BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK

Total Page:16

File Type:pdf, Size:1020Kb

BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK BASF Plant Science, L.P. Petition for the Determination of Nonregulated Status for EPA+DHA Canola Event LBFLFK The undersigned submits this petition under 7 CFR § 340.6 to request that the Administrator make a determination that the article should not be regulated under 7 CFR Part 340. OECD Unique Identifier BPS-BFLFK-2 BASF Plant Science, L.P. 26 Davis Drive Research Triangle Park, NC 27709 No CBI Submitted by Jordan Sottosanto Prepared by C. Andre, D.I. Arias, M. Bhatti, S. Breazeale, H. Fu, J. Klucinec, A. Lassen, E.A. Lipscomb, C. Martin, C.R. Moore, A.L. Olson, D.W. Roberts, T. Senger, S. Settlage, C. Wandelt, I. Wenderoth, P. Wu, M.K. Wyrick November 16, 2017 Revised: January 15, 2018 BASF Registration Document Number: 2018/7002374 BASF Reg. Doc. No. 2018/7002374 Page 1 of 416 BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK Release of Information As part of the regulatory requirement in the United States, BASF Plant Science, L.P. is submitting the information in this petition for review by the USDA. The submission of this information by BASF Plant Science, L.P. does not constitute an authorization to release any information contained within it to any third party. In the event the USDA receives a Freedom of Information Act request, pursuant to 5 U.S.C., § 552, and 7 CFR Part 1, covering all or some of this information, BASF Plant Science, L.P. expects that USDA will provide BASF Plant Science, L.P. with a copy of the material proposed to be released and the opportunity to object to the release of any information based on appropriate legal grounds, e.g., responsiveness, confidentiality, and/or competitive concerns in advance of the release of the document(s). BASF Plant Science, L.P. authorizes the posting of the petition on the USDA Biotechnology Regulatory Services website when it is also published in the Federal Register for public comment. BASF Plant Science, L.P. understands that a copy of this information may be made available to the public by individual request, as part of a public comment period. Except in accordance with the foregoing, BASF Plant Science, L.P. does not authorize the release, publication or other distribution of this information (including website posting) without prior notice and consent by BASF Plant Science, L.P. © 2018 BASF Plant Science, L.P. All Rights Reserved. This document is protected under copyright law. This document is for use only by the regulatory authority to which it has been submitted by BASF Plant Science, L.P. and only in support of actions requested by BASF Plant Science, L.P. Any other use or citation of this material, without prior written consent of BASF Plant Science, L.P., is strictly prohibited. By submitting this document, BASF Plant Science, L.P. does not grant any party or entity any right to license or to use the information or intellectual property described in this document. Beyond and Clearfield are registered trademarks of BASF Corp.; Excellence Through Stewardship is the registered trademark of Excellence Through Stewardship Corp.; GenBank is a registered trademark of the US Department of Health and Human Services; HiSeq is a trademark and Illumina is the registered trademark of Illumina, Inc.; LibertyLink is a registered trademark of the Bayer Group; Roundup Ready is the registered trademark of Monsanto Technology LLC; TaqMan is a registered trademark of Roche Molecular Systems, Inc. All trademarks recited herein are the intellectual property of their respective owners. No right to use any of these trademarks is granted by its recitation in this document. BASF Reg. Doc. No. 2018/7002374 Page 2 of 416 BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK EXECUTIVE SUMMARY BASF Plant Science, L.P. is submitting this request to USDA-APHIS for a determination of nonregulated status for the EPA+DHA canola (Brassica napus L.) event LBFLFK (OECD unique identifier BPS-BFLFK-2) and requests a determination from USDA-APHIS that LBFLFK canola and any progeny derived from LBFLFK canola by traditional breeding methods and naturally occurring crosses between LBFLFK canola and compatible species that are not regulated be considered nonregulated articles under 7 CFR part 340. As part of this petition, BASF is submitting phenotypic and genotypic experimental data, agronomic data, grain compositional data, safety assessment data, and other relevant information to fulfill the requirements of 7 CFR § 340.6 for an assessment of EPA+DHA canola event LBFLFK. Product Description and Intended Uses LBFLFK canola was produced using biotechnology to introduce newly expressed proteins. More specifically, recombinant DNA containing genes encoding fatty acid desaturase and elongase proteins and an herbicide resistant acetohydroxy acid synthase protein was introduced into the conventional canola variety Kumily by Agrobacterium rhizogenes-mediated transformation using a single transformation vector. The expression of these proteins in LBFLFK canola allows for the synthesis of long-chain omega-3 polyunsaturated fatty acids (LC-PUFAs), including EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), from oleic acid and for tolerance to treatment with an imidazolinone herbicide. LBFLFK canola provides a plant-based and scalable production system for omega-3 fatty acids and will be another source of EPA and DHA for consumers as either a food ingredient or as an aquaculture feed ingredient. Currently, the omega-3 LC-PUFAs EPA and DHA are primarily consumed through seafood, including finfish (e.g., salmon, tuna, and trout) and shellfish (e.g., crab, mussels, and oysters). Numerous health organizations recommend adult intakes of 250 to 500 mg combined EPA and DHA per day. While this recommendation is met in some countries, many countries, including the United States, fall below the recommended average daily intake. The primary reason for this deficiency is that the supply of these fatty acids from marine animal and other sources is limited. There is a significant challenge in producing and distributing products containing EPA and DHA to consumers in adequate quantity. There is also high demand for fish oil as a primary ingredient for farmed fish, especially fatty fish like salmon or trout. This demand is not met to the point where the harvested fish now have reduced levels of omega-3 fatty acids compared to historical levels. BASF Reg. Doc. No. 2018/7002374 Page 4 of 416 BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK The herbicide tolerance trait of LBFLFK canola allows for selective post-emergence weed control during field production. Pending approval from the U.S. EPA for label use, Beyond® herbicide, containing active ingredient imazamox, an imidazolinone, will be used on LBFLFK canola as part of a weed management program. Rate, weed growth stage, adjuvants, spray volume and pressure, and nozzle use will follow all label directions. Agronomic practices will be similar to those used with Clearfield® canola, which also has imidazolinone herbicide tolerance, and provides a significant tool to growers for selective breeding and broad spectrum weed control. Clearfield® products have been widely adopted in North America, and herbicide applications for LBFLFK canola will follow established weed control practices. Event LBFLFK will be cultivated within the United States and processed either in the United States or Canada as other available specialty canola varieties. To maintain the quality and ensure the segregation of LBFLFK canola seeds, grains, and processed products, an Identity Preservation System (IDP) will be implemented at every step of production and handling. Processing operations will be conducted either at dedicated facilities or at facilities with specific measures in place to ensure segregation from other products. Like other canola varieties, the products of LBFLFK canola will be processed into oil and defatted meal fractions. Oil and meal from canola can be manufactured into a variety of products for human and animal consumption or for industrial purposes. As a specialty canola with a fatty acid profile containing the LC-PUFAs EPA and DHA, the oil produced from LBFLFK canola will be sold specifically for the purpose of providing dietary omega-3 LC-PUFAs. The oil will be incorporated as an ingredient into consumer food items to provide individuals more options for dietary omega-3 LC-PUFAs. The refined oil may also be provided to dietary supplement manufacturers as an alternate source of omega-3 LC-PUFAs. The oil will also be used as an aquafeed input ingredient to international operations to provide omega-3 LC-PUFAs to farmed aquatic species. The defatted meal produced from LBFLFK canola, containing only a very small percent of fat, will not be sold as a specialty product and will be available for use in the same applications as conventional canola meal, including livestock feed. Data and Information Presented Confirms the Lack of Plant Pest Potential and the Food and Feed Safety of LBFLFK Canola Compared to Conventional Canola The data and information presented in this petition demonstrate LBFLFK canola is agronomically, phenotypically, and compositionally comparable to conventional canola, with the exception of the introduced proteins and the associated changes in the composition of fatty acids, including omega-3 LC-PUFAs. The data presented demonstrate LBFLFK canola is unlikely to pose an increased plant pest risk, including weediness characteristics or adverse environmental impacts, compared to conventional canola. The food, feed, and environmental safety of LBFLFK canola was confirmed based on multiple, well established lines of evidence: • Canola is a familiar crop that has a history of safe consumption and serves as an appropriate basis for comparison for LBFLFK canola. BASF Reg. Doc. No. 2018/7002374 Page 5 of 416 BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK • A detailed molecular characterization of the introduced DNA in LBFLFK canola demonstrated two intact, stable copies of the intended T-DNA insert at two loci within the canola genome.
Recommended publications
  • Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol
    insects Article Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol Priyadarshini Chakrabarti * and Ramesh R. Sagili * Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected] (P.C.); [email protected] (R.R.S.); Tel.: +1-541-737-0628 (P.C.); Tel.: +1-541-737-5460 (R.R.S.) Received: 27 August 2020; Accepted: 27 October 2020; Published: 29 October 2020 Simple Summary: Phytosterols are important micronutrients that are essential for production of insect molting hormones and cellular membrane integrity. Past research has shown that the key phytosterol that honey bees need is 24-methylenecholesterol. This phytosterol improves honey bee longevity and sustains brood production. Hence, it is important to understand how 24-methylenecholesterol can shape honey bee physiology by altering protein profiles of vital honey bee tissues. Nurse bees secrete glandular secretions (brood food) using hypopharyngeal and mandibular glands in their head regions. Further, it has been shown that this sterol is selectively accumulated in nurse bee heads. Thus, it is imperative to examine the protein profiles of nurse bee heads, in response to dietary 24-methylenecholesterol manipulation. In this study, groups of newly emerged nurse bees were fed with varying concentrations of dietary 24-methylenecholesterol, while the control groups received no sterol. We found that dietary sterol manipulation altered the protein profiles in nurse bee heads, with important nutritional marker proteins being upregulated in high dietary sterol groups. The important proteins identified in this study may serve as vital markers of nutritional stress related to sterols in honey bees, paving the way for future research on bee nutrition.
    [Show full text]
  • Short Chain Fatty Acid Biosynthesis in Microalgae Synechococcus Sp. PCC 7942
    marine drugs Article Short Chain Fatty Acid Biosynthesis in Microalgae Synechococcus sp. PCC 7942 Yi Gong 1,2,3 and Xiaoling Miao 1,2,3,* 1 State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; [email protected] 2 Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China 3 Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China * Correspondence: [email protected]; Tel.: +86-21-34207028 Received: 19 April 2019; Accepted: 25 April 2019; Published: 28 April 2019 Abstract: Short chain fatty acids (SCFAs) are valued as a functional material in cosmetics. Cyanobacteria can accumulate SCFAs under some conditions, the related mechanism is unclear. Two potential genes Synpcc7942_0537 (fabB/F) and Synpcc7942_1455 (fabH) in Synechococcus sp. PCC 7942 have homology with fabB/F and fabH encoding β-ketoacyl ACP synthases (I/II/III) in plants. Therefore, effects of culture time and cerulenin on SCFAs accumulation, expression levels and functions of these two potential genes were studied. The results showed Synechococcus sp. PCC 7942 accumulated high SCFAs (C12 + C14) in early growth stage (day 4) and at 7.5g/L cerulenin concentration, reaching to 2.44% and 2.84% of the total fatty acids respectively, where fabB/F expression was down-regulated. Fatty acid composition analysis showed C14 increased by 65.19% and 130% respectively, when fabB/F and fabH were antisense expressed. C14 increased by 10.79% (fab(B/F)−) and 6.47% (fabH−) under mutation conditions, while C8 increased by six times in fab(B/F)− mutant strain.
    [Show full text]
  • Inhibition of the Fungal Fatty Acid Synthase Type I Multienzyme Complex
    Inhibition of the fungal fatty acid synthase type I multienzyme complex Patrik Johansson*, Birgit Wiltschi*, Preeti Kumari†, Brigitte Kessler*, Clemens Vonrhein‡, Janet Vonck†, Dieter Oesterhelt*§, and Martin Grininger*§ *Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; †Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany; and ‡Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom Communicated by Hartmut Michel, Max Planck Institute for Biophysics, Frankfurt, Germany, June 23, 2008 (received for review March 6, 2008) Fatty acids are among the major building blocks of living cells, isoniazid and triclosan, both inhibiting the ER step of bacterial making lipid biosynthesis a potent target for compounds with fatty acid biosynthesis (6, 7). Several inhibitors targeting the antibiotic or antineoplastic properties. We present the crystal ketoacyl synthase (KS) step of the FAS cycle have also been structure of the 2.6-MDa Saccharomyces cerevisiae fatty acid syn- described, including cerulenin (CER) (8), thiolactomycin (TLM) thase (FAS) multienzyme in complex with the antibiotic cerulenin, (9), and the recently discovered platensimycin (PLM) (10). The representing, to our knowledge, the first structure of an inhibited polyketide CER inhibits both FAS type I and II KS enzymes, by fatty acid megasynthase. Cerulenin attacks the FAS ketoacyl syn- covalent modification of the active site cysteine and by occupying thase (KS) domain, forming a covalent bond to the active site the long acyl-binding pocket (11, 12). TLM and PLM, in contrast, cysteine C1305. The inhibitor binding causes two significant con- have been shown to be selective toward the FAS II system, formational changes of the enzyme.
    [Show full text]
  • De Novo Fatty Acid Synthesis Is Required for Establishment of Cell Type-Specific Gene Transcription During Sporulation in Bacill
    Molecular Microbiology (1998) 29(5), 1215–1224 De novo fatty acid synthesis is required for establishment of cell type-specific gene transcription during sporulation in Bacillus subtilis Gustavo E. Schujman, Roberto Grau, Hugo C. compartment (Lutkenhaus, 1994). The unequal-sized pro- Gramajo, Leonardo Ornella and Diego de Mendoza* geny resulting from the formation of the polar septum Programa Multidisciplinario de Biologı´a Experimental have different developmental fates and express different (PROMUBIE) and Departamento de Microbiologı´a, sets of genes (for reviews see Errington, 1993; Losick Facultad de Ciencias Bioquı´micas y Farmace´uticas, and Stragier, 1996). The fate of the forespore chamber Universidad Nacional de Rosario, Suipacha 531, 2000- is determined by the transcription factor sF, which is pre- Rosario, Argentina. sent before the formation of the polar septum but does not become active in directing gene transcription until completion of asymmetric division, when its activity is con- Summary fined to the smaller compartment of the sporangium (for A hallmark of sporulation of Bacillus subtilis is the for- reviews see Losick and Stragier, 1996) mation of two distinct cells by an asymmetric septum. The activity of sF is regulated by a pathway consisting of The developmental programme of these two cells the proteins SpoIIAB, SpoIIAA and SpoIIE, all of which are involves the compartmentalized activities of sE in the produced before the formation of the polar septum (Duncan larger mother cell and of sF in the smaller prespore. and Losick, 1993; Min et al., 1993; Alper et al., 1994; Die- A potential role of de novo lipid synthesis on develop- derich et al., 1994; Arigoni et al., 1995; Duncan et al., ment was investigated by treating B.
    [Show full text]
  • Effect of Phytosterol Structure on Thermal Polymerization of Heated Soybean Oil
    1068 Eur. J. Lipid Sci. Technol. 2008, 110, 1068–1077 Research Paper Effect of phytosterol structure on thermal polymerization of heated soybean oil Jill Kristine Winkler and Kathleen Warner U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, USA* This study determined the effect of phytosterol structure, including the degree of unsaturation and the presence of an ethylidene group in the side chain, on the thermal polymerization of heated soybean oil. Indigenous tocopherols and phytosterols were removed from soybean oil by molecular distillation. Pure phytosterols were added back to the stripped soybean oil at concentrations of 0.5, 1.0, and 5 mg/g oil (0.05, 0.1, and 0.5 wt-%). These oils were heated at 180 7C over a period of 8 h, and triacylglycerol dimers and polymers, fatty acid composition, and residual phytosterol content were determined. None of the phytosterols prevented triacylglycerol dimer and polymer formation when used at 0.5 mg/g; however, phytosterols with two or more double bonds, regardless of the presence of an ethylidene group in the side chain, provided slight protection when added at 1 mg/g. Ergosterol addition at 5 mg/g reduced polymer formation by 16–20% compared to the control oil, but at this level none of the other phytosterols provided protection of any practical significance. Thus, under the conditions used for this heating study, the degree of phytosterol unsaturation was more important for its anti-polymerization activity than the presence of an ethylidene group. Keywords: Ethylidene side chain / Fucosterol / Phytosterols / Thermal polymerization / Vegetable oils Received: April 7, 2008; accepted: June 9, 2008 DOI 10.1002/ejlt.200800089 1 Introduction monly used to reduce the PUFA in these oils, thereby increasing the oil stability for frying.
    [Show full text]
  • Mechanisms of Growth Inhibition of Phytomonas Serpens by the Alkaloids Tomatine and Tomatidine
    48 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(1): 48-55, February 2015 Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine Jorge Mansur Medina1/+, Juliany Cola Fernandes Rodrigues2,3,4,5, Otacilio C Moreira6, Geórgia Atella1, Wanderley de Souza2,3,4, Hector Barrabin1 1Instituto de Bioquímica Médica Leopoldo de Meis 2Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil 5Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brasil 3Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brasil 4Instituto Nacional de Metrolo- gia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brasil 6Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position.
    [Show full text]
  • Generalized Host-Plant Feeding Can Hide Sterol-Specialized Foraging
    Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee-plant interactions Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez To cite this version: Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez. Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee-plant interactions. Ecology and Evolution, Wiley Open Access, 2019, 00 (1), pp.1 - 13. 10.1002/ece3.5868. hal-02480030 HAL Id: hal-02480030 https://hal.archives-ouvertes.fr/hal-02480030 Submitted on 14 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received: 20 August 2019 | Revised: 24 September 2019 | Accepted: 3 November 2019 DOI: 10.1002/ece3.5868 ORIGINAL RESEARCH Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee–plant interactions Maryse Vanderplanck1,2 | Pierre-Laurent Zerck1 | Georges Lognay3 | Denis Michez1 1Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Abstract Belgium Host-plant selection is a key factor driving the ecology and evolution of insects. 2 Evo-Eco-Paleo - UMR 8198, CNRS, While the majority of phytophagous insects is highly host specific, generalist behav- University of Lille, Lille, France 3Laboratory of Analytical Chemistry, ior is quite widespread among bees and presumably involves physiological adapta- Gembloux Agro-Bio Tech, University of tions that remain largely unexplored.
    [Show full text]
  • Evaluation of Endogenous Allergens for the Safety Evaluation of Genetically Engineered Food Crops
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Food Science and Technology Department Technology 2013 Evaluation of Endogenous Allergens for the Safety Evaluation of Genetically Engineered Food Crops: Review of Potential Risks, Test Methods, Examples and Relevance Richard E. Goodman University of Nebraska-Lincoln, [email protected] Rakhi Panda University of Nebraska-Lincoln Harsha Ariyarathna University of Peradeniya, Sri Lanka Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub Part of the Bioresource and Agricultural Engineering Commons, Food Biotechnology Commons, and the Other Biomedical Engineering and Bioengineering Commons Goodman, Richard E.; Panda, Rakhi; and Ariyarathna, Harsha, "Evaluation of Endogenous Allergens for the Safety Evaluation of Genetically Engineered Food Crops: Review of Potential Risks, Test Methods, Examples and Relevance" (2013). Faculty Publications in Food Science and Technology. 149. http://digitalcommons.unl.edu/foodsciefacpub/149 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Reproduced here under the terms of the ACS AuthorChoice usage agreement. Article pubs.acs.org/JAFC Terms of Use Evaluation of Endogenous Allergens for
    [Show full text]
  • Chemical Characterization and Oxidative Stability of Seeds and Oil of Sesame Grown in Morocco
    Journal of the Saudi Society of Agricultural Sciences (2015) xxx, xxx–xxx King Saud University Journal of the Saudi Society of Agricultural Sciences www.ksu.edu.sa www.sciencedirect.com FULL LENGTH ARTICLE Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco S. Gharby a,*, H. Harhar a,*, Z. Bouzoubaa b, A. Asdadi c, A. El Yadini d, Z. Charrouf a a Laboratoire de Chimie des Plantes et de Synthe`se Organique et Bioorganique, Faculte´ des Sciences, Universite´ Mohammed V, BP 1014 Rabat, Morocco b INRA-CRRA Agadir- Unite´ de Recherche Ressources Naturelles et Produits de Terroir, Laboratoire d’Agrophysiologie, B.P. 124, Inezgane, Morocco c Laboratoire de Biotechnologies Ve´ge´tales, Equipe Planta Sud, Faculte´ des Sciences d’Agadir, Universite´ Ibn Zohr, B.P 28/S, Agadir, Morocco d Laboratory of Spectroscopy, MolecularModelisation, Material and Environment (LS3ME), Faculty of Sciences,University Med V-Agdal, Avenue Ibn Battouta, BP 1014, Agdal, Rabat, Morocco Received 13 January 2015; revised 1 March 2015; accepted 2 March 2015 KEYWORDS Abstract The objective of this research work was to determine the characteristic features of the oil Sesamum indicum L; content and composition of nutrients of sesame seeds grown in Morocco. Characteristic features of Cold-press oil; the seed oil revealed a high degree of unsaturation and as determined by gas chromatography Fatty acid; reported herein, the major unsaturated fatty acids were linoleic acid (46.9%) followed by oleic acid Morocco; (37.4%), while the main saturated fatty acid was palmitic acid (9.1%). Sesame seed oil was also Seed oil found to be rich in tocopherols with a predominance of c-tocopherol (90.5%).
    [Show full text]
  • Case 6:17-Cv-01210 Document 1 Filed 08/18/17 Page 1 of 69
    Case 6:17-cv-01210 Document 1 Filed 08/18/17 Page 1 of 69 IN THE UNITED STATES DISTRICT COURT DISTRICT OF KANSAS JED R. CLAASSEN, Individually and as PLAINTIFFS Representative of CLAASSEN FARMS; CLAASSEN FARMS vs. Civil Case No. __________________ MONSANTO COMPANY; DEFENDANTS BASF SE; BASF CORPORATION BASF PLANT SCIENCE LP; and JOHN DOE COMPANIES A - Z COMPLAINT – CLASS ACTION COMES NOW Plaintiffs, Jed R. Claassen and Claassen Farms on behalf of themselves, all others similarly situated, and the class they seek to represent for their Class Action Complaint against the named Defendants herein, state as follows: I. INTRODUCTION AND SUMMARY OF THE CLAIMS 1. Plaintiffs bring this class action lawsuit for damages against Defendants, Monsanto and BASF, who jointly collaborated to develop and release a defective and unreasonably dangerous “dicamba-tolerant crop system,” which has directly resulted in massive harm to crops in Kansas, Arkansas, Missouri, Tennessee, Mississippi, and other states. 2. These damages include, but are not limited to, crop damage, yield loss, total failure of the crop, and financial ruin to impacted farmers. 3. The BASF/Monsanto dicamba-tolerant crop system cannot be safely used for its intended purpose regardless the degree of care without causing collateral damage to nearby crops, which are not part of the BASF/Monsanto dicamba-tolerant crop system. Page 1 of 69 Case 6:17-cv-01210 Document 1 Filed 08/18/17 Page 2 of 69 4. Dicamba is a synthetic herbicide, which farmers have been using for decades to burn down fields in an effort to control weeds.
    [Show full text]
  • CQR Genetically Modified Food
    Res earc her Published by CQ Press, an Imprint of SAGE Publications, Inc. CQ www.cqresearcher.com Genetically Modified Food Should labels be required? alifornia voters will decide in November whether foods produced with genetically modified ingredients — so-called GM foods — should bear special labels. C The controversial measure reflects the uneven ac - ceptance of genetically engineered crops since their rise in the 1990s. Organic farmers and other opponents of GM foods contend they may pose health or environmental risks, despite widespread scientific consensus that they are not inherently more risky than other crops. Foes of the labeling referendum, including GM farmers and seed producers, such as Monsanto, say that GM crops are more Plant breeder Alamgir Hossain is developing Golden Rice for Bangladesh. Supporters of the genetically engineered variety say it could save the lives of up to productive, pest-resistant and environmentally friendly than conven - 2.7 million children a year, but it has yet to be planted commercially; the Philippines may approve it for tional crops and that the fast-growing organic industry and misguid - cultivation in 2013. ed consumer groups are to blame for confusion about the science I behind them. Even as GM crops have been embraced by U.S. N THIS REPORT commodity growers, Europe remains skeptical. However, eight of S THE ISSUES ....................719 I the 10 countries with the most acreage in biotech crops are now BACKGROUND ................726 D in the developing world. CHRONOLOGY ................727 E CURRENT SITUATION ........732 CQ Researcher • Aug. 31, 2012 • www.cqresearcher.com AT ISSUE ........................733 Volume 22, Number 30 • Pages 717-740 OUTLOOK ......................735 RECIPIENT OF SOCIETY OF PROFESSIONAL JOURNALISTS AWARD FOR BIBLIOGRAPHY ................738 EXCELLENCE N AMERICAN BAR ASSOCIATION SILVER GAVEL AWARD THE NEXT STEP ..............739 GENETICALLY MODIFIED FOOD CQ Re search er Aug.
    [Show full text]
  • Assessing Genetic Technologies in Denmark
    RAPPORT 2/2004 Marja Häyrinen-Alestalo Egil Kallerud (editors) Mediating Public Concern in Biotechnology A map of sites, actors and issues in Denmark, Finland, Norway and Sweden 1 © Norwegian Institute for Studies in Research and Higher Education Hegdehaugsveien 31, N-0352 Oslo NIFU Rapportserie 2/2004 ISBN 82-7218-482-6 ISSN 0807-3635 For other publications from NIFU, see www.nifu.no 2 NIFU Rapport 2/2004 Preface This publication is the first report from the Nordic research project Changing Contexts for Mediating Public Concern in the Assessment of Technoscience. Public Responses to Genetic Technologies in the Nordic Countries (COMPASS). The pro- ject is headed by Margareta Bertilsson, Copenhagen University, Department of Sociology, Denmark. The other partners are: Andrew Jamison, Aalborg Univer- sity, Institute for Social Development and Planning, Denmark; Jesper Lassen, The Royal Veterinary and Agricultural University, Centre for Bioethics and Risk Assessment, Denmark; Marja Häyrinen-Alestalo and Karoliina Snell, Hel- sinki University, Department of Sociology, Finland; Egil Kallerud and Vera Schwach, Norwegian Institute for Studies in Research and Higher Education, Norway; Thomas Achen, Linköping University, Department of Environmental Science, Sweden; and Mark Elam, Gothenburg University, Department of Soci- ology, Sweden. The project is funded for a three year period (2002–2004) by the Joint Committee for Nordic Research Councils for the Humanities and the So- cial Sciences (NOS-HS). This report documents the first exploratory steps towards an articulated comparative account of approaches and experiences in the Nordic countries concerning the political, economic, social and cultural responses to global, Eu- ropean and Nordic efforts in the appropriation and mediation of modern bio- technology.
    [Show full text]