BASF Plant Science, L.P. EPA+DHA Canola Event LBFLFK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol
insects Article Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol Priyadarshini Chakrabarti * and Ramesh R. Sagili * Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected] (P.C.); [email protected] (R.R.S.); Tel.: +1-541-737-0628 (P.C.); Tel.: +1-541-737-5460 (R.R.S.) Received: 27 August 2020; Accepted: 27 October 2020; Published: 29 October 2020 Simple Summary: Phytosterols are important micronutrients that are essential for production of insect molting hormones and cellular membrane integrity. Past research has shown that the key phytosterol that honey bees need is 24-methylenecholesterol. This phytosterol improves honey bee longevity and sustains brood production. Hence, it is important to understand how 24-methylenecholesterol can shape honey bee physiology by altering protein profiles of vital honey bee tissues. Nurse bees secrete glandular secretions (brood food) using hypopharyngeal and mandibular glands in their head regions. Further, it has been shown that this sterol is selectively accumulated in nurse bee heads. Thus, it is imperative to examine the protein profiles of nurse bee heads, in response to dietary 24-methylenecholesterol manipulation. In this study, groups of newly emerged nurse bees were fed with varying concentrations of dietary 24-methylenecholesterol, while the control groups received no sterol. We found that dietary sterol manipulation altered the protein profiles in nurse bee heads, with important nutritional marker proteins being upregulated in high dietary sterol groups. The important proteins identified in this study may serve as vital markers of nutritional stress related to sterols in honey bees, paving the way for future research on bee nutrition. -
Short Chain Fatty Acid Biosynthesis in Microalgae Synechococcus Sp. PCC 7942
marine drugs Article Short Chain Fatty Acid Biosynthesis in Microalgae Synechococcus sp. PCC 7942 Yi Gong 1,2,3 and Xiaoling Miao 1,2,3,* 1 State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; [email protected] 2 Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China 3 Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China * Correspondence: [email protected]; Tel.: +86-21-34207028 Received: 19 April 2019; Accepted: 25 April 2019; Published: 28 April 2019 Abstract: Short chain fatty acids (SCFAs) are valued as a functional material in cosmetics. Cyanobacteria can accumulate SCFAs under some conditions, the related mechanism is unclear. Two potential genes Synpcc7942_0537 (fabB/F) and Synpcc7942_1455 (fabH) in Synechococcus sp. PCC 7942 have homology with fabB/F and fabH encoding β-ketoacyl ACP synthases (I/II/III) in plants. Therefore, effects of culture time and cerulenin on SCFAs accumulation, expression levels and functions of these two potential genes were studied. The results showed Synechococcus sp. PCC 7942 accumulated high SCFAs (C12 + C14) in early growth stage (day 4) and at 7.5g/L cerulenin concentration, reaching to 2.44% and 2.84% of the total fatty acids respectively, where fabB/F expression was down-regulated. Fatty acid composition analysis showed C14 increased by 65.19% and 130% respectively, when fabB/F and fabH were antisense expressed. C14 increased by 10.79% (fab(B/F)−) and 6.47% (fabH−) under mutation conditions, while C8 increased by six times in fab(B/F)− mutant strain. -
Inhibition of the Fungal Fatty Acid Synthase Type I Multienzyme Complex
Inhibition of the fungal fatty acid synthase type I multienzyme complex Patrik Johansson*, Birgit Wiltschi*, Preeti Kumari†, Brigitte Kessler*, Clemens Vonrhein‡, Janet Vonck†, Dieter Oesterhelt*§, and Martin Grininger*§ *Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; †Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany; and ‡Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom Communicated by Hartmut Michel, Max Planck Institute for Biophysics, Frankfurt, Germany, June 23, 2008 (received for review March 6, 2008) Fatty acids are among the major building blocks of living cells, isoniazid and triclosan, both inhibiting the ER step of bacterial making lipid biosynthesis a potent target for compounds with fatty acid biosynthesis (6, 7). Several inhibitors targeting the antibiotic or antineoplastic properties. We present the crystal ketoacyl synthase (KS) step of the FAS cycle have also been structure of the 2.6-MDa Saccharomyces cerevisiae fatty acid syn- described, including cerulenin (CER) (8), thiolactomycin (TLM) thase (FAS) multienzyme in complex with the antibiotic cerulenin, (9), and the recently discovered platensimycin (PLM) (10). The representing, to our knowledge, the first structure of an inhibited polyketide CER inhibits both FAS type I and II KS enzymes, by fatty acid megasynthase. Cerulenin attacks the FAS ketoacyl syn- covalent modification of the active site cysteine and by occupying thase (KS) domain, forming a covalent bond to the active site the long acyl-binding pocket (11, 12). TLM and PLM, in contrast, cysteine C1305. The inhibitor binding causes two significant con- have been shown to be selective toward the FAS II system, formational changes of the enzyme. -
De Novo Fatty Acid Synthesis Is Required for Establishment of Cell Type-Specific Gene Transcription During Sporulation in Bacill
Molecular Microbiology (1998) 29(5), 1215–1224 De novo fatty acid synthesis is required for establishment of cell type-specific gene transcription during sporulation in Bacillus subtilis Gustavo E. Schujman, Roberto Grau, Hugo C. compartment (Lutkenhaus, 1994). The unequal-sized pro- Gramajo, Leonardo Ornella and Diego de Mendoza* geny resulting from the formation of the polar septum Programa Multidisciplinario de Biologı´a Experimental have different developmental fates and express different (PROMUBIE) and Departamento de Microbiologı´a, sets of genes (for reviews see Errington, 1993; Losick Facultad de Ciencias Bioquı´micas y Farmace´uticas, and Stragier, 1996). The fate of the forespore chamber Universidad Nacional de Rosario, Suipacha 531, 2000- is determined by the transcription factor sF, which is pre- Rosario, Argentina. sent before the formation of the polar septum but does not become active in directing gene transcription until completion of asymmetric division, when its activity is con- Summary fined to the smaller compartment of the sporangium (for A hallmark of sporulation of Bacillus subtilis is the for- reviews see Losick and Stragier, 1996) mation of two distinct cells by an asymmetric septum. The activity of sF is regulated by a pathway consisting of The developmental programme of these two cells the proteins SpoIIAB, SpoIIAA and SpoIIE, all of which are involves the compartmentalized activities of sE in the produced before the formation of the polar septum (Duncan larger mother cell and of sF in the smaller prespore. and Losick, 1993; Min et al., 1993; Alper et al., 1994; Die- A potential role of de novo lipid synthesis on develop- derich et al., 1994; Arigoni et al., 1995; Duncan et al., ment was investigated by treating B. -
Effect of Phytosterol Structure on Thermal Polymerization of Heated Soybean Oil
1068 Eur. J. Lipid Sci. Technol. 2008, 110, 1068–1077 Research Paper Effect of phytosterol structure on thermal polymerization of heated soybean oil Jill Kristine Winkler and Kathleen Warner U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, USA* This study determined the effect of phytosterol structure, including the degree of unsaturation and the presence of an ethylidene group in the side chain, on the thermal polymerization of heated soybean oil. Indigenous tocopherols and phytosterols were removed from soybean oil by molecular distillation. Pure phytosterols were added back to the stripped soybean oil at concentrations of 0.5, 1.0, and 5 mg/g oil (0.05, 0.1, and 0.5 wt-%). These oils were heated at 180 7C over a period of 8 h, and triacylglycerol dimers and polymers, fatty acid composition, and residual phytosterol content were determined. None of the phytosterols prevented triacylglycerol dimer and polymer formation when used at 0.5 mg/g; however, phytosterols with two or more double bonds, regardless of the presence of an ethylidene group in the side chain, provided slight protection when added at 1 mg/g. Ergosterol addition at 5 mg/g reduced polymer formation by 16–20% compared to the control oil, but at this level none of the other phytosterols provided protection of any practical significance. Thus, under the conditions used for this heating study, the degree of phytosterol unsaturation was more important for its anti-polymerization activity than the presence of an ethylidene group. Keywords: Ethylidene side chain / Fucosterol / Phytosterols / Thermal polymerization / Vegetable oils Received: April 7, 2008; accepted: June 9, 2008 DOI 10.1002/ejlt.200800089 1 Introduction monly used to reduce the PUFA in these oils, thereby increasing the oil stability for frying. -
Mechanisms of Growth Inhibition of Phytomonas Serpens by the Alkaloids Tomatine and Tomatidine
48 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(1): 48-55, February 2015 Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine Jorge Mansur Medina1/+, Juliany Cola Fernandes Rodrigues2,3,4,5, Otacilio C Moreira6, Geórgia Atella1, Wanderley de Souza2,3,4, Hector Barrabin1 1Instituto de Bioquímica Médica Leopoldo de Meis 2Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil 5Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brasil 3Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brasil 4Instituto Nacional de Metrolo- gia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brasil 6Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. -
Generalized Host-Plant Feeding Can Hide Sterol-Specialized Foraging
Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee-plant interactions Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez To cite this version: Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez. Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee-plant interactions. Ecology and Evolution, Wiley Open Access, 2019, 00 (1), pp.1 - 13. 10.1002/ece3.5868. hal-02480030 HAL Id: hal-02480030 https://hal.archives-ouvertes.fr/hal-02480030 Submitted on 14 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received: 20 August 2019 | Revised: 24 September 2019 | Accepted: 3 November 2019 DOI: 10.1002/ece3.5868 ORIGINAL RESEARCH Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee–plant interactions Maryse Vanderplanck1,2 | Pierre-Laurent Zerck1 | Georges Lognay3 | Denis Michez1 1Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Abstract Belgium Host-plant selection is a key factor driving the ecology and evolution of insects. 2 Evo-Eco-Paleo - UMR 8198, CNRS, While the majority of phytophagous insects is highly host specific, generalist behav- University of Lille, Lille, France 3Laboratory of Analytical Chemistry, ior is quite widespread among bees and presumably involves physiological adapta- Gembloux Agro-Bio Tech, University of tions that remain largely unexplored. -
Evaluation of Endogenous Allergens for the Safety Evaluation of Genetically Engineered Food Crops
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Food Science and Technology Department Technology 2013 Evaluation of Endogenous Allergens for the Safety Evaluation of Genetically Engineered Food Crops: Review of Potential Risks, Test Methods, Examples and Relevance Richard E. Goodman University of Nebraska-Lincoln, [email protected] Rakhi Panda University of Nebraska-Lincoln Harsha Ariyarathna University of Peradeniya, Sri Lanka Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub Part of the Bioresource and Agricultural Engineering Commons, Food Biotechnology Commons, and the Other Biomedical Engineering and Bioengineering Commons Goodman, Richard E.; Panda, Rakhi; and Ariyarathna, Harsha, "Evaluation of Endogenous Allergens for the Safety Evaluation of Genetically Engineered Food Crops: Review of Potential Risks, Test Methods, Examples and Relevance" (2013). Faculty Publications in Food Science and Technology. 149. http://digitalcommons.unl.edu/foodsciefacpub/149 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Reproduced here under the terms of the ACS AuthorChoice usage agreement. Article pubs.acs.org/JAFC Terms of Use Evaluation of Endogenous Allergens for -
Chemical Characterization and Oxidative Stability of Seeds and Oil of Sesame Grown in Morocco
Journal of the Saudi Society of Agricultural Sciences (2015) xxx, xxx–xxx King Saud University Journal of the Saudi Society of Agricultural Sciences www.ksu.edu.sa www.sciencedirect.com FULL LENGTH ARTICLE Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco S. Gharby a,*, H. Harhar a,*, Z. Bouzoubaa b, A. Asdadi c, A. El Yadini d, Z. Charrouf a a Laboratoire de Chimie des Plantes et de Synthe`se Organique et Bioorganique, Faculte´ des Sciences, Universite´ Mohammed V, BP 1014 Rabat, Morocco b INRA-CRRA Agadir- Unite´ de Recherche Ressources Naturelles et Produits de Terroir, Laboratoire d’Agrophysiologie, B.P. 124, Inezgane, Morocco c Laboratoire de Biotechnologies Ve´ge´tales, Equipe Planta Sud, Faculte´ des Sciences d’Agadir, Universite´ Ibn Zohr, B.P 28/S, Agadir, Morocco d Laboratory of Spectroscopy, MolecularModelisation, Material and Environment (LS3ME), Faculty of Sciences,University Med V-Agdal, Avenue Ibn Battouta, BP 1014, Agdal, Rabat, Morocco Received 13 January 2015; revised 1 March 2015; accepted 2 March 2015 KEYWORDS Abstract The objective of this research work was to determine the characteristic features of the oil Sesamum indicum L; content and composition of nutrients of sesame seeds grown in Morocco. Characteristic features of Cold-press oil; the seed oil revealed a high degree of unsaturation and as determined by gas chromatography Fatty acid; reported herein, the major unsaturated fatty acids were linoleic acid (46.9%) followed by oleic acid Morocco; (37.4%), while the main saturated fatty acid was palmitic acid (9.1%). Sesame seed oil was also Seed oil found to be rich in tocopherols with a predominance of c-tocopherol (90.5%). -
Case 6:17-Cv-01210 Document 1 Filed 08/18/17 Page 1 of 69
Case 6:17-cv-01210 Document 1 Filed 08/18/17 Page 1 of 69 IN THE UNITED STATES DISTRICT COURT DISTRICT OF KANSAS JED R. CLAASSEN, Individually and as PLAINTIFFS Representative of CLAASSEN FARMS; CLAASSEN FARMS vs. Civil Case No. __________________ MONSANTO COMPANY; DEFENDANTS BASF SE; BASF CORPORATION BASF PLANT SCIENCE LP; and JOHN DOE COMPANIES A - Z COMPLAINT – CLASS ACTION COMES NOW Plaintiffs, Jed R. Claassen and Claassen Farms on behalf of themselves, all others similarly situated, and the class they seek to represent for their Class Action Complaint against the named Defendants herein, state as follows: I. INTRODUCTION AND SUMMARY OF THE CLAIMS 1. Plaintiffs bring this class action lawsuit for damages against Defendants, Monsanto and BASF, who jointly collaborated to develop and release a defective and unreasonably dangerous “dicamba-tolerant crop system,” which has directly resulted in massive harm to crops in Kansas, Arkansas, Missouri, Tennessee, Mississippi, and other states. 2. These damages include, but are not limited to, crop damage, yield loss, total failure of the crop, and financial ruin to impacted farmers. 3. The BASF/Monsanto dicamba-tolerant crop system cannot be safely used for its intended purpose regardless the degree of care without causing collateral damage to nearby crops, which are not part of the BASF/Monsanto dicamba-tolerant crop system. Page 1 of 69 Case 6:17-cv-01210 Document 1 Filed 08/18/17 Page 2 of 69 4. Dicamba is a synthetic herbicide, which farmers have been using for decades to burn down fields in an effort to control weeds. -
CQR Genetically Modified Food
Res earc her Published by CQ Press, an Imprint of SAGE Publications, Inc. CQ www.cqresearcher.com Genetically Modified Food Should labels be required? alifornia voters will decide in November whether foods produced with genetically modified ingredients — so-called GM foods — should bear special labels. C The controversial measure reflects the uneven ac - ceptance of genetically engineered crops since their rise in the 1990s. Organic farmers and other opponents of GM foods contend they may pose health or environmental risks, despite widespread scientific consensus that they are not inherently more risky than other crops. Foes of the labeling referendum, including GM farmers and seed producers, such as Monsanto, say that GM crops are more Plant breeder Alamgir Hossain is developing Golden Rice for Bangladesh. Supporters of the genetically engineered variety say it could save the lives of up to productive, pest-resistant and environmentally friendly than conven - 2.7 million children a year, but it has yet to be planted commercially; the Philippines may approve it for tional crops and that the fast-growing organic industry and misguid - cultivation in 2013. ed consumer groups are to blame for confusion about the science I behind them. Even as GM crops have been embraced by U.S. N THIS REPORT commodity growers, Europe remains skeptical. However, eight of S THE ISSUES ....................719 I the 10 countries with the most acreage in biotech crops are now BACKGROUND ................726 D in the developing world. CHRONOLOGY ................727 E CURRENT SITUATION ........732 CQ Researcher • Aug. 31, 2012 • www.cqresearcher.com AT ISSUE ........................733 Volume 22, Number 30 • Pages 717-740 OUTLOOK ......................735 RECIPIENT OF SOCIETY OF PROFESSIONAL JOURNALISTS AWARD FOR BIBLIOGRAPHY ................738 EXCELLENCE N AMERICAN BAR ASSOCIATION SILVER GAVEL AWARD THE NEXT STEP ..............739 GENETICALLY MODIFIED FOOD CQ Re search er Aug. -
Assessing Genetic Technologies in Denmark
RAPPORT 2/2004 Marja Häyrinen-Alestalo Egil Kallerud (editors) Mediating Public Concern in Biotechnology A map of sites, actors and issues in Denmark, Finland, Norway and Sweden 1 © Norwegian Institute for Studies in Research and Higher Education Hegdehaugsveien 31, N-0352 Oslo NIFU Rapportserie 2/2004 ISBN 82-7218-482-6 ISSN 0807-3635 For other publications from NIFU, see www.nifu.no 2 NIFU Rapport 2/2004 Preface This publication is the first report from the Nordic research project Changing Contexts for Mediating Public Concern in the Assessment of Technoscience. Public Responses to Genetic Technologies in the Nordic Countries (COMPASS). The pro- ject is headed by Margareta Bertilsson, Copenhagen University, Department of Sociology, Denmark. The other partners are: Andrew Jamison, Aalborg Univer- sity, Institute for Social Development and Planning, Denmark; Jesper Lassen, The Royal Veterinary and Agricultural University, Centre for Bioethics and Risk Assessment, Denmark; Marja Häyrinen-Alestalo and Karoliina Snell, Hel- sinki University, Department of Sociology, Finland; Egil Kallerud and Vera Schwach, Norwegian Institute for Studies in Research and Higher Education, Norway; Thomas Achen, Linköping University, Department of Environmental Science, Sweden; and Mark Elam, Gothenburg University, Department of Soci- ology, Sweden. The project is funded for a three year period (2002–2004) by the Joint Committee for Nordic Research Councils for the Humanities and the So- cial Sciences (NOS-HS). This report documents the first exploratory steps towards an articulated comparative account of approaches and experiences in the Nordic countries concerning the political, economic, social and cultural responses to global, Eu- ropean and Nordic efforts in the appropriation and mediation of modern bio- technology.