Pterodactyloid Pterosaur Bones from Cretaceous Deposits of the Antarctic Peninsula
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theropod Composition of Early Late Cretaceous Faunas from Central
CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library 1 Feeding related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet RH: Feeding related characters in pterosaurs Attila Ősi A comparative study of various feeding related features in basal pterosaurs reveals a significant change in feeding strategies during the early evolutionary history of the group. These features are related to the skull architecture (e.g. quadrate morphology and orientation, jaw joint), dentition (e.g. crown morphology, wear patterns), reconstructed adductor musculature, and postcranium. The most basal pterosaurs (Preondactylus, dimorphodontids and anurognathids) were small bodied animals with a wing span no greater than 1.5 m, a relatively short, lightly constructed skull, straight mandibles with a large gape, sharply pointed teeth and well developed external adductors. The absence of extended tooth wear excludes complex oral food processing and indicates that jaw closure was simply orthal. Features of these basalmost forms indicate a predominantly insectivorous diet. Among stratigraphically older but more derived forms (Eudimorphodon, Carniadactylus, Caviramus) complex, multicusped teeth allowed the consumption of a wider variety of prey via a more effective form of food processing. This is supported by heavy dental wear in all forms with multicusped teeth. Typical piscivorous forms occurred no earlier than the Early Jurassic, and are characterized by widely spaced, enlarged procumbent teeth forming a fish grab and an anteriorly inclined quadrate that permitted only a relatively small gape. In addition, the skull became more elongate and body size 2 increased. Besides the dominance of piscivory, dental morphology and the scarcity of tooth wear reflect accidental dental occlusion that could have been caused by the capturing or seasonal consumption of harder food items. -
Provenance and Post-Depositional Low-Temperature Evolution of the James Ross Basin Sedimentary Rocks (Antarctic Peninsula) Based
Antarctic Science 21(6), 593–607 (2009) & Antarctic Science Ltd 2009 doi:10.1017/S0954102009990241 Provenance and post-depositional low-temperature evolution of the James Ross Basin sedimentary rocks (Antarctic Peninsula) based on fission track analysis MARTIN SVOJTKA1, DANIEL NY´ VLT2, MASAKI MURAKAMI1*, JITKA VA´ VROVA´ 3, JIRˇ ´I FILIP1 and PETR MIXA2 1Institute of Geology, Academy of Sciences, v.v.i., Rozvojova´ 269, 16500 Praha 6, Czech Republic 2Czech Geological Survey, Kla´rov 3, 118 21 Praha, Czech Republic 3Institute of Geochemistry, Charles University, Albertov 6, 12843 Praha 2, Czech Republic *current address: Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan [email protected] Abstract: Zircon and apatite fission track (AFT) thermochronology was applied to the James Ross Basin sedimentary rocks from James Ross and Seymour islands. The probable sources of these sediments were generated in Carboniferous to Early Paleogene times (,315 to 60 Ma). The total depths of individual James Ross Basin formations are discussed. The AFT data were modelled, and the thermal history model was reconstructed for samples from Seymour Island. The first stage after a period of total thermal annealing (when the samples were above 1208C) involved Late Triassic cooling (,230 to 200 Ma) and is followed by a period of steady cooling through the whole apatite partial annealing zone (PAZ, 60–1208C) to minimum temperature in Paleocene/Early Eocene. The next stage was the maximum burial of sedimentary rocks in the Eocene (,35 Ma, 1.1–1.8 km) and the final cooling and uplift of Seymour Island sedimentary rocks at ,35 to 20 Ma. -
Cretaceous Stratigraphy of Seymour Island, East Antarctic Peninsula
Cretaceous stratigraphy of Seymour Four profiles were measured on Seymour Island in areas of little tectonic disturbance, previously selected by photoin- Island, East Antarctic Peninsula terpretation (figure 1). A total of 250 samples were sys- tematically collected within these profiles at approximately 10- meter intervals. Good weather and invaluable support from the CARLOS MACELLARI and BRIAN T. HUBER helicopter pilots and the crew of the USCGC Glacier made it possible to visit and measure profiles on Snow Hill, Vega, and Institute of Polar Studies James Ross Islands in addition to the planned activities on Ohio State University Seymour Island. We hope these observations and samples will Columbus, Ohio 43210 provide valuable information regarding the correlation of dif- ferent Cretaceous outcrops within the James Ross Island area. They may be particularly helpful in establishing a detailed cor- relation between the Seymour and Snow Hill Island sequences. The Cretaceous stratigraphy of Seymour Island (Isla Vice- The oldest unit exposed on the island is the Lopez de Ber- comodoro Marambio in Argentine literature) has been de- todano Formation of Campanian (Howarth 1966; Olivero 1981) to scribed by Andersson (1906) and more recently by several possibly Maestrichtian (Spath 1953) age (figure 2). The max- authors (Elliot et al. 1975, Rinaldi 1982, and Rinaldi et al. 1972, imum measured thickness was encountered in profile 1(1,190 among others). However, no detailed sedimentological or strat- meters). Several minor units were recognized on the basis of igraphic account of these sediments has yet been published. As lithology, degree of cementation, and fossil content; many of one of the programs on the Seymour Island Expedition, we these were laterally continuous throughout the island. -
Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together. -
Lowest Paleogene Strata on Vega Island, Antarctica
Palaeogeography, Palaeoclimatology, Palaeoecology 402 (2014) 55–72 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Stratigraphy and vertebrate paleoecology of Upper Cretaceous–?lowest Paleogene strata on Vega Island, Antarctica Eric M. Roberts a,⁎, Matthew C. Lamanna b, Julia A. Clarke c, Jin Meng d, Eric Gorscak e, Joseph J.W. Sertich f, Patrick M. O'Connor e, Kerin M. Claeson g,RossD.E.MacPheeh a School of Earth and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia b Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Ave., Pittsburgh, PA 15213, USA c Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, 1 University Station C1100, Austin, TX 78712, USA d Department of Paleontology, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA e Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA f Department of Earth Sciences, Denver Museum of Nature and Science, 2001 Colorado Blvd., Denver, CO 80205, USA g Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA h Department of Mammalogy, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA article info abstract Article history: The Upper Cretaceous (Maastrichtian) Sandwich Bluff Member of the López de Bertodano Formation is well Received 24 October 2013 exposed on Vega Island in the James Ross Basin off the northeastern coast of the Antarctic Peninsula. Although Received in revised form 18 February 2014 this unit is one of the richest sources of end-Cretaceous vertebrate fossils in Antarctica, it is also one of the Accepted 3 March 2014 least sedimentologically and stratigraphically characterized units in the basin. -
A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member. -
An Avian Femur from the Late Cretaceous of Vega Island, Antarctic Peninsula: Removing the Record of Cursorial Landbirds from the Mesozoic of Antarctica
An avian femur from the Late Cretaceous of Vega Island, Antarctic Peninsula: removing the record of cursorial landbirds from the Mesozoic of Antarctica Abagael R. West1,2,3, Christopher R. Torres4, Judd A. Case5, Julia A. Clarke4,6, Patrick M. O’Connor7,8 and Matthew C. Lamanna1 1 Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA, USA 2 Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA 3 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA 4 Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA 5 Department of Biology, Eastern Washington University, Cheney, WA, USA 6 Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA 7 Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA 8 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH, USA ABSTRACT In 2006, a partial avian femur (South Dakota School of Mines and Technology (SDSM) 78247) from the Upper Cretaceous (Maastrichtian) Sandwich Bluff Member of the López de Bertodano Formation of Sandwich Bluff on Vega Island of the northern Antarctic Peninsula was briefly reported as that of a cariamiform—a clade that includes extant and volant South American species and many extinct flightless and cursorial species. Although other authors have since rejected this taxonomic assignment, SDSM 78247 had never been the subject of a detailed description, hindering a definitive assessment -
University of Birmingham a New Dinosaur With
University of Birmingham A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil Marsola, Julio; Bittencourt, Jonathas; Butler, Richard; Da Rosa, Atila; Sayao, Juliana; Langer, Max DOI: 10.1080/02724634.2018.1531878 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Marsola, J, Bittencourt, J, Butler, R, Da Rosa, A, Sayao, J & Langer, M 2019, 'A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil', Journal of Vertebrate Paleontology, vol. 38, no. 5, e1531878. https://doi.org/10.1080/02724634.2018.1531878 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 25/07/2018 This is the accepted manuscript for a forthcoming publication in Journal of Vertebrate Paleontology. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
Pterosaur Distribution in Time and Space: an Atlas 61
Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W. -
New Perspectives on Pterosaur Palaeobiology
Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 New perspectives on pterosaur palaeobiology DAVID W. E. HONE1*, MARK P. WITTON2 & DAVID M. MARTILL2 1Queen Mary University of London, Mile End Road, London E14NS, UK 2School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK *Correspondence: [email protected] Abstract: Pterosaurs were the first vertebrates to evolve powered flight and occupied the skies of the Mesozoic for 160 million years. They occurred on every continent, evolved their incredible pro- portions and anatomy into well over 100 species, and included the largest flying animals of all time among their ranks. Pterosaurs are undergoing a long-running scientific renaissance that has seen elevated interest from a new generation of palaeontologists, contributions from scientists working all over the world and major advances in our understanding of their palaeobiology. They have espe- cially benefited from the application of new investigative techniques applied to historical speci- mens and the discovery of new material, including detailed insights into their fragile skeletons and their soft tissue anatomy. Many aspects of pterosaur science remain controversial, mainly due to the investigative challenges presented by their fragmentary, fragile fossils and notoriously patchy fossil record. With perseverance, these controversies are being resolved and our understand- ing of flying reptiles is increasing. This volume brings together a diverse set of papers on numerous aspects of the biology of these fascinating reptiles, including discussions of pterosaur ecology, flight, ontogeny, bony and soft tissue anatomy, distribution and evolution, as well as revisions of their taxonomy and relationships. -
A Revision of the Upper Triassic Ornithischian Dinosaur Revueltosaurus, with a Description of a New Species
Heckert, A.B" and Lucas, S.O., eds., 2002, Upper Triassic Stratigraphy and Paleontology. New Mexico Museum of Natural History & Science Bulletin No.2 J. 253 A REVISION OF THE UPPER TRIASSIC ORNITHISCHIAN DINOSAUR REVUELTOSAURUS, WITH A DESCRIPTION OF A NEW SPECIES ANDREW B. HECKERT New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 Abstract-Ornithischian dinosaur body fossils are extremely rare in Triassic rocks worldwide, and to date the majority of such fossils consist of isolated teeth. Revueltosaurus is the most common Upper Triassic ornithischian dinosaur and is known from Chinle Group strata in New Mexico and Arizona. Historically, all large (>1 cm tall) and many small ornithischian dinosaur teeth from the Chinle have been referred to the type species, Revueltosaurus callenderi Hunt. A careful re-examination of the type and referred material of Revueltosaurus callenderi reveals that: (1) R. callenderi is a valid taxon, in spite of cladistic arguments to the contrary; (2) many teeth previously referred to R. callenderi, particularly from the Placerias quarry, instead represent other, more basal, ornithischians; and (3) teeth from the vicinity of St. Johns, Arizona, and Lamy, New Mexico previously referred to R. callenderi pertain to a new spe cies, named Revueltosaurus hunti here. R. hunti is more derived than R. callenderi and is one of the most derived Triassic ornithischians. However, detailed biostratigraphy indicates that R. hunti is older (Adamanian: latest Carnian) than R. callenderi (Revueltian: early-mid Norian). Both taxa have great potential as index taxa of their respective faunachrons and support existing biochronologies based on other tetrapods, megafossil plants, palynostratigraphy, and lithostratigraphy. -
New Information on the Tapejaridae (Pterosauria, Pterodactyloidea) and Discussion of the Relationships of This Clade
AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (4): 521-534. Buenos Aires, 30-12-2004 ISSN 0002-7014 New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade Alexander Wilhelm Armin KELLNER1 Abstract. A phylogenetic analysis indicates that the Tapejaridae is a monophyletic group of pterodactyloid pterosaurs, diagnosed by the following synapomorphies: premaxillary sagittal crest that starts at the anterior tip of the premaxilla and extends posteriorly after the occipital region, large nasoantorbital fenestra that reaches over 45% of the length between premaxilla and squamosal, lacrimal process of the jugal thin, distinct small pear- shaped orbit with lower portion narrow, and broad tubercle at the ventroposterior margin of the coracoid. Several cranial and postcranial characters indicate that the Tapejaridae are well nested within the Tapejaroidea, in sister group relationship with the Azhdarchidae. A preliminary study of the ingroup relationships within the Tapejaridae shows that Tupuxuara is more closely related to Thalassodromeus relative to Tapejara. At present tape- jarid remains have been found in the following deposits: Crato and Romualdo members of the Santana Formation (Aptian-Albian), Araripe Basin, Brazil; Jiufotang Formation (Aptian), Jehol Group of western Liaoning, China; and in the redbeds (Cenomanian) of the Kem Kem region, Morocco. An incomplete skull found in the Javelina Formation (Maastrichtian), Texas also shows several tapejarid features and might be a member of this clade. Although information is still limited, the present distribution of the Tapejaridae indicates that this clade of pterosaurs was not exclusive of Gondwana, and was more widespread than previously known. Resumen. NUEVA INFORMACIÓN SOBRE LOS TAPEJARIDAE (PTEROSAURIA, PTERODACTYLOIDEA) Y DISCUSIÓN SOBRE LAS RELACIONES DE ESTE CLADO.