Fair Division∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uniqueness and Symmetry in Bargaining Theories of Justice
Philos Stud DOI 10.1007/s11098-013-0121-y Uniqueness and symmetry in bargaining theories of justice John Thrasher Ó Springer Science+Business Media Dordrecht 2013 Abstract For contractarians, justice is the result of a rational bargain. The goal is to show that the rules of justice are consistent with rationality. The two most important bargaining theories of justice are David Gauthier’s and those that use the Nash’s bargaining solution. I argue that both of these approaches are fatally undermined by their reliance on a symmetry condition. Symmetry is a substantive constraint, not an implication of rationality. I argue that using symmetry to generate uniqueness undermines the goal of bargaining theories of justice. Keywords David Gauthier Á John Nash Á John Harsanyi Á Thomas Schelling Á Bargaining Á Symmetry Throughout the last century and into this one, many philosophers modeled justice as a bargaining problem between rational agents. Even those who did not explicitly use a bargaining problem as their model, most notably Rawls, incorporated many of the concepts and techniques from bargaining theories into their understanding of what a theory of justice should look like. This allowed them to use the powerful tools of game theory to justify their various theories of distributive justice. The debates between partisans of different theories of distributive justice has tended to be over the respective benefits of each particular bargaining solution and whether or not the solution to the bargaining problem matches our pre-theoretical intuitions about justice. There is, however, a more serious problem that has effectively been ignored since economists originally J. -
Fair Division Michael Meurer Boston Univeristy School of Law
Boston University School of Law Scholarly Commons at Boston University School of Law Faculty Scholarship 1999 Fair Division Michael Meurer Boston Univeristy School of Law Follow this and additional works at: https://scholarship.law.bu.edu/faculty_scholarship Part of the Gaming Law Commons Recommended Citation Michael Meurer, Fair Division, 47 Buffalo Law Review 937 (1999). Available at: https://scholarship.law.bu.edu/faculty_scholarship/530 This Article is brought to you for free and open access by Scholarly Commons at Boston University School of Law. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Scholarly Commons at Boston University School of Law. For more information, please contact [email protected]. BOSTON UNIVERSITY SCHOOL OF LAW WORKING PAPER SERIES, LAW & ECONOMICS WORKING PAPER NO. 99-10 FAIR DIVISION MICHAEL MEURER THIS PAPER APPEARS IN 47 BUFFALO LAW REVIEW 937 AND IS REPRINTED BY PERMISSION OF THE AUTHOR AND BUFFALO LAW REVIEW This paper can be downloaded without charge at: The Boston University School of Law Working Paper Series Index: http://www.bu.edu/law/faculty/papers The Social Science Research Network Electronic Paper Collection: http://papers.ssrn.com/paper.taf?abstract_id=214949 BOOK REVIEW Fair Division † MICHAEL J. MEURER appearing in 47 BUFFALO LAW REVIEW 937-74 (1999) INTRODUCTION Fair division is a fundamental issue of legal policy. The law of remedies specifies damages and rules of contribution that apportion liability among multiple defendants.1 Probate law specifies -
Endgame Solving
Endgame Solving: The Surprising Breakthrough that Enabled Superhuman Two-Player No- Limit Texas Hold 'em Play Sam Ganzfried Assistant Professor, Computer Science, Florida International University, Miami FL PhD, Computer Science Department, Carnegie Mellon University, 2015 [email protected] 1 2 3 4 5 Milestones • Opponent Modelling in Poker, Billings et.al., ‘98 • Abstraction Methods for Game-Theoretic Poker, Shi/Littman, ‘00 • Approximating Game-Theoretic Optimal Strategies for Full-scale Poker, Billings et.al., ‘03 • Optimal Rhode Island Poker, Gilpin/Sandholm, ‘05 • Annual Computer Poker Competition ‘06-Present • EGT/automated abstraction algorithms, Gilpin/Sandholm ‘06-‘08 • Regret Minimization in Games with Incomplete Information, Zinkevich et.al., ‘07 • Man vs. Machine limit Texas hold ‘em competitions ‘08-’09 • Computer Poker & Imperfect Information Symposium/Workshop ‘12-Present • Heads-up Limit Hold'em Poker is Solved, Bowling et.al., ‘15 • Brains vs. AI no-limit Texas hold ‘em competition ’15 • First Computer Poker Tutorial ‘16 • DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker ’17 • Second Brains vs. AI no-limit Texas hold ‘em competition ‘17 6 Scope and applicability of game theory • Strategic multiagent interactions occur in all fields – Economics and business: bidding in auctions, offers in negotiations – Political science/law: fair division of resources, e.g., divorce settlements – Biology/medicine: robust diabetes management (robustness against “adversarial” selection of parameters in MDP) – Computer -
Fairness in Bankruptcy Situations: an Experimental Study
Fairness in bankruptcy situations: an experimental study Alexander W. Cappelen Roland I. Luttens Erik Ø. Sørensen Bertil Tungodden∗ August 11, 2015 Abstract The pari passu principle is the most prominent principle in the law of in- solvency. We report from a lab experiment designed to study whether people find this principle a fair solution to the bankruptcy problem. The experi- mental design generates situations where participants work and accumulate claims in firms, some of which subsequently go bankrupt. Third-party arbi- trators are randomly assigned to determine how the liquidation value of the bankrupt firms should be distributed between claimants. Our main finding is that there is a striking support for the pari passu principle of awarding claimants proportionally to their pre-insolvency claims. We estimate a ran- dom utility model that allows for the arbitrators to differ in what they consider a fair solution to the bankruptcy problem and find that about 85 percent of the participants endorse the proportional rule. We also find that a non-negligible fraction of the arbitrators follow the constrained equal losses rule, while there is almost no support in our experiment for the constrained equal awards rule or other fairness rules suggested in the normative literature. Finally, we show that the estimated random utility model nicely captures the observed arbi- trator behavior, in terms of both the overall distribution of awards and the relationship between awards and claims. 1 Introduction Bankruptcy law is concerned with situations where a debtor is unable to pay its debts and it constitutes an essential element in any well-functioning market econ- omy (Hotchkiss, John, Moordadian, and Thorburn, 2008). -
Publications of Agnes Cseh
Publications of Agnes Cseh This document lists all peer-reviewed publications of Agnes Cseh, Chair for Algorithm Engineering, Hasso Plattner Institute, Potsdam, Germany. This listing was automatically generated on October 6, 2021. An up-to-date version is available online at hpi.de/friedrich/docs/publist/cseh.pdf. Journal articles [1] Cseh, Á., Juhos, A., Pairwise Preferences in the Stable Marriage Problem. In: ACM Transactions on Economics and Computation (TEAC) 9, pp. 1–28, 2021. [2] Cseh, Á., Kavitha, T., Popular matchings in complete graphs. In: Algorithmica, pp. 1–31, 2021. [3] Andersson, T., Cseh, Á., Ehlers, L., Erlanson, A., Organizing time exchanges: Lessons from matching markets. In: American Economic Journal: Microeconomics 13, pp. 338–73, 2021. [4] Cseh, Á., Fleiner, T., The Complexity of Cake Cutting with Unequal Shares. In: ACM Transactions on Algorithms 16, pp. 1–21, 2020. An unceasing problem of our prevailing society is the fair division of goods. The problem of proportional cake cutting focuses on dividing a heterogeneous and divisible resource, the cake, among n players who value pieces according to their own measure function. The goal is to assign each player a not necessarily connected part of the cake that the player evaluates at least as much as her proportional share. In this article, we investigate the problem of proportional division with unequal shares, where each player is entitled to receive a predetermined portion of the cake. Our main contribution is threefold. First we present a protocol for integer demands, which delivers a proportional solution in fewer queries than all known proto- cols. -
Basis Utility and Proportionality in Games1
Lost in Translation: Basis Utility and Proportionality in Games1 Barry Feldman Prism Analytics Kellstadt School of Business 53 West Jackson Blvd. #724 DePaul University Chicago, IL 60604 1 East Jackson Blvd. #6100 [email protected] Chicago, IL 60604 [email protected] July 18, 2005 abstract A player's basis utility is the utility of no payo®. Basis utility is neces- sary for the coherent representation of the equal split bargaining solution. Standard axioms for the Nash (1950) bargaining solution do not imply independence from basis utility. Proportional bargaining is the unique solution satisfying e±ciency, symmetry, a±ne transformation invariance and monotonicity in pure bargaining games with basis utility. All existing cooperative solutions become translation invariant once account is taken of basis utility. The noncooperative rationality of these results is demon- strated though an implementation of proportional bargaining based on Gul (1988). Quantal response equilibria with multiplicative error struc- tures (Goeree, Holt and Palfrey (2004)) become translation invariant with speci¯cation of basis utility. Equal split and proportional bargaining join the Kalai-Smorodinsky (1975) solution in a family of endogenously pro- portional monotonic pure bargaining solutions. JEL Classi¯cation: C70, C71, C72, C78. Keywords: Basis utility, equal split, Kalai-Smorodinsky solution, Nash bargaining, quantal response equi- libria, proportional bargaining, translation invariance. 1I am grateful to Peter Borm, Srihari Govindan, Chris O'Neill and Alvin E. Roth for discussions of topics related to this paper. Thanks also for comments to Oliver Gossner, Elena I~narraand other participants at the 2005 Stony Brook Game Theory Conference. °c 2005 by Barry Feldman. 1 Introduction There is no representation of basis utility in games. -
Ame Theoretic Analysis of a Bankruptcy Proble from the Talmud*
JOURNAL OF ECONOMIC THEORY 36, 195-213 (1985) ame Theoretic Analysis of a bankruptcy Proble from the Talmud* ROBERT J. AUMANN AND MICHAEL MASCHLER The Hebrew Universify, 91904 Jerusalem, Israel Received August 27, 1984; revised February 4, 1985 DEDICATED TO THE MEMORYOF SHLOMOAUMANN, TALMUDIC SCHOLARAND MAN OF THE WORLD, KILLED IN ACTION NEAR KHUSH-E-DNEIBA, LEBANON, ON THE EVE OF THE NINETEENTHOF SWAN, 5742 (JUNE 9, 1982). For three different bankruptcy problems, the 2000-year oid Babylonian Talmud prescribes solutions that equal precisely the nucleoli of the corresponding coalitional games. A rationale for these solutions that is independent of game theory is given in terms of the Talmudic principle of equai division of the contested amount: this rationale leads to a unique solution for all bankruptcy problems, which always coincides with the nucleolus. Two other rationales for the same rule are suggested. in terms of other Talmudic principles. (Needless to say, the rule in question is not proportional division). Jomd cf Economic Literature C’lussification Numbers: 022, 026, 031, 043, 213. ‘?: 1985 Academic Press. Inc. 1. 1N~RoDucTroN A man dies, leaving debts d, ,..., d,, totalling more than his estate E. should the estate be divided among the creditors? A frequent solution in modern law is proportional division. The rationale is that each dollar of debt should be treated in the same way; one looks at dollars rather than people. Yet it is by no means obvious that this is the only equitable or reasonable system. For example, if the estate does not exceed the smallest debt, equal division among the creditors makes good sense. -
On Achieving Fairness and Stability in Many-To-One Matchings
On Achieving Fairness and Stability in Many-to-One Matchings Shivika Narang1, Arpita Biswas2, and Y Narahari1 1Indian Institute of Science (shivika, narahari @iisc.ac.in) 2Harvard University ([email protected]) Abstract The past few years have seen a surge of work on fairness in social choice literature. A major portion of this work has focused on allocation settings where items must be allocated in a fair manner to agents having their own individual preferences. In comparison, fairness in two- sided settings where agents have to be matched to other agents, with preferences on both sides, has received much less attention. Moreover, two-sided matching literature has mostly focused on ordinal preferences. This paper initiates the study of finding a stable many-to-one matching, under cardinal valuations, while satisfying fairness among the agents on either side. Specifically, motivated by several real-world settings, we focus on leximin optimal fairness and seek leximin optimality over many-to-one stable matchings. We first consider the special case of ranked valuations where all agents on each side have the same preference orders or rankings over the agents on the other side (but not necessarily the same valuations). For this special case, we provide a complete characterisation of the space of stable matchings. This leads to FaSt, a novel and efficient algorithm to compute a leximin optimal stable matching under ranked isometric valuations (where, for each pair of agents, the valuation of one agent for the other is the same). The running time of FaSt is linear in the number of edges. -
An Approach to N-Person Cooperative Games
Undergraduate Thesis MAJOR IN MATHEMATICS Faculty of Mathematics University of Barcelona AN APPROACH TO N-PERSON COOPERATIVE GAMES Eric` L´opez Ramiro [email protected] Advisor: Dr. Josep Vives Dept. of Probability, Logic and Statistics Barcelona, January 18, 2016 This page intentionally left blank. Abstract This work is an overview on n-person cooperative games in Game Theory, the mathemat- ical theory of interactive decision situations characterized by a group of agents, each of whom has to make a decision based on their own preferences on the set of outcomes. These situations are called games, agents are players and decisions are strategies. By focusing on Cooperative Game Theory, we analyze concepts such as coalition formation, equilibrium, stability, fairness and the most important proposed solution concepts. Keywords: Cooperative Game Theory, Cooperative game, Shapley value, nucleolus, core, bankruptcy problem, airport problem, indices of power, voting games. Resum Aquest treball tracta sobre els jocs n-personals cooperatius en Teoria de Jocs, la branca de les matem`atiquesque estudia i analitza les interaccions entre una s`erie d'agents que han de prendre una decisi´o,segons les seves prefer`enciessobre el conjunt de possibles resultats dels jocs. En centrar-nos en la Teoria de Jocs Cooperatius, analitzarem conceptes com la formaci´ode coalicions, l'equilibri, la just´ıciai les propostes de conceptes de solucions m´es importants. i Acknowledgements For his continuous help and patient guidance throughout the development of this thesis, I would like to express my deep gratitude, first of all, to my advisor, Dr. Josep Vives. Without his encouragement, persistent advice and useful corrections, this would not have been possible. -
Fair Division: the Computer Scientist’S Perspective
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Survey Track Fair Division: The Computer Scientist’s Perspective Toby Walsh UNSW Sydney Data61 [email protected] Abstract 2 Formal Model I briefly give some notation and concepts that will be used in I survey recent progress on a classic and challeng- the rest of this survey. We have n agents and m indivisible ing problem in social choice: the fair division of items, a1 to am. For each agent i 2 [1; n] and j 2 [1; m], indivisible items. I discuss how a computational the agent i has utility ui(aj) ≥ 0 for the item ak. We will perspective has provided interesting insights into mostly limit ourselves to additive utilities where the utility to P and understanding of how to divide items fairly agent i for a set of items B is ui(B) = a2B ui(a). One and efficiently. This has involved bringing to bear special case of additive utilities is Borda scores where the tools such as those used in knowledge represen- jth most preferred item for agent i has utility m − j + 1. tation, computational complexity, approximation Another special case of additive utilities is lexicographical methods, game theory, online analysis and commu- scores where the jth most preferred item for agent i has util- nication complexity. ity 2m−j. We will also mostly consider fair division problems involving just goods where items have non-negative utility. This contrasts to bads where all agents have negative utility for the items. An allocation is a partition of the m items into 1 Introduction n distinguished sets, A1 to An where Ai represents the items allocated to agent i and Ai \ Aj = ; for i 6= j. -
A Discrete and Bounded Envy-Free Cake Cutting Protocol for Four Agents
A Discrete and Bounded Envy-Free Cake Cutting Protocol for Four Agents Haris Aziz Simon Mackenzie Data61 and UNSW Sydney, Australia {haris.aziz, simon.mackenzie}@data61.csiro.au ABSTRACT problem of fairly dividing the cake is a fundamental one We consider the well-studied cake cutting problem in which within the area of fair division and multiagent resource al- the goal is to identify an envy-free allocation based on a min- location [6, 17, 26, 29, 33, 35, 36]. imal number of queries from the agents. The problem has Formally speaking, a cake is represented by an interval attracted considerable attention within various branches of [0, 1] and each of the n agents has a value function over computer science, mathematics, and economics. Although, pieces of the cake that specifies how much that agent val- the elegant Selfridge-Conway envy-free protocol for three ues a particular subinterval. The main aim is to divide the agents has been known since 1960, it has been a major open cake fairly. In particular, an allocation should be envy-free problem to obtain a bounded envy-free protocol for more so that no agent prefers to take another agent’s allocation instead of his own allocation. Although an envy-free alloca- than three agents. The problem has been termed the cen- 1 tral open problem in cake cutting. We solve this problem tion is guaranteed to exist even with n−1 cuts [35] , finding by proposing a discrete and bounded envy-free protocol for an envy-free allocation is a challenging problem which has four agents. -
What Is Game Theory Trying to Accomplish?
1 What Is Game Theory Trying to Accomplish? 1 Introduction The language of game theory—coalitions, payo¤s, markets, votes— suggests that it is not a branch of abstract mathematics; that it is moti- vated by and related to the world around us; and that it should be able to tell us something about that world. Most of us have long realized that game theory and the ‘‘real world’’ (it might better be called the complex world) have a relationship that is not entirely comfortable; that it is not clear just what it is that we are trying to do when we build a game- theoretic model and then apply solution concepts to it. This is the subject I would like to explore in this paper. I might add that much the same questions apply to economic theory, at least the kind that those of us working in mathematical economics see most often; and that much of my paper will apply, mutatis mutandis, to economic theory as well. There is a branch of philosophy that deals with theory in the social sciences, so some of the things I have to say are unquestionably old hat. But I am not trying to be particularly original: I am only trying to open this topic, which I think concerns all of us, for discussion, and to suggest a particu- lar point of view. No doubt others have thought about these questions more thoroughly and deeply than I have, and are better versed in the history and philosophy of science in general. I will be grateful to anybody who sets me straight when I err, and who gives me references for the things I get right.