2019). Heraf kendes de tre fra danske farvande. Foruden akarnanisk blankesten drejer det sig om rød blankesten (P. erythrinus) og spidstandet blankesten (P. bogaraveo). Det officielle danske navn er akarnanisk blankesten (Muus 1970; Nielsen 1988), og da arten kun kendes fra to fangster i Danmark, findes der ingen danske lokalnavne. Adskillige forfattere har i de senere år brugt stavemåden akarnaisk blankesten, men dette skyldes en fejl i bogen ”Havfisk og Fiskeri” (Muus & Nielsen 1998), som er blevet gentaget. Navnet kommer af det græske område Akarnanien, der ligger ved Adriaterhavet, hvilket også har givet ophav til det latinske artsnavn. Det danske navn blankesten er brugt om havruder helt tilbage i 1700-tallet (Brünnich 1771). Slægtsnavnet Pagellus er en latinisering af navnet ”pagel”, der brugtes om arten i den franske middelhavsprovins Languedoc (Kullander & Delling 2012). Udseende og kendetegn Kroppen er torpedoformet og lettere sammentrykt. -
The Brown Shrimp Penaeus Aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Nile Delta, Egypt: an Exploitable Resource for Fishery and Mariculture?
BioInvasions Records (2018) Volume 7, Issue 1: 51–54 Open Access DOI: https://doi.org/10.3391/bir.2018.7.1.07 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication The brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Nile Delta, Egypt: an exploitable resource for fishery and mariculture? Sherif Sadek¹, Walid Abou El-Soud2 and Bella S. Galil3,* 1Aquaculture Consultant Office, 9 Road 256 Maadi, Cairo, Egypt 2Egyptian Mariculture Company, Dibah Triangle Zone, Manzala Lake, Port-Said, Egypt 3The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel *Corresponding author E-mail: [email protected] Received: 21 October 2017 / Accepted: 12 January 2018 / Published online: 27 January 2018 Handling editor: Cynthia McKenzie Abstract The penaeid shrimp Penaeus aztecus is recorded for the first time from Egypt. The West Atlantic species was first noted off Damietta, on the Mediterranean coast of Egypt, in 2012. This species has already been recorded in the Mediterranean Sea from the southeastern Levant to the Gulf of Lion, France. The impacts of the introduction of P. aztecus on the local biota, and in particular on the native and previously introduced penaeids, are as yet unknown. Shrimp farmers at the northern Nile Delta have been cultivating P. aztecus since 2016, depending on postlarvae and juveniles collected from the wild in the Damietta branch of the Nile estuary. Key words: brown shrimp, first record, non-indigenous species, shrimp farming, wild fry Introduction Italy, Montenegro, and Turkey (for recent distribution maps see Galil et al. 2017; Scannella et al. -
Acta Aquatica Aquatic Sciences Journal
p-ISSN. 2406-9825 Acta Aquatica: Aquatic Sciences Journal, 7:1 (April, 2020): 50-53 e-ISSN. 2614-3178 Acta Aquatica Aquatic Sciences Journal Infestation rate and impacts of Epipenaeon ingens on growth and reproduction of brown shrimp (Penaeus aztecus) a, a a Mehmet Gökoğlu *, Serkan Teker , and Jale Korun a Faculty of Fisheries, Akdeniz University, Turkey Abstract In this study, 515 Farfantepenaeus aztecus specimens were investigated in the Gulf of Antalya and 304 (59,02%) specimens (167 females and 137 males) infested with Bopyrid isopod parasite Epipenaeon ingens were found. In this study, we aimed to define the rate of infestation and its impact on survival rate and growth rate. Relationship of length- weight and condition factor values were lower in infested specimens compared to non-infested ones. While gonadal development was observed in different stages of non-infested female specimens, no gonadal development was observed in any infested specimens. Moreover, darker color and harder shell structure were observed in parasitized shrimps. During this research, infestation onto P. semisulcatus and P. kerathurus had been seen rarely. Keywords: Gulf of Antalya; Epipenaeon ingens, Farfantepenaeus aztecus; growth; reproduction 1. Introduction E. ingens has been recorded for the first time in the Mediterranean Sea by Bourdon (1968). After then, the second Epipenaeon ingens Nobili (1906) is a Bopyrid isopod record for E. ingens has been made in the Gulf of parasite and mainly known from the Indian and Western Pacific Antalya/Mediterranean Sea by Korun et al. (2013). It was Ocean. Bopyrid isopods are branchial parasites from subfamily observed that an abnormal discolored bulge underside of the Orbioninae and they are found on penaeid shrimps (Rajkumar et right branchiostegite (gill cover) part of the carapace section of al., 2011). -
Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida
SHRIMPS, LOBSTERS, AND CRABS OF THE ATLANTIC COAST OF THE EASTERN UNITED STATES, MAINE TO FLORIDA AUSTIN B.WILLIAMS SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1984 © 1984 Smithsonian Institution. All rights reserved. Printed in the United States Library of Congress Cataloging in Publication Data Williams, Austin B. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Rev. ed. of: Marine decapod crustaceans of the Carolinas. 1965. Bibliography: p. Includes index. Supt. of Docs, no.: SI 18:2:SL8 1. Decapoda (Crustacea)—Atlantic Coast (U.S.) 2. Crustacea—Atlantic Coast (U.S.) I. Title. QL444.M33W54 1984 595.3'840974 83-600095 ISBN 0-87474-960-3 Editor: Donald C. Fisher Contents Introduction 1 History 1 Classification 2 Zoogeographic Considerations 3 Species Accounts 5 Materials Studied 8 Measurements 8 Glossary 8 Systematic and Ecological Discussion 12 Order Decapoda , 12 Key to Suborders, Infraorders, Sections, Superfamilies and Families 13 Suborder Dendrobranchiata 17 Infraorder Penaeidea 17 Superfamily Penaeoidea 17 Family Solenoceridae 17 Genus Mesopenaeiis 18 Solenocera 19 Family Penaeidae 22 Genus Penaeus 22 Metapenaeopsis 36 Parapenaeus 37 Trachypenaeus 38 Xiphopenaeus 41 Family Sicyoniidae 42 Genus Sicyonia 43 Superfamily Sergestoidea 50 Family Sergestidae 50 Genus Acetes 50 Family Luciferidae 52 Genus Lucifer 52 Suborder Pleocyemata 54 Infraorder Stenopodidea 54 Family Stenopodidae 54 Genus Stenopus 54 Infraorder Caridea 57 Superfamily Pasiphaeoidea 57 Family Pasiphaeidae 57 Genus -
Mediterranean Sea
OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi MEDITERRANEAN The IUCN Red List of Threatened Species™ – Regional Assessment OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi The IUCN Red List of Threatened Species™ – Regional Assessment Compilers: Dania Abdul Malak Mediterranean Species Programme, IUCN Centre for Mediterranean Cooperation, calle Marie Curie 22, 29590 Campanillas (Parque Tecnológico de Andalucía), Málaga, Spain Suzanne R. Livingstone Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, c/o Conservation International, Arlington, VA 22202, USA David Pollard Applied Marine Conservation Ecology, 7/86 Darling Street, Balmain East, New South Wales 2041, Australia; Research Associate, Department of Ichthyology, Australian Museum, Sydney, Australia Beth A. Polidoro Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Annabelle Cuttelod Red List Unit, IUCN Species Programme, 219c Huntingdon Road, Cambridge CB3 0DL,UK Michel Bariche Biology Departement, American University of Beirut, Beirut, Lebanon Murat Bilecenoglu Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydin, Turkey Kent E. Carpenter Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Bruce B. -
Sperm Competition and Sex Change: a Comparative Analysis Across Fishes
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2007.00050.x SPERM COMPETITION AND SEX CHANGE: A COMPARATIVE ANALYSIS ACROSS FISHES Philip P. Molloy,1,2,3 Nicholas B. Goodwin,1,4 Isabelle M. Cot ˆ e, ´ 3,5 John D. Reynolds,3,6 Matthew J. G. Gage1,7 1Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom 2E-mail: [email protected] 3Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada 4E-mail: [email protected] 5E-mail: [email protected] 6E-mail: [email protected] 7E-mail: [email protected] Received October 2, 2006 Accepted October 26, 2006 Current theory to explain the adaptive significance of sex change over gonochorism predicts that female-first sex change could be adaptive when relative reproductive success increases at a faster rate with body size for males than for females. A faster rate of reproductive gain with body size can occur if larger males are more effective in controlling females and excluding competitors from fertilizations. The most simple consequence of this theoretical scenario, based on sexual allocation theory, is that natural breeding sex ratios are expected to be female biased in female-first sex changers, because average male fecundity will exceed that of females. A second prediction is that the intensity of sperm competition is expected to be lower in female-first sex-changing species because larger males should be able to more completely monopolize females and therefore reduce male–male competition during spawning. -
Invertebrate ID Guide
11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................