Fair Cake-Cutting in Practice

Total Page:16

File Type:pdf, Size:1020Kb

Fair Cake-Cutting in Practice Fair cake-cutting in practice Kyropoulou, M., Ortega, J., & Segal-Halevi, E. (2019). Fair cake-cutting in practice. In Fair Cake-Cutting in Practice Proceedings of the 2019 ACM Conference on Economics and Computation. https://doi.org/10.1145/3328526.3329592 Published in: Fair Cake-Cutting in Practice Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 ACM. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:26. Sep. 2021 Fair Cake-Cutting in Practice SUBMISSION 148 Using a lab experiment, we investigate the real-life performance of envy-free and proportional cake-cutting procedures with respect to fairness and preference manipulation. We find that envy-free procedures, in par- ticular Selfridge-Conway, are fairer and also are perceived as fairer than their proportional counterparts, de- spite the fact that agents very often manipulate them. Our results support the practical use of the celebrated Selfridge-Conway procedure, and more generally, of envy-free cake-cutting mechanisms. We also find that subjects learn their opponents’ preferences after repeated interaction and use thisknowl- edge to improve their allocated share of the cake. Learning reduces truth-telling behavior, but also reduces envy. 1 INTRODUCTION The problem of how to fairly divide a divisible good among agents who value different parts of it distinctly has been thoroughly studied in many areas of science over the last seventy years. The heterogeneous good is often referred to as the cake [55], and thus this problem is known as cake-cutting (see 11, 53 and 46 for textbook references). This problem has multiple real-life applications, which include the division of land, inheritances, and cloud computing. Although fun- damental breakthroughs have been achieved on the construction of fair cake-cutting procedures, the question of which procedure is fairer in practice has not yet been tackled. This paper reports the results of an experiment that provides useful insights to help answer this question. Let us start by clarifying what we mean by fair. Although several notions of fairness have been proposed, two important ones stand out for their intuitive formulation. The first one is proportion- ality, proposed by Steinhaus himself. A division of the cake among n agents is proportional if every agent obtains at least what she considers to be 1/n of the cake. The second one is envy-freeness, proposed by [31] and [29]. A division of the cake is envy-free if no agent prefers the allocation re- ceived by any other agent over hers. If the entire cake is allocated, any division that is envy-free is also proportional. Proportionality and envy-freeness are often considered “the two most important tests of equity” [45, p. 166]. The literature has developed procedures that produce envy-free cake divisions when all agents report their preferences over the cake pieces truthfully. We will refer to these as envy-free proce- dures. Although the ones used for the division of a cake among two agents have been known and used since ancient times, all others rely on complex algorithms which are far from straightforward to general audiences: the Selfridge-Conway procedure for three agents is a case in point. These procedures obtain envy-free allocations at the cost of being hard to understand by the audiences for whom they are intended. If those procedures are not perceived as envy-free in practice (or at least fairer than proportional ones), there would be little support for their implementation in practice. Therefore, the first key question is whether those algorithms produce allocations thatare not only fair in theory, but that are also perceived to be fair in practice. Furthermore, the envy-freeness of these division procedures can only be guaranteed if the agents report their preferences truthfully. If agents strategically misrepresent their preferences, an allocation with envy can be obtained as a Nash equilibrium outcome of the game associated to envy-free procedures [13]. In fact, as we show in Lemma 4, envy can rationally emerge in envy-free procedures even when only one agent lies. Therefore, a second key question is whether cake-cutting procedures are manipulated in practice, and whether such manipulations, if they ex- ist, significantly increase envy. Manuscript submitted for review to ACM Economics & Computation 2019 (EC ’19) under the one-page extended abstract option. Submission 148 2 Our third and final key question is whether agents can successfully learn their opponents’ pref- erences through repeated interaction. This question is related to the previous two in that an agent needs some information about their opponents’ preferences to successfully manipulate a cake- cutting procedure. An agent can acquire this valuable information through experimentation, i.e. varying her strategies over time and observing her opponents’ best responses to them. If agents do not learn through experimentation, there is little concern about the manipulation of cake-cutting procedures in environments in which agents’ preferences are privately known, and thus no con- cern about the emergence of envy in otherwise envy-free procedures. We tackle these three questions by means of a lab experiment. In the experiment we study: (1) the perceived fairness of envy-free and proportional cake-cutting procedures, (2) the extent to which agents manipulate those procedures, and (3) whether agents learn their partners’ preferences and use that information to their advantage. We consider the most popular cake-cutting procedures and compare their theoretical properties against their actual performance in the lab. The procedures we consider, which are described in detail in subsection 3.1, are: • For 2 agents: symmetric and asymmetric cut-and-choose; • For 3 agents: Knaster-Banach last diminisher, (a discrete adaptation of) Dubins-Spanier mov- ing knife, and Selfridge-Conway; • For 4 agents: Knaster-Banach last diminisher, (a discrete adaptation of) Dubins-Spanier mov- ing knife, and Even-Paz. These cake-cutting procedures are well-known in the literature because they all achieve propor- tional allocations. Furthermore, the asymmetric and symmetric cut-and-choose and the Selfridge- Conway procedures are even envy-free.1 In the experiment, 131 subjects divide 8 cakes using the aforementioned procedures versus au- tomata agents who play truthfully. Agents divide each cake 7 times in what we call rounds, during which their opponents’ preferences remain constant. This gives agents incentives to try to learn their opponents’ preferences. In addition, during the final two rounds agents are directly told their opponents’ preferences, so that we are able to differentiate between manipulations made to learn the opponents’ preferences and those made to directly increase the subjects’ immediate payoff. Subjects observe which share of the cake they get in each round and the value (in their own eyes) of their opponents’ shares. This way, subjects can assess the fairness of the allocations received. At the end of the experiment, agents complete a questionnaire which asks them to rank the fairness of the division procedures and allows them to give their feedback on their experience with the cake-cutting procedures. Agents are also asked which procedure was the fairest and why. 1.1 Overview of Results We find that all cake-cutting procedures are very frequently manipulated, in fact at least halfof the time (subsection 5.4). As a consequence, envy-free procedures generate envy. Envy is gener- ated in 7% of cases when using the asymmetric cut-and-choose procedure in which the subject cuts the cake, in 18% of cases when using the symmetric cut-and-choose procedure in which both subjects cut the cake, and in 28% of cases when using Selfridge-Conway. However, these proce- dures still generate substantially less envy than their proportional counterparts, which generate envy in over 50% of cases (subsection 5.3). The difference in envy is noticed by the subjects. Envy- free procedures receive a significantly better fairness ranking than their counterparts (over 80%of 1We do not include an envy-free procedure for four agents because the only finite one known to date, proposed by [2], is too complicated to be implemented in the lab. Submission 148 3 subjects view them as fair, compared to less than 50% for their proportional counterparts). More- over, agents were at least three times more likely to rank envy-free procedures as the fairest ones than proportional ones (subsection 5.1). Overall, the experimental results provide support for the use of the cut-and-choose and Selfridge-Conway procedures, and more generally, of envy-free cake-cutting procedures. These procedures are manipulated in practice just as much as their pro- portional counterparts, but nonetheless they generate substantially less envy. As a consequence, they are perceived as significantly fairer than their proportional counterparts. We find some evidence of successful learning, in particular in both of the cut-and-choose proce- dures, the Knaster-Banach last diminisher, and to some extent in Selfridge-Conway.
Recommended publications
  • Fair Division: the Computer Scientist’S Perspective
    Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Survey Track Fair Division: The Computer Scientist’s Perspective Toby Walsh UNSW Sydney Data61 [email protected] Abstract 2 Formal Model I briefly give some notation and concepts that will be used in I survey recent progress on a classic and challeng- the rest of this survey. We have n agents and m indivisible ing problem in social choice: the fair division of items, a1 to am. For each agent i 2 [1; n] and j 2 [1; m], indivisible items. I discuss how a computational the agent i has utility ui(aj) ≥ 0 for the item ak. We will perspective has provided interesting insights into mostly limit ourselves to additive utilities where the utility to P and understanding of how to divide items fairly agent i for a set of items B is ui(B) = a2B ui(a). One and efficiently. This has involved bringing to bear special case of additive utilities is Borda scores where the tools such as those used in knowledge represen- jth most preferred item for agent i has utility m − j + 1. tation, computational complexity, approximation Another special case of additive utilities is lexicographical methods, game theory, online analysis and commu- scores where the jth most preferred item for agent i has util- nication complexity. ity 2m−j. We will also mostly consider fair division problems involving just goods where items have non-negative utility. This contrasts to bads where all agents have negative utility for the items. An allocation is a partition of the m items into 1 Introduction n distinguished sets, A1 to An where Ai represents the items allocated to agent i and Ai \ Aj = ; for i 6= j.
    [Show full text]
  • A Discrete and Bounded Envy-Free Cake Cutting Protocol for Four Agents
    A Discrete and Bounded Envy-Free Cake Cutting Protocol for Four Agents Haris Aziz Simon Mackenzie Data61 and UNSW Sydney, Australia {haris.aziz, simon.mackenzie}@data61.csiro.au ABSTRACT problem of fairly dividing the cake is a fundamental one We consider the well-studied cake cutting problem in which within the area of fair division and multiagent resource al- the goal is to identify an envy-free allocation based on a min- location [6, 17, 26, 29, 33, 35, 36]. imal number of queries from the agents. The problem has Formally speaking, a cake is represented by an interval attracted considerable attention within various branches of [0, 1] and each of the n agents has a value function over computer science, mathematics, and economics. Although, pieces of the cake that specifies how much that agent val- the elegant Selfridge-Conway envy-free protocol for three ues a particular subinterval. The main aim is to divide the agents has been known since 1960, it has been a major open cake fairly. In particular, an allocation should be envy-free problem to obtain a bounded envy-free protocol for more so that no agent prefers to take another agent’s allocation instead of his own allocation. Although an envy-free alloca- than three agents. The problem has been termed the cen- 1 tral open problem in cake cutting. We solve this problem tion is guaranteed to exist even with n−1 cuts [35] , finding by proposing a discrete and bounded envy-free protocol for an envy-free allocation is a challenging problem which has four agents.
    [Show full text]
  • Fair Division: the Computer Scientist’S Perspective
    Fair Division: The Computer Scientist’s Perspective Toby Walsh UNSW Sydney and Data61 [email protected] Abstract 2 Formal model I briefly give some notation and concepts that will be used in I survey recent progress on a classic and challeng- the rest of this survey. We have n agents and m indivisible ing problem in social choice: the fair division of items, a1 to am. For each agent i 2 [1; n] and j 2 [1; m], indivisible items. I discuss how a computational the agent i has utility ui(aj) ≥ 0 for the item ak. We will perspective has provided interesting insights into mostly limit ourselves to additive utilities where the utility to P and understanding of how to divide items fairly agent i for a set of items B is ui(B) = a2B ui(a). One and efficiently. This has involved bringing to bear special case of additive utilities is Borda scores where the tools such as those used in knowledge represen- jth most preferred item for agent i has utility m − j + 1. tation, computational complexity, approximation Another special case of additive utilities is lexicographical methods, game theory, online analysis and commu- scores where the jth most preferred item for agent i has util- nication complexity. ity 2m−j. We will also mostly consider fair division problems involving just goods where items have non-negative utility. This contrasts to bads where all agents have negative utility for the items. An allocation is a partition of the m items into 1 Introduction n distinguished sets, A1 to An where Ai represents the items allocated to agent i and Ai \ Aj = ; for i 6= j.
    [Show full text]
  • A Liberal Theory of Natural Resource Property Rights
    A Liberal Theory of Natural Resource Property Rights A dissertation presented by Joseph Mordechai Mazor to The Committee on Political Economy and Government in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Political Economy and Government Harvard University Cambridge, Massachusetts May 2009 Copyright © 2009 by Joseph Mordechai Mazor All rights reserved. Dissertation Advisor: Professor Dennis Thompson Joseph Mordechai Mazor A Liberal Theory of Natural Resource Property Rights Abstract A variety of contemporary political disagreements, including debates over fossil fuel ownership in the Arctic, carbon emission standards, indigenous land rights, and the use of eminent domain, raise pressing questions of justice. Yet existing theories of natural resource property rights are underdeveloped and thus ill-equipped to answer these questions. I develop a liberal theory of natural resource property rights which is founded on the equality of natural resource claims, which advocates for equal division of natural resources, and which considers how the principle of equal division can be justly implemented. I begin by defending the equality of natural resource claims. I argue that people should be seen as having equal claims to the pristine natural resources that remain after all those who contributed to the value of these resources have been appropriately compensated. And since the value of these remaining natural resources is not generated by anyone’s labor, I contend that libertarians ought to endorse equal claims to these resources. I argue that liberal egalitarians have good reasons to endorse equality of natural resource claims as well. I then consider how equal claims to natural resources should be respected.
    [Show full text]
  • Seokoh, Inc. V. Lard-PT
    IN THE COURT OF CHANCERY OF THE STATE OF DELAWARE SEOKOH, INC., ) ) Petitioner, ) ) v. ) C.A. No. 2020-0613-JRS ) LARD-PT, LLC, ) ) Respondent, ) ) and ) ) PROCESS TECHNOLOGIES AND ) PACKAGING, LLC, a Delaware ) Limited Liability Company, ) ) Nominal Respondent. ) MEMORANDUM OPINION Date Submitted: January 15, 2021 Date Decided: March 30, 2021 Jacob R. Kirkham, Esquire of Kobre & Kim LLP, Wilmington, Delaware and Robin J. Baik, Esquire, Leif T. Simonson, Esquire, S. Nathan Park, Esquire of Kobre & Kim LLP, New York, New York, Attorneys for Petitioner Seokoh, Inc. John G. Harris, Esquire and Peter C. McGivney, Esquire of Berger Harris LLP, Wilmington, Delaware and Stuart Kagen, Esquire and Russell Bogart, Esquire of Kagen, Caspersen & Bogart PLLC, New York, New York, Attorneys for Respondent Lard-PT, LLC. SLIGHTS, Vice Chancellor When conjuring an image of compromise, many invoke King Solomon, or Jedidiah, the proverbial source of the classic aphorism, “split the baby.”1 But according to the Book of Genesis, Abraham and Lot were equally adept at compromise.2 When a dispute over the division of territory arose between these two wealthy men, they devised a process for fair division that eventually was employed by others in the region to divide all manner of tangible things, from real property to food.3 The process, called “divide-and-choose” or “I cut, you choose,” was elegantly simple: one person (the cutter) would divide the disputed matter into two pieces and then allow the other (the chooser) to choose which piece she would take for herself.4 The incentives for fair partition are obvious: the cutter is incented to divide in equal pieces knowing she will be left with the piece the chooser leaves behind.
    [Show full text]
  • Fair Division: the Computer Scientist's Perspective
    Fair Division: The Computer Scientist’s Perspective Toby Walsh UNSW Sydney and Data61 [email protected] Abstract 2 Formal model I briefly give some notation and concepts that will be used in I survey recent progress on a classic and challeng- the rest of this survey. We have n agents and m indivisible ing problem in social choice: the fair division of items, a1 to am. For each agent i ∈ [1,n] and j ∈ [1,m], indivisible items. I discuss how a computational the agent i has utility ui(aj ) ≥ 0 for the item ak. We will perspective has provided interesting insights into mostly limit ourselves to additive utilities where the utility to and understanding of how to divide items fairly agent i for a set of items B is ui(B) = Pa∈B ui(a). One and efficiently. This has involved bringing to bear special case of additive utilities is Borda scores where the tools such as those used in knowledge represen- jth most preferred item for agent i has utility m − j + 1. tation, computational complexity, approximation Another special case of additive utilities is lexicographical methods, game theory, online analysis and commu- scores where the jth most preferred item for agent i has util- nication complexity. ity 2m−j. We will also mostly consider fair division problems involving just goods where items have non-negative utility. This contrasts to bads where all agents have negative utility for the items. An allocation is a partition of the m items into 1 Introduction n distinguished sets, A1 to An where Ai represents the items allocated to agent i and Ai ∩ Aj = ∅ for i 6= j.
    [Show full text]
  • Fair Division in the Age of Internet Hervé Moulin University of Glasgow and Higher School of Economics, St Petersburg November 5, 2018
    Fair Division in the Age of Internet Hervé Moulin University of Glasgow and Higher School of Economics, St Petersburg November 5, 2018 Abstract Fair Division, a key concern in the design of many social institutions, is for 70 years the subject of interdisciplinary research at the interface of mathematics, economics and game theory. Motivated by the proliferation of moneyless transactions on the inter- net, the Computer Science community has recently taken a deep interest in fairness principles and practical division rules. The resulting literature brings a fresh concern for computational simplicity (scalable rules), and realistic implementation. In this survey of the most salient Fair Division results of the past thirty years, we concentrate on division rules with the best potential for practical implementation. The critical design parameter is the message space that the agents must use to report their individual preferences. A simple preference domain is key both to realistic implementation, and to the existence of division rules with strong normative and incentive prop- erties. We discuss successively the one-dimensional single-peaked domain, Leontief utilities, ordinal ranking, dichotomous preferences, and additive utilities. Some of the theoretical results in the latter domain are already implemented in the user-friendly SPLIDDIT platform (spliddit.org). Keywords: manna, goods, bads, envy free, fair share, competitive division, egalitarian division, preference domains Acknowledgments: Many constructive criticisms by the Editor, Matthew Jackson, and by Fedor Sandomirskyi, have greatly improved the readability of this survey. 1 The problem and the punchline By Fair Division (FD), we mean the problem of allocating among a given set of participants a bundle of items called the manna, that may contain only desirable disposable goods, but sometimes non disposable undesirable bads, or even a combination of goods and bads.
    [Show full text]
  • Fair Cake-Cutting in Practice Maria Kyropoulou, Josué Ortega, and Erel Segal-Halevi Discus­­ Si­­ On­­ Paper No
    Dis cus si on Paper No. 18-053 Fair Cake-Cutting in Practice Maria Kyropoulou, Josué Ortega, and Erel Segal-Halevi Dis cus si on Paper No. 18-053 Fair Cake-Cutting in Practice Maria Kyropoulou, Josué Ortega, and Erel Segal-Halevi Download this ZEW Discussion Paper from our ftp server: http://ftp.zew.de/pub/zew-docs/dp/dp18053.pdf Die Dis cus si on Pape rs die nen einer mög lichst schnel len Ver brei tung von neue ren For schungs arbei ten des ZEW. Die Bei trä ge lie gen in allei ni ger Ver ant wor tung der Auto ren und stel len nicht not wen di ger wei se die Mei nung des ZEW dar. Dis cus si on Papers are inten ded to make results of ZEW research prompt ly avai la ble to other eco no mists in order to encou ra ge dis cus si on and sug gesti ons for revi si ons. The aut hors are sole ly respon si ble for the con tents which do not neces sa ri ly repre sent the opi ni on of the ZEW. Fair Cake-Cutting in Practice Maria Kyropouloua, Josu´eOrtegab, Erel Segal-Halevic aSchool of Computer Science and Electronic Engineering, University of Essex, UK. bCenter for European Economic Research, Mannheim, Germany. cDepartment of Computer Science, Ariel University, Israel. Abstract Using a lab experiment, we investigate the real-life performance of envy-free and proportional cake-cutting procedures with respect to fairness and prefer- ence manipulation. We find that envy-free procedures, in particular Selfridge- Conway, are fairer and also are perceived as fairer than their proportional counterparts, despite the fact that agents very often manipulate them.
    [Show full text]
  • Fair Cake-Cutting in Practice
    Fair Cake-Cutting in Practice Maria Kyropouloua, Josu´eOrtegab, Erel Segal-Halevic aSchool of Computer Science and Electronic Engineering, University of Essex, UK. bQueen's Management School, Queen's University Belfast, UK. cDepartment of Computer Science, Ariel University, Israel. Abstract Using two lab experiments, we investigate the real-life performance of envy- free and proportional cake-cutting procedures with respect to fairness and preference manipulation. Although the observed subjects' strategic behavior eliminates the fairness guarantees of envy-free procedures, we nonetheless find that envy-free procedures are fairer than their proportional counterparts. Our results support the practical use of the celebrated Selfridge-Conway procedure, and more generally, of envy-free cake-cutting mechanisms. We also find that subjects learn their opponents' preferences after repeated in- teraction and use this knowledge to improve their allocated share of the cake. Learning increases strategic behavior, but also reduces envy. Keywords: cake-cutting, Selfridge-Conway, cut-and-choose, envy, fairness, preference manipulation, experimentation and learning. JEL Codes: C71, C91, D63. Email addresses: [email protected], [email protected], [email protected]. We acknowledge excellent research assistance by Andr´es Azqueta-Galvad´on, Wai Chung, Mingxian Jin, Alexander Sauer and Carlo Stern, and helpful comments from Uriel arXiv:1810.08243v3 [cs.GT] 14 Dec 2020 Feige, Herv´eMoulin and the anonymous referees of this journal and the 20th ACM confer- ence on Economics and Computation, where a preliminary version of this paper has been presented as an extended abstract. We thank Sarah Fox and Erin Goldfinch for proof-reading the paper.
    [Show full text]
  • Fair Division∗
    Fair Division∗ Christian Klamler Abstract This survey considers approaches to fair division from diverse disciplines, including mathematics, opera- tions research and economics, all of which place fair division within the same general structure. There is some divisible item, or some set of items (which may be divisible or indivisible) over which a set of agents has preferences in the form of value functions, preference rankings, etc. Emphasizing the algorithmic part of the literature, we will look at procedures for fair division, and from an axiomatic point of view will investigate important properties that might be satisfied or violated by such procedures. Links to the analysis of aggregating individual preferences (Nurmi, Chapter 10 of this Handbook) and bargaining theory (Kibris, Chapter 9) will become apparent. Strategic and computational aspects are also considered briefly. In mathematics, the fair division literature focuses on cake-cutting algorithms. We will provide an overview of the general framework, discuss some specific problems that have been studied in depth, such as pie-cutting and cake-cutting, and present several procedures. Then, moving to an informationally scarcer framework, we will consider the problem of sharing costs or benefits. Based on an example from the Talmud, various procedures to divide a fixed resource among a set of agents with different claims will be discussed. Certain changes to the framework, e.g. the division of costs or variable resources, will then be investigated. The survey concludes with a short discussion of fair division issues from the viewpoint of economics. 1 Introduction What do problems of cutting cakes, dividing land, sharing time, allocating costs, voting, devising tax-schemes, eval- uating economic equilibria, etc.
    [Show full text]
  • A Commentary on the Book of Leviticus
    A COMMENTARY ON THE BOOK OF LEVITICUS By ANDREW BONAR 1852 by James Nisbet and Company Digitally prepared and posted on the web by Ted Hildebrandt (2004) Public Domain. Please report any errors to: [email protected] PREFACE SOME years ago, while perusing the Book of Leviticus in the course of his daily study of the Scriptures, the author was arrested amid the shadows of a past dispensation, and led to write short notes as he went along. Not long after, another perusal of this inspired book--conducted in a similar way, and with much prayer for the teaching of the Spirit of truth--refreshed his own soul yet more, and led him on to inquire what others had gleaned in the same field. Some friends who, in this age of activity and bustle, find time to delight themselves in the law of the Lord, saw the notes, and urged their publication. There are few critical difficulties in the book; its chief obscurity arises from its enigmatical ceremonies. The author fears he may not always have succeeded in discovering the precise view of truth intended to be exhi- bited in these symbolic rites; but he has made the attempt, not thinking it irreverent to examine both sides of the veil, now that it has been rent. The Holy Spirit PREFACE surely wishes us to inquire into what He has written; and the unhealthy tone of many true Christians may be accounted for by the too plain fact that they do not meditate much on the whole counsel of God. Expe- rience, as well as the Word itself (Ps.
    [Show full text]
  • Applying Fair Division to Global Carbon Emily D
    Union College Union | Digital Works Honors Theses Student Work 6-2011 Applying Fair Division to Global Carbon Emily D. Lacroix Union College - Schenectady, NY Follow this and additional works at: https://digitalworks.union.edu/theses Part of the Economics Commons Recommended Citation Lacroix, Emily D., "Applying Fair Division to Global Carbon" (2011). Honors Theses. 1013. https://digitalworks.union.edu/theses/1013 This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors Theses by an authorized administrator of Union | Digital Works. For more information, please contact [email protected]. Applying Fair Division to Global Carbon Emission Permit Markets by Emily LaCroix *********************** Submitted in partial fulfillment of the requirements for Honors in the Department of Economics UNION COLLEGE June 2011 i ABSTRACT LaCROIX, EMILY. June 2011. Applying Fair Division to Global Carbon Emission Permit Markets. Departments of Economics and Mathematics. The world climate policy debate has come to a political standstill between devel- oped and developing countries. They cannot agree on a “fair” manner to decide how much each country is allowed to pollute, and who should pay for pollution abate- ment costs. The United States and developed countries believe that all countries should participate and reduce their carbon dioxide emissions to their 1990 levels be- cause everyone will benefit. By contrast, developing countries believe that developed countries should be required to do the majority of the emission abatement because they cause the majority of the pollution. Carsten Helm [2008] proposed an unconventional emission trading scheme that uses fair division (or cake-cutting), a mathematical tool for dividing up a common resource in a manner that the recipients believe is fair.
    [Show full text]